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Abstract 

Background:  There is an increasing interest in the role of epigenetics in epidemiology, but the emerging research 
field faces several critical biological and technical challenges. In particular, recent studies have shown poor correlation 
of measured DNA methylation (DNAm) levels within and across Illumina Infinium platforms in various tissues. In this 
study, we have investigated concordance between 450 k and EPIC Infinium platforms in cord blood. We could not 
replicate our previous findings on the association of prenatal paracetamol exposure with cord blood DNAm, which 
prompted an investigation of cross-platform DNAm differences.

Results:  This study is based on two DNAm data sets from cord blood samples selected from the Norwegian Mother, 
Father and Child Cohort Study (MoBa). DNAm of one data set was measured using the 450 k platform and the other 
data set was measured using the EPIC platform. Initial analyses of the EPIC data could not replicate any of our previous 
significant findings in the 450 k data on associations between prenatal paracetamol exposure and cord blood DNAm. 
A subset of the samples (n = 17) was included in both data sets, which enabled analyses of technical sources poten-
tially contributing to the negative replication. Analyses of these 17 samples with repeated measurements revealed 
high per-sample correlations ( −

R≈
 0.99), but low per-CpG correlations ( −

R
 ≈ 0.24) between the platforms. 1.7% of the 

CpGs exhibited a mean DNAm difference across platforms > 0.1. Furthermore, only 26.7% of the CpGs exhibited a 
moderate or better cross-platform reliability (intra-class correlation coefficient ≥ 0.5).

Conclusion:  The observations of low cross-platform probe correlation and reliability corroborate previous reports in 
other tissues. Our study cannot determine the origin of the differences between platforms. Nevertheless, it emulates 
the setting in studies using data from multiple Infinium platforms, often analysed several years apart. Therefore, the 
findings may have important implications for future epigenome-wide association studies (EWASs), in replication, 
meta-analyses and longitudinal studies. Cognisance and transparency of the challenges related to cross-platform 
studies may enhance the interpretation, replicability and validity of EWAS results both in cord blood and other tissues, 
ultimately improving the clinical relevance of epigenetic epidemiology.
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Background
Epigenetics entails modifications of the DNA that can 
impact gene expression, but does not involve changes 
in the underlying DNA sequence. The most commonly 
studied epigenetic modification is DNA methylation 
(DNAm), which occurs at cytosine bases of cytosine–
phosphate–guanine dinucleotide sites (CpGs). DNAm 
can be impacted by the DNA sequence, as well as envi-
ronmental influences [1–4]. There is an increasing inter-
est in the role of epigenetics within epidemiology. Several 
pharmacoepidemiological studies have reported an 
association between prenatal psychotropic or analgesic 
medication exposure and neurodevelopmental outcomes 
in the offspring [5–13]. Furthermore, multiple epige-
nome-wide association studies (EWASs) have identified 
DNAm changes associated with medication exposure 
during pregnancy (e.g. valproic acid, antidepressants and 
paracetamol) [14–20]. Recently, we found an associa-
tion between cord blood DNAm and prenatal long-term 
exposure to paracetamol in children with attention-
deficit/hyperactivity disorder (ADHD) [21]. These ini-
tial findings may suggest that DNAm is involved in the 
relationship between prenatal medication exposure and 
adverse neurodevelopmental outcomes [3, 4].

Despite a growing interest in epigenetics, and an 
increasing number of published EWASs, there are several 
critical biological and technical challenges in epigenetic 
epidemiology, which have important implications for the 
interpretation, validity and clinical translation of the find-
ings [1, 22, 23]. One key challenge is the paucity in the 
replication of findings. For instance, two systematic lit-
erature reviews on the association of offspring epigenetic 
patterns with medication use [20] and maternal well-
being in pregnancy [24] uncovered largely inconsistent 
findings. These reviews suggest multiple origins of the 
discrepant results, such as small sample sizes resulting in 
low statistical power and poor study designs [20, 24]. The 
majority of EWASs are based on DNAm data generated 
using the Illumina Infinium HumanMethylation Bead-
Chip platforms, including the 27  k (n > 27,000 CpGs), 
450 k (n > 450,000 CpGs) and the EPIC arrays (n > 850,000 
CpGs) [25]. Recent studies have elucidated technical 
aspects related to the Infinium platforms, which have 
significant influences on the analyses and interpretation 
of results. These studies have shown significant per-CpG 
differences and poor per-CpG correlation both within 
[26–35] and across [31, 32, 36–40] microarray platforms, 
which challenges combined analyses of DNAm data from 

both platforms (e.g. [41–45]). In cord blood, the median 
correlation of individual CpGs across platforms was only 
0.24 [37]. Furthermore, 2.4% of the CpGs exhibited a 
mean difference in measured DNAm level between the 
platforms ≥ 0.1 [37], on the same order as the low effect 
sizes often observed within epigenetic epidemiology [1, 
22, 46]. Furthermore, only 18.0% of CpGs in adult whole-
blood exhibit a moderate or better reliability across plat-
forms (intra-class correlation coefficient [ICC] ≥ 0.5) 
[31]. The technical aspects contributing to low reliabili-
ties of CpGs may affect the power of EWASs [28, 47]. 
Consequently, poor concordance of measured DNAm 
levels across platforms may impact both the replicability 
and validity of EWAS results.

In an ongoing study, we aim to replicate and expand our 
previous findings showing associations between long-
term prenatal exposure to paracetamol (≥ 20  days) and 
DNAm in children with ADHD [21]. Analyses of DNAm 
data generated from a larger number of samples selected 
from the same cohort using the Infinium EPIC platform 
find no significant CpGs associated with paracetamol 
exposure. Accordingly, we fail to replicate any of our 
previous significant findings [21]. Examining a subset of 
samples with repeated measurements in both data sets 
has enabled a thorough investigation of potential techni-
cal origins of the negative replication. Our findings could 
not explain the failure to replicate our previous results, 
but are still important for replication EWASs, as well as 
studies combining DNAm from different Infinium plat-
forms, such as longitudinal studies or meta-analyses.

Results
Lack of replicability may originate from several technical 
sources
This study is based on a subset of samples (n = 17) 
included in two datasets and consists of repeated meas-
urements using the Infinium 450 k and EPIC platforms. 
The samples were selected from the Norwegian Mother, 
Father and Child Cohort Study (MoBa). In the data set 
assessed on the 450 k platform (n = 384 samples), we have 
previously published associations between prenatal expo-
sure to paracetamol and DNAm differences in children 
with ADHD [21]. Analysis of the second data set (n = 261 
samples), which was designed to expand on these findings 
using the EPIC platform, has failed to replicate our previ-
ous findings (data not shown). This prompted a thorough 
investigation of whether technical aspects of the Infinium 
platforms could explain the negative replication. Using 
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a subset of samples with repeated measurements from 
both studies (n = 17 samples), we conducted system-
atic analyses to assess the integrity and reliability of the 
DNAm data between the Infinium platforms.

The DNAm data separate into clusters explained 
by microarray platforms
We performed stringent quality control, normalisation 
and probe filtering procedures of the DNAm data from 
the two data sets containing the samples with repeated 
measurements, to minimise technical variation related 
to pre-processing of the data. First, we examined DNAm 
data measured for a set of genotyping probes on each 
platform (n = 59 probes). Clustered heatmaps of DNAm 
values at these genotyping probes showed that the 
repeated cross-platform measurements of each sample 
grouped together and hence, excluded potential mix-up 
of samples (Additional file 1: Fig. S1). Second, we exam-
ined whether pre-processing steps such as background 
and probe-type correction impacted the cross-platform 
concordance. To do this, we used the intra-class correla-
tion coefficient (ICC), which equals 1 if there is perfect 
per-CpG concordance between the measured DNAm in 
the 450  k and EPIC data sets. Generally, an ICC < 0.5 is 
considered poor [48, 49]. We computed the ICCs after 

pre-processing the 450  k and EPIC data sets separately, 
using the default settings of five commonly used pre-
processing pipelines ChAMP [50, 51], ENmix [34], minfi 
[52], RnBeads [53] and wateRmelon [54] (Additional File 
1: Table  S1). We also included one pipeline commonly 
reported in the literature, namely RnBeads with the 
background and probe-type corrections ENmix.oob [34] 
and BMIQ [55], respectively. This analysis revealed that 
the ENmix pipeline exhibited larger ICCs than the other 
pipelines (Fig. 1). Therefore, we performed the rest of the 
analyses on data sets normalised using the default set-
tings of the ENmix pipeline.

Next, we performed principal component analysis 
(PCA) to explore technical variation in the DNAm data 
related to the 450  k and EPIC platforms. As expected, 
PCA revealed distinct clustering of samples correspond-
ing to the 450 k and EPIC platforms (Fig. 2). Similar plots 
were observed when pooling all the available 450 k and 
EPIC samples (n = 628 samples; data not shown).

DNAm levels differ between the 450 k and EPIC platforms
To further investigate the dissimilarities between the 
450  k and EPIC platforms, we computed the difference 
in and correlation of DNAm at overlapping CpGs on 
the two platforms (n = 397,813 CpGs). These analyses 

Fig. 1  Overview of the ICC distribution computed from raw data and from data pre-processed using the default settings of five common EWAS 
analysis pipelines. Additionally, we included one common analysis pipeline (“RnBeads (customised)”, including the normalisation methods ENmix.
oob and BMIQ). All pipelines examined also exhibited ICCs lower than –2, but these were removed from the illustration for visualisation purposes. 
The default settings of each analysis pipeline are detailed in Additional file 1: Table S1
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revealed small per-sample absolute differences in DNAm 
at overlapping CpGs between the two arrays (median 
≈ 0.008 and mean ≈ 0.017 absolute DNAm differences). 
For 0.1% (n = 454) of CpGs, the mean DNAm difference 
over all replicates was > 0.25, while 0.007% (n = 27) of 
CpGs exhibited a mean DNAm difference > 0.5 (Fig.  3). 
These numbers are largely in line with previous studies, 
comparing differences in measured DNAm between the 
450  k and EPIC arrays in cord blood [37], whole-blood 
[31, 32, 36, 37], placenta [38] and cartilage [39]. Further-
more, of the 27 CpGs with an absolute mean DNAm 
difference > 0.5, 5 of these CpGs also exhibited absolute 
mean DNAm difference > 0.5 in both cord blood [37], 
whole-blood [37], placenta [38] and cartilage [39] (Addi-
tional file 1: Fig. S2).

We observed a high per-sample correlation of DNAm 
between the platforms, both when comparing replicates, 
and when comparing two independent samples across 
the platforms (Fig.  4A). The median per-sample Pear-
son’s correlation coefficient was 0.996 and the mean was 
0.992, with the lowest correlation between any two sam-
ples being 0.969 and the highest being 0.998. In contrast, 
the per-CpG correlations of measured DNAm between 
the platforms were significantly lower: the median corre-
lation was 0.237 and the mean was 0.238, with the low-
est correlation being -0.822 and the highest being 1.00 

(Fig. 4B). The per-CpG correlation appeared to be related 
to the variance of each CpG, which were similar for 
both platforms; CpGs with high correlation also exhib-
ited larger variance (Fig.  4B). The high per-sample cor-
relation, low per-CpG correlation, and the relationship 
between CpG variance and correlation, have previously 
been reported for cord blood [37], and multiple other tis-
sues [31, 32, 36–39].

Few CpGs are reliable between the 450 k and EPIC platforms
In order to examine concordance of cross-platform 
DNAm levels, we assessed the reliability of the CpGs, 
reflecting both correlation and agreement. To do this, we 
computed the ICC, as previously suggested by Sugden 
et  al. (2020) comparing cross-platform DNAm levels in 
adult whole-blood [31]. Overall, the ICCs of the overlap-
ping CpGs were poor (median = 0.246 and mean = 0.230; 
Fig.  5A). Approximately 26.7% (n = 106,078) of the 
CpGs exhibited an ICC ≥ 0.5. This is similar to the find-
ings of the recent study by Sugden et al. in adult whole-
blood, where 18.0% of CpGs exhibited an ICC ≥ 0.5 [31]. 
Approximately 38.6% (n = 40,916) of the CpGs with an 
ICC ≥ 0.5 in the current  study overlapped with the CpGs 
with an ICC ≥ 0.5 reported by Sugden et  al. [31] (Addi-
tional File 2). The microarray type II probes exhibited 
slightly better ICCs and correlation coefficients than type 

Fig. 2  (A–C) Scatter plots of the first three principal components (PC1–3) from PCA of DNAm data from samples with repeated measurements 
(n = 17 samples) using the 450 k and EPIC platforms, and (D) a scree plot showing the amount of variance explained by the first nine PCs
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I probes (Additional File 1: Fig. S3). Probes with poor 
ICCs and correlation coefficients appear more frequently 
in CpG islands (Additional File 1: Figs. S4 and S5), pos-
sibly due to an increased proportion of largely unmethyl-
ated CpGs in these regions (Additional File 1: Fig. S6).

Considering the poor CpG reliabilities, we investi-
gated if the ICCs of the repeated measurements were 

higher than expected for two randomly paired samples. 
Therefore, we paired each EPIC sample with a randomly 
selected 450  k sample. The distribution of ICCs com-
puted from the 17 repeated measurements (Fig.  5A) is 
significantly different from the ICC distributions com-
puted from the 17 random 450 k-EPIC pairs (Kolmogo-
rov–Smirnov test: p < 2.2*10–16; Additional file 1: Fig. S7). 

Fig. 3  Mean absolute difference in measured DNA methylation (Δβ) per CpG, on the 450 k and EPIC platforms. Red dotted lines indicate a mean 
Δβ > 0.1, > 0.25 and > 0.5. Illumina CpG IDs are named if the mean Δβ > 0.5

Fig. 4  Pearson’s correlation coefficients of DNAm in replicates of the 450 k and EPIC platforms, for (A) per-sample correlations in a correlogram, and 
(B) per-CpG correlations as distributions stratified by variance quartiles, based on the variance of the respective CpGs on the EPIC platform
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Furthermore, only a small percentage of the CpGs of the 
random pairs (2.4%–4.8%) exhibited an ICC ≥ 0.5, which 
are significantly different proportions from the ICCs of 
the repeated measurements (Pearson’s Chi-squared test: 
p < 2.2*10–16).

The ICC reflects both correlation and agreement 
across microarray platforms
To investigate if the ICCs reflect both agreement and 
correlation across platforms, we examined the distribu-
tion of mean differences in DNAm and Pearson’s cor-
relation coefficients, for each of four ICC categories: 

poor (ICC < 0.5), moderate (0.5 ≤ ICC < 0.75), good 
(0.75 ≤ ICC < 0.9) and excellent (ICC≥ 0.9) [48]. The 
distribution of mean differences in DNAm is relatively 
similar between the ICC categories. However, there are 
far more of the poor CpGs displaying large differences 
in mean DNAm levels across platforms compared to the 
other ICC categories (Fig.  5B). In contrast, the correla-
tion coefficient increases with improving ICC category; 
the poor ICC category exhibits a wide range of low cor-
relation coefficients (median ≈ 0.12), while the distribu-
tion of the correlation in the excellent category is highly 
skewed to the right (median ≈ 0.92). The moderate and 

Fig. 5  (A) Histogram of the ICCs computed from the 17 samples assessed on both the 450 k and EPIC platforms. (B) Density distribution of mean 
difference in DNAm level, stratified by ICC category. (C) Density distribution of Pearson’s correlation coefficient, stratified by ICC category. The ICC 
categories are defined as follows: poor: ICC < 0.5; moderate: 0.5 ≤ ICC < 0.75; good: 0.75 ≤ ICC < 0.9;  and excellent: ICC ≥ 0.9. The dark grey, dotted 
line indicates the median ICC, and the light grey, dotted line indicates the mean ICC. Outlying CpGs with ICCs less than the mean ICC minus three 
standard deviations were removed for visualisation purposes, but were included for summary statistic calculations
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good categories exhibit a wider range of correlation coef-
ficients than the excellent CpGs, with a median of 0.52 
and 0.74, respectively (Fig. 5C).

These observations demonstrate that the reliability of 
each CpG depends on both the correlation and the agree-
ment between the two platforms [48]. An excellent CpG 
will have both a low mean difference in DNAm between 
platforms  and a high correlation, explaining the small 
range in values of both the mean DNAm differences and 
the correlation coefficients. In contrast, a poor probe 
(including a larger range of ICCs) may exhibit an accept-
able correlation but have a large mean DNAm difference 
(Additional file 1: Fig. S8). For instance, 685 of the 5407 
CpGs with an R≥ 0.9 nevertheless have an ICC ≤ 0.9, with 
22 CpGs even having a poor ICC (< 0.5). Furthermore, of 
the 395,286 CpGs with a mean DNAm difference ≤ 0.1, 
289,327 exhibit a poor ICC (< 0.5). This is likely due to 
low correlations, as the median R for these CpGs is 0.12, 
while the median R was 0.59 for the 105,959 CpGs with a 
mean DNAm difference ≤ 0.1 and an ICC ≥ 0.5. Hence, 
the ICC better  reflects reliability  across platforms than 
either accuracy or correlation on their own.

The significant CpGs in the 450 k data have low reliabilities
We then asked if our failure to replicate the findings in 
our original study [21] could be explained by poor-per-
forming probes, by examining the ICCs of the significant 
CpGs from the 450 k data set. The significant CpGs for 
the three group comparisons performed in the original 
study have median ICCs of 0.119, 0.122 and 0.135 (Addi-
tional file 1: Fig. S9). These reliabilities are low compared 
to the overall mean and median of the ICCs including all 
common CpGs across platforms.

Discussion
Replication of association studies is important to ensure 
robust and valid findings. In an ongoing study, we aimed 
to replicate and expand on findings in our previous study, 
where we found an association between long-term pre-
natal paracetamol exposure and differences in DNAm 
in children with ADHD, using the Infinium 450  k plat-
form [21]. Surprisingly, analyses of the follow-up data 
consisting of a larger sample and use of the Infinium 
EPIC platform have not replicated the results from our 
original study. Indeed, a challenge of EWASs is to dis-
cern spurious findings from true positives, rendering 
the replication of significant associations challenging 
[1, 22, 23]. Recent studies have shown low concordance 
across 450 k and EPIC platforms in different tissues [31, 
32, 36–40]. Therefore, we have conducted a systematic 
evaluation of technical aspects related to concordance of 
DNAm data across the Infinium platforms in our studies 

in cord blood, by using data from a subset of samples 
with repeated measurements from the 450  k and EPIC 
platforms.

Technical variation such as batch effects is systematic 
variation caused by, for example, processing by differ-
ent technicians, varying reagent batches and differences 
in the scanner performance. PCA of DNAm data from 
the samples with repeated measurements demonstrated 
distinct clustering of samples corresponding to the plat-
form. If these differences in DNAm were independent of 
the platform and resulted entirely from positioning on 
the beadchip or bisulphite conversion plate, we would 
expect the changes to be relative and to not impact the 
replicability. Considering the general challenge of replica-
tion of EWASs [1, 22, 23] and the low per-CpG concord-
ance across platforms reported in several recent studies 
[31, 32, 36–40], we were encouraged to examine possible 
cross-platform differences in DNAm. Corroborating pre-
vious studies, we observed a high per-sample correlation 
even between the randomly paired samples [32, 36–40]. 
In contrast, the per-CpG correlation was significantly 
lower, and some probes exhibited large differences in 
mean measured DNAm for overlapping CpGs on the two 
platforms.

Considering the highly concerning findings by Sugden 
et al. [31], reporting low reliabilities (measured by ICCs) 
for most CpGs across the 450  k and EPIC platforms in 
adult whole-blood, we estimated the ICCs of each CpG 
across the two platforms in our cord blood samples. Ide-
ally, the ICC will approach 1 if the between-sample vari-
ation is much larger than the within-sample variation, 
suggesting larger biological variation than technical vari-
ation. However, most CpGs in our study exhibited poor 
reliabilities (ICC < 0.5) [31, 48]  and we found that only 
26.7% of CpGs in cord blood had an acceptable reliability 
across platforms. Interestingly, 38.6% of these CpGs over-
lapped with the 18.0% reliable CpGs identified in adult 
whole-blood [31]. This may suggest that some probes are 
generally unreliable in different tissues, possibly due to 
cell-type specific variability in DNAm. In contrast, other 
CpGs may perform worse in specific tissues, similar to 
what has been suggested for both per-CpG correlations 
and differences in DNAm between platforms [37–39]. 
In future studies, it would be interesting to examine the 
ICCs between Infinium platforms and other DNAm 
measuring technologies, such as whole-genome bisul-
phite sequencing (WGBS) or methylated immunopre-
cipitation (MeDIP).

We observed a substantial difference in the distribution 
of ICCs for different pre-processing steps used in com-
mon analysis pipelines. The ENmix pipeline exhibited 
the largest median ICC, suggesting that this pipeline may 
be better to best conserve the similarity of normalised 
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repeated measurements from different platforms. In con-
trast, both the default RnBeads, minfi and wateRmelon 
pipelines have no better ICC distributions than the raw 
data. Notably, compared to a recent study reporting 
the ICC distribution of multiple different pipelines for 
within-platform repeated measurements [35], the distri-
bution of cross-platform ICCs varies more dependent on 
the analysis pipeline used. However, the analysis pipeline 
with the highest median ICC is ENmix for both cross-
platform and within-platform comparisons [35].

Interestingly, some studies have reported that cross-
platform differences in DNAm and poor per-CpG cor-
relations do not substantially impact the outcome of 
EWASs [32, 37]. However, when investigating the rela-
tionship of ICCs with the likelihood of replication of 
CpGs, Sugden et  al. observed a positive relationship 
between increasing ICC and increasing replication rate 
for the association of DNAm with smoking [31]. Similar 
associations of ICCs with replicability have been found 
when ICCs were estimated from 450  k-450  k replicates 
[26, 49]. For instance, smoking-DNAm associations in 
whole-blood are highly replicable [56], and in one study, 
96% of CpGs associated with smoking exhibit high reli-
ability [26]. Additionally, poor ICCs have been shown 
to decrease the power of individual CpGs in EWASs, i.e. 
reducing the positive predictive value (PPV) by decreas-
ing the number of true positives [28, 31, 47]. The median 
ICC of the significant CpGs in our original study was 
poor. However, if these findings were explained by the 
low reliability of the probes, we would expect none or 
very few significant CpGs. Consequently, based on the 
calculated ICCs using our 17 samples with repeated 
measurements, we have no explanation for the lack of 
replicability of our original findings.

A limitation of the present study is the small sample 
size used to assess the ICCs. However, ICC calculations 
generally require relatively small sample sizes [47, 57], 
and Sugden et al. found that sample sizes as small as 25 
would be sufficient to detect 80% of all CpGs with an 
ICC ≥ 0.75 [31]. Furthermore, our results on both per-
CpG correlations, differences in mean DNAm and ICCs 
are in line with other studies reporting one or more of 
these measurements for various tissues [31, 32, 36–40]. 
Nevertheless, a study including a larger number of 
repeated measurements in cord blood across the 450  k 
and EPIC platforms should be performed to strengthen 
our findings. Another limitation of our study is our ina-
bility to assess which technical variable(s) associated with 
the platform are contributing to the differences between 
platforms. Firstly, the DNAm on the 450 k and EPIC plat-
forms was measured three years apart. Yet, this largely 
emulates the setting in most studies relying on data pro-
cessed at different times and in different facilities (e.g., 

longitudinal studies and meta-analyses). Furthermore, 
all samples included in the current study were processed 
in the same core facility and by the same technician. 
Secondly, batches of bisulphite conversion reagents and 
scanners may also contribute to the cross-platform dif-
ferences. Nevertheless, we expect that such technical 
variation is relative within the platforms and, conse-
quently, that probes are mainly affected equally within 
the platform. Finally, it is challenging to assess the poten-
tial contribution of sample plate and beadchip to cross-
platform differences, due to the different platform layouts 
(the 450 k beadchip can load 12 samples, while the EPIC 
beadchip can load 8 samples). To limit the contribution of 
variation from sample plate and beadchip in our data, the 
samples were randomly positioned on plates and bead-
chips. Accordingly, technical variation contributed by 
these variables should be random and should not inflict 
much bias when comparing DNAm between platforms.

The substantial differences across platforms revealed 
in this and previous studies [31, 32, 36–40] are trou-
bling when trying to replicate findings using a different 
platform than in the original study. Replication of find-
ings has long been considered a major challenge within 
epigenetic epidemiology [1, 22, 23], and to our knowl-
edge, only one study has highlighted the potential impact 
of unreliable CpGs for replication of findings using 
data from different microarray platforms [31]. Chal-
lenges associated with differences in mean DNAm lev-
els across platforms are not necessarily limited to issues 
of replication. For instance, longitudinal studies based 
on DNAm measured at multiple timepoints may suffer 
under the development of new microarray technologies 
(e.g., [41, 42]). Furthermore, this is also relevant for large 
meta-analyses combining data from multiple cohorts to 
increase the power of EWASs (e.g. [43, 44]), often based 
on large consortia such as the Pregnancy And Childhood 
Epigenetics (PACE) consortium [45]. Such strategies 
may be impacted by unreliable probes when combining 
data sets from different platforms. Similarly, unreliable 
CpGs across platforms may have implications for current 
EWAS knowledgebases, such as the EWAS Atlas [58] and 
the EWAS catalogue [59], which curate EWAS publica-
tions to report DNAm-trait associations.

Conclusion
In conclusion, our failure to replicate significant CpGs 
associated with prenatal paracetamol exposure prompted 
a thorough investigation of potential technical origins of 
our null findings. The observation of low cross-platform 
per-CpG correlation and reliability corroborates previous 
reports. However, the low-reliability probes could not 
explain the inability to replicate previous findings in our 
case. Nevertheless, the poor cross-platform reliabilities 
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may have important implications for future EWASs, 
in replication, meta-analyses and longitudinal studies. 
Therefore, we encourage researchers performing EWASs 
to examine the reliability of probes within and across tis-
sues and to establish which probes are most comparable 
across microarray platforms. However, in many cases, the 
availability of repeated measurements from individual 
samples may be limited for reasons such as extra cost 
and limited availability of sample material. To this end, 
we encourage joint efforts to more extensively outline 
reliable probes in different tissues. If such investigations 
reveal common poor-performing probes across or within 
tissues, other studies may rely on this information when 
performing cross-platform studies. We hope our find-
ings, supporting the results by Sugden et al. [31], increase 
awareness of possible challenges in including both 450 k 
and EPIC data in the same study. Cognisance and trans-
parency of these challenges as well as appropriate pre-
cautions when performing cross-platform epigenetic 
investigations, may enhance the interpretation, replica-
bility and validity of results, and could ultimately improve 
the clinical relevance of epigenetic epidemiology.

Methods
Sample population
We analysed cord blood samples from the Mother, 
Father and Child Cohort Study (MoBa). MoBa is a pop-
ulation-based pregnancy cohort study conducted by the 
Norwegian Institute of Public Health (NIPH) [60–63]. 
Participants were recruited from all over Norway from 
1999–2008 [60, 61]. The women consented to partici-
pation in 41% of the pregnancies [60, 61]. The cohort 
includes approximately 114,500 children, 95,200 mothers 
and 75,200 fathers [60, 61]. The current study is based on 
Data Version 8 of the quality-assured data files released 
for research in 2015. Observational data from MoBa 
questionnaires Q1 (gestational week 0–13), Q3 (gesta-
tional week 13–29) and Q4 (gestational week 30 to deliv-
ery) were used to select individuals for the study. The 
personal, 11-digit identification number, unique to every 
permanent resident of Norway, was used to link MoBa to 
the Norwegian Patient Registry (NPR) and the Medical 
Birth Registry of Norway (MBRN). MBRN is a national 
health registry containing information about all births in 
Norway. We also analysed umbilical cord blood samples 
retrieved from the MoBa biobank [62, 63]. The biobank 
stores blood samples obtained from both parents dur-
ing pregnancy, and from mothers and children (umbilical 
cord) at birth [62, 63].

The establishment of MoBa and initial data collection 
was based on a license from the Norwegian Data Pro-
tection Agency and approval from the Regional Com-
mittees for Medical and Health Research Ethics (REC). 

MoBa is currently regulated by the Norwegian Health 
Registry Act. All MoBa participants have given their 
written informed consent to participate in the cohort 
study. The current study has been approved by REC 
South East Norway (REC reference: 23,136, 2014/163). 
All data are de-identified, and the linkage between 
MoBa and the different health registries was handled by 
NIPH along with the relevant registries.

Study design and measurements
The MoBa biobank contains 90,000 cord blood sam-
ples drawn at birth [63]. In our original study using 
the 450  k platform, we selected 384 samples from the 
biobank, and in the study using the EPIC platform, 
we selected 261 samples. Out of these samples, 611 
samples were unique to either the 450  k data set or 
the EPIC data set, and 17 samples were measured on 
both the 450 k and EPIC platforms. The samples were 
selected based on prenatal exposure to paracetamol 
and child ADHD diagnosis, and all samples were term 
births (≥ 37  weeks). The 17 samples available in both 
data sets were all prenatally long-term exposed to par-
acetamol and had received an ADHD diagnosis.

Long-term prenatal exposure to paracetamol (Ana-
tomical Therapeutic Chemical [ATC] code: N02BE01) 
was defined as the use of paracetamol for ≥ 20  days 
during pregnancy (coded as “yes” or “no”), based on a 
threshold from previous studies [64–68]. Use was self-
reported and collected from three MoBa question-
naires (Q1, Q3 and Q4). Offspring diagnosis of ADHD 
was retrieved from the NPR (2008), containing all indi-
vidual diagnoses asserted by specialists according to 
the 10th revision of the International Classification of 
Disease (ICD-10), as reported by governmental hos-
pitals and outpatient clinics. Children were defined as 
having ADHD if they had received an ICD-10 diagno-
sis of hyperkinetic disorder (HKD; F90.0, F90.1, F90.8 
or F90.9) between 2008 and 2016. HKD corresponds to 
ADHD in the Diagnostic and Statistical Manual (DSM) 
system [69–72], as an HKD diagnosis requires both 
inattentiveness and hyperactivity symptoms.

DNA methylation
Generation of DNAm data
The 450  k DNAm data from the samples in our origi-
nal study are described elsewhere [21]. The samples 
assessed on the Infinium HumanMethylation EPIC 
BeadChip (Illumina) were processed similar to the 
450  k data set [21]. Samples were randomly allocated 
to sample plates and beadchips, as previously described 
[21].
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Quality control and pre‑processing
Analyses were performed in the R programming lan-
guage (http://​www.r-​proje​ct.​org/). Quality control, 
normalisation and filtering of the data (Table  1) were 
performed using the default pipeline of ENmix [34]. The 
EPIC and 450 k data sets were pre-processed separately 
and all samples were included in the pre-processing 
(nEPIC = 261; n450k = 384). Subsequently, the 17 samples 
with repeated, cross-platform measurements were used 
for further analyses.

First, samples with > 5% low-quality CpGs or low bisul-
phite intensity were removed (7 samples from the 450 k 
data set and 0 samples from the EPIC data set). Then, 
CpGs with > 5% low-quality values were also removed 
(5598 and 8947 CpGs from the 450 k and EPIC data sets, 
respectively). Background correction was performed 
using the ENmix exponential-truncated-normal out-of-
band (oob) method [34], dye bias correction was exe-
cuted using RELIC (REgression on Logarithm of Internal 
Control probes) [73], and probe-type correction was 
achieved using RCP (Regression of Correlated Probes) 
[74]. We removed probes with SNPs overlapping with 
the CpG interrogation site or the nucleotide extension 
site (nEPIC = 29,176; n450k = 16,803), cross-reactive probes 
(nEPIC = 14,921; n450k = 21,563) [36, 75–77] and probes 
on the sex chromosomes (nEPIC = 17,532; n450k = 10,012). 
These pre-processing steps resulted in a total of 795,515 
probes in the EPIC data set and 431,536 probes in the 
450  k data set. Of these, 397,813 CpGs overlapped 
between the two platforms.

Pre‑processing using the default settings of common analysis 
pipelines
The raw data were also pre-processed using the default 
settings of four other common EWAS analysis pipelines: 
ChAMP [50, 51], minfi [52], RnBeads [53] and wateR-
melon [54]. Additionally, we used the default RnBeads 
pipeline [53], but changed the background and probe-
type correction methods to Enmix.oob [34] and BMIQ 
[55], respectively. The CpGs were annotated based on 
ilm10b4.hg19 [78].

Statistical analyses
The β values (the ratio of methylated signal to the sum 
of methylated and unmethylated signal) were used for 
visualisations and calculation of all concordance meas-
urements. To test for differences in distributions, we used 
the Kolmogorov–Smirnov test, and to test for differences 
in proportions, we used the Pearson’s Chi-squared test. 
To examine the correlations between both samples and 
CpGs from the different microarrays, we estimated the 
Pearson’s correlation coefficient. The ICC of each CpG 
was computed using the irr package [79]. We estimated 
the ICC by fitting an absolute agreement and mean of k 
raters (k = 2), two-way random effects model, as has pre-
viously been suggested for such comparisons [31]. The 
visualisation of the overlaps between studies of CpGs 
with mean DNAm differences > 0.5 across platforms was 
generated using the UpSetR package [80]
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