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Abstract

Background: Abnormal DNA methylation is a hallmark of human cancers and may be a promising biomarker
for early diagnosis of human cancers. However, the majority of DNA methylation biomarkers that have been
identified are based on the hypothesis that early differential methylation regions (DMRs) are maintained throughout
carcinogenesis and could be detected at all stages of cancer.

Methods: In this study, we identified potential early biomarkers of colorectal cancer (CRC) development by genome-
wide DNA methylation assay (lllumina infinium450, 450 K) of normal (N = 20) and pre-colorectal cancer samples
including 18 low-grade adenoma (LGA) and 22 high-grade adenoma (HGA), integrated with GEO and ArrayExpress
datasets (N = 833).

Results: We identified 209 and 8692 CpG sites that were significantly hyper-methylated in LGA and HGA, respectively.
Pathway analysis identified nervous system-related methylation changes that are significantly associated with early
adenoma development. Integration analysis revealed that DNA methylation in the promoter region of ADHFET has the
most potential for being an early diagnostic biomarker for colorectal adenoma and cancer (sensitivity = 0.96, specificity
= 095, area under the curve = 0.97).

Conclusions: Overall, we demonstrated that DNA methylation have been shown significant changes in the stage of
LGA and HGA in the development of colon cancer. Genome-wide DNA methylation to LGA and HGA provided an
important proxy to identify promising early diagnosis biomarkers for colorectal cancer.
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Background

Colorectal cancer (CRC) is the third leading cause of
cancer-related deaths worldwide [1, 2]. Current evidence
indicates that genetic mutations and epigenetic alter-
ations progressively accumulate in the tumor genome
during carcinogenesis, and these alterations may serve as
primary biomarkers for early detection and treatment of
cancer [3]. Abnormal alterations in methylation status
specifically hyper-methylation or hypo-methylation have
also been associated with abnormal tissue differentiation.
Altered methylation has been observed in the promoter
regions of tumor suppressor genes and miRNA have
been observed in almost all cancer types [4, 5]. Over the
past decades, detection of altered DNA methylation has
been widely studied to develop cancer biomarkers [6]
and the majority that have been identified are based on
the hypothesis that early differential methylation regions
(DMRs) are maintained throughout carcinogenesis and
could be detected at all stages of cancer. For example,
altered methylation patterns have been detected with
hepatic disease progression in the context of hepatitis,
cirrhosis, and hepatocellular carcinoma (HCC) [7].
Moreover, recent evidence demonstrated that cell-free
DNA (cfDNA) methylation can be used for early cancer
diagnosis and tissue-of-origin mapping for metastatic
cancer [4].

Abnormal alterations of DNA methylation have been
recognized as an important event in cancer development
[8]. Global hypo-methylation arises early in carcinogen-
esis and has been linked to chromosomal instability and
loss of imprinting [9, 10]. Generally, during cancer de-
velopment, hundreds of genes are silenced or activated
[11-13]. Although silencing of some genes in cancers
occurs by mutation, a large proportion of carcinogenic
gene silencing is a result of altered DNA methylation
[14]. DNA methylation-based silencing in cancer typic-
ally occurs at multiple CpG sites in the CpG islands
present in the promoters of protein-coding genes [15].
Although extensive epigenetic alterations have been de-
fined over the past years, CRC is still not well under-
stood at the molecular level [3]. Against a background of
whole-genome hypo-methylation, gene-specific pro-
moter hyper-methylation has been found to promote
CRC by downregulating the expression of key tumor
suppressor genes such as CDKN2A, MLHI1, and CDH1I
[16-18]. CRC is a heterogeneous disease that typically
originates from a pre-cancerous lesion, often in the form
of an adenoma, eventually progressing to a malignant
cancer within a temporal window that may exceed 10
years [19]. Because CRC exceeds many other cancers in
both incidence and mortality, capacity to detect and
monitor molecular changes during the colorectal aden-
oma (AD) stage provides an excellent opportunity to
prevent cancer progression and improve survival
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outcomes [20]. While a large number of studies have fo-
cused on CRC, a subset of them has focused specifically
on the adenoma as an intermediate stage which required
more specific molecular definition. For instance, a ten-
gene methylation signature in adenoma was found to
change with pathologic progress [21]. Notably, colorectal
adenoma has two pathologic stages: low-grade adenoma
(LGA) and high-grade adenoma (HGA) [22]. Our re-
search compared and defined differences of genome-
wide profiling of DNA methylation, especially changes
across these two pre-cancerous stages that had not been
reported [23]. We hypothesized that these alterations in
LGA methylation represented candidates as potential
early diagnostic biomarkers. We further posit that com-
prehensive understanding of the genome-wide DNA
methylation profile for early stage pre-cancerous lesions
(LGA and HGA) will provide important resources, early
diagnosis, and candidate biomarkers for potential onco-
genic progression.

In this study, we conducted a series of genome-wide
DNA methylation array of 18 LGA and 22 HGA and
compared the frequency, location, and pattern of methy-
lation status of 20 normal tissue samples. Dynamic DNA
methylation changes were identified for LGA and HGA,
and we found that methylation changes that appeared in
LGA were increased or maintained in HGA and cancer.
Enrichment analyses to DMRs were performed to fur-
ther investigate the potential influence of DNA methyla-
tion on functional difference in adenoma initiation and
development. Moreover, we separated different methyla-
tion sites (DMSs) between LGA and normal into hyper-
DMS and hypo-DMS and evaluated their respective per-
formance for CA and CRC prediction. To validate our
findings, we compared them to genome-wide DNA
methylation profiles of 833 samples from public data-
base. Finally, we describe the identification and analysis
of one functional methylation signature at the promotor
region of ADHFEI as a potential biomarker for early
CRC development.

Results

Landscape of DNA methylation of pre-cancerous lesions
We profiled DNA methylation at the single-base level
for 18 LGA, 22 HGA, and 20 normal tissues. We found
significant genome-wide DNA methylation differences
among normal-, low-, and high-grade adenoma (Fig. 1a,
b). Compared to normal tissue, LGA had genome-wide
hypo-methylation (P = 5.2 x 107>, rank sum test) which
was even lower in HGA (P = 3.7 x 107, compared with
normal, rank sum test, Fig. 1c). Methylation levels of all
target sites in the array demonstrated the known bi-
modal distribution in normal, LGA, and HGA (Fig. 1d),
and the amount of fully methylated sites of lesions de-
creased with increasing degree of malignancy (right
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Fig. 1 Genome-wide DNA methylation of low-grade adenoma (LGA), high-grade colorectal adenoma (HGA), and normal colorectal tissue. a t-SNE
analysis highlights the data structure and sample relationship among the sample groups. b PCA analysis confirms the data structure and sample
relationship of the t-SNE analysis. ¢ Average methylation levels of normal (N), LGA, and HGA samples. d Density plot reveals the distribution of
the whole array probes for N, LGA, and HGA samples. e Number of sites in 8 ranging from 0.7 to 0.9. f Heatmap of the 209 hyper-methylated
DMSs of in-house datasets and samples from 504 public cancer datasets. g DMR between LGA and normal tissues, HGA and normal tissue, and
HGA and LGA. h Venn graph highlights the relationships among all DMRs

peak, Fig. 1d, e). Almost all DMSs in LGA compared to
normal tissues kept at least an equivalent methylation
level if not higher than in HGA and cancer (Additional
file 1: Fig. S1). The 209 significantly hyper-methylated
sites in LGA were further hyper-methylated in 22 HGA
and 504 cancer samples collected from public databases
(Fig. 1f and Additional file 1: Fig. S2, Table S1), and
hypo-DMSs had a diametric tendency (Additional file 1:
Fig. S3) suggesting that DNA demethylation may occur
very early in pre-cancerous lesions. Over 60% of DMRs
that were observed in both LGA (71.4%, 314/440) and
HGA (61.9%, 4,213/6,805) were hypo-methylated com-
pared to normal tissues (Fig. 1g, Additional file 1: Table
S2 and S3). However, with LGA as the reference, most
DMRs observed in HGA were hyper-methylated (76.0%,
660/868) (Fig. 1lg, Additional file 1: Table S4). In
addition, there were limited overlaps between genes with
DMRs in LGA compared to normal tissues and those
compared to HGA, suggesting different epigenetic
process (Fig. 1h) [24].

Nervous system processes were associated with adenoma
development

Enrichment analysis of 603 DMRs which were located
between HGA and LGA, and most highly enriched func-
tional terms, included the nervous system and those as-
sociated with signal transduction (Fig. 2a), specifically
dopaminergic synapse and serotonergic synapse path-
ways, which play a role in the gut—brain axis model of
signaling cross-talk between organ systems [25]. These
results correspond to gene methylation findings in Fig.
1g where HGA vs normal includes almost all genes that
are listed in LGA vs normal and HGA vs LGA DMRs.
To figure out the potential function changes from LGA
to HGA, Gene Ontology (GO) enrichment was
performed for 275 genes that were significantly different
in methylation status between LGA vs normal and HGA
vs normal without considering the differences in methy-
lation status between HGA vs LGA. Five hundred
seventy-one significantly different methylated genes were
highlighted in HGA vs LGA and HGA vs normal with-
out LGA vs normal (Fig. 2b). For the 275 genes with sig-
nificantly different methylation patterns in only the LGA
vs normal and HGA vs normal comparisons, GO ana-
lysis selected the top enriched terms of proteolysis as
well as extracellular matrix disassembly, inorganic anion

transport, and cobalamin metabolic processes. Cell adhe-
sion, positive regulation of positive chemotaxis, and
neuropeptide signaling pathway were term hits on the
overlapping part between LGA vs normal and HGA vs
LGA. Genes that were significantly different in methyla-
tion status between LGA and HGA were enriched for
chemical synaptic transmission, transmission of nerve
impulse, calcium ion transmembrane transport, and
similar neural processing terms. Like the DMR enrich-
ment analysis, terms related to the nervous system were
selected yet exhibited different term patterns between
HGA vs LGA compared to LGA vs normal.

Hyper-methylated CpG sites exhibited better discrimination
between normal, pre-cancerous, and cancerous tissues
than the hypo-methylated pattern for CRC

To distinguish the discriminatory ability of DNA methy-
lation patterns for normal tissue, CA, and CRC, we col-
lected 833 genome-wide DNA methylation datasets from
GEO and ArrayExpress, public datasets which included
278 normal tissue samples, 51 adenoma samples, and
504 cancer samples. We separated DMSs of LGA vs nor-
mal into two groups including hyper-DMSs (209 sites)
and hypo-DMSs (441 sites). We found both hyper-DMSs
and hypo-DMSs could effectively distinguish methyla-
tion pattern differences between disease (adenoma and
cancer) and normal samples (Fig. 3a, b). Meanwhile, we
also conducted two machine learning-based predictions
with the DMSs identified in our dataset and observed
that hyper-methylated sites can better distinguish be-
tween normal samples and disease samples via random
forest and neural network methods (Table 1). For hyper-
methylated sites, the area under the curves (AUCs) of
receiver operating characteristic (ROC) curves were 0.91
and 0.85, respectively. For hypo-methylated sites, AUCs
of ROC curves were lower at 0.72 and 0.76, respectively
(Fig. 3c, d). Unsupervised t-SNE cluster analysis
produced the same result (Fig. 3e, f). To avoid inconsist-
ent results caused by unstable methylation based on sin-
gle CpG sites, we compared the mean beta value (mBV)
of these sites. We found that hyper-methylated mBVs
were significantly different between normal tissue and
CRC (P < 2.2 x 107%); however, there was no significant
difference between the adenoma and cancer (P = 0.29,
Fig. 3g) in which the average mBV of the normal tissue,
adenoma, and cancer are 0.22, 0.54, and 0.57,
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respectively. We observed similar results for hypo-
methylation sites in which the average mBV of the nor-
mal tissue, adenoma, and cancer were 0.70, 0.44, and
0.50, respectively (Fig. 3g). Finally, we found the AUCs
of ROC curves with hyper-mBV and hypo-mBV were
0.98 and 0.95, respectively. Permutation analysis based
on a bootstrap strategy indicated that the model based
on hyper-methylated sites had better discriminatory
power than the model of hypo-methylated sites (P < 2.2
x 107%, Fig. 3h).

The promoter of ADHFET may be a potential biomarker
for colorectal adenoma and cancer

Next, we grouped the DMRs of normal tissue and LGA
into hyper- and hypo-DMRs and performed enrichment

analysis by Ingenuity Pathway Analysis (IPA). The top
enriched functional term for hyper-DMRs was ethanol
degradation II (P = 5.4 x 107%) which was mostly con-
tributed to methylation sites on two genes, ADHFE] and
ACSS3, which can facilitate the conversion from ethanol
to acetaldehyde and from acetic acid to acetyl-CoA, re-
spectively (Fig. 4a). The expression of both genes were
downregulated in colonic and rectal cancer tissue com-
pared with normal tissue (P < 0.01), a result consistent
with the DNA methylation changes between LGA and
HGA (R2 = - 0.49 and - 0.59, Fig. 4b, c). We found that
the average methylation level of CpG sites located in
CpG islands within the promoter regions of ADHFEI
and ACSS3 were significantly increased in cancer sam-
ples compared to normal samples (AmBVs = 0.2 and
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0.18, respectively). We further analyzed the promoter re-  result (Fig. 4e). ROC curve analysis of mBV of the
gion within the CpG island of the two genes to distin- ADHFEI promoter for all 833 samples produced an
guish between normal and disease tissues. When setting ~ AUC of 0.97 with specificity and sensitivity at 0.95 and
the cutoff at 0.25 for the ADHFEI promoter, the min-  0.96 (Fig. 4f). For cancer samples, an AUC as high as
imal error rate was only 4.68% (39/833, Fig. 4d); the 0.98 was determined (Additional file 1: Fig. S4). For
heatmap of sites within the region reflected the same ACSS3, the minimal error rate of its promoter was
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Table 1 Prediction performance based on hyper-DMS and hypo-DMS to distinguish between disease and normal colorectal tissues

Model Methylation Observation Prediction Sensitivity Specificity
Disease Normal
Random forest Hyper Disease 532 23 0.959 0.860
Normal 39 239
Hypo Disease 507 48 0914 0.601
Normal m 167
Neural network Hyper Disease 537 18 0.968 0.727
Normal 76 202
Hypo Disease 406 149 0.732 0.701
Normal 83 195

16.68% (139/833) with a cutoff set at 0.42 (Fig. 4g) which
performed inferiorly to ADHFEI in terms of discrimin-
ation power. Meanwhile, we also compared ADHFEI
with SEPT9, an FDA-approved methylation-based bio-
marker for CRC screening. The correlation of the two
genes was 0.77, and we determined that ADHFEI had a
better prediction power than SEPT9 (Fig. 5a and
Additional file 1: Fig. S5) [27]. Furthermore, we observed
ADHFEI to have a much better separation boundary
compared to SEPT9 (Fig. 5b). In view of most detected
cfDNA being actually the fragments from white blood
cells, we checked DNA methylation status of ADHFEI
promoter in 656 whole blood cases from public data. As
expected, all sites in the promoter were consistently at
low methylation level (Additional file 1: Fig. S6).

Discussion

Whole-genome DNA hypo-methylation and hyper-
methylation analysis of the promoter regions of cancer-
related genes is regarded as a common method of char-
acterizing diverse cancers [28]. In our study, we found
that whole-genome DNA hypo-methylation may start at
the LGA stage and lead to further hypo-methylation at
HGA and CRC (Fig. 1c). As many previous studies have
reported, a bimodal distribution can characterize DNA
methylation pattern, and we noted that the hyper-
methylated peak can clearly reflect progressive hypo-
methylation (Fig. 1d, e) [29]. We identified 440 and 6805
DMRs in low- and hyper-grade adenoma, respectively,
and of these DMRs, 314 (71.4%) in LGA and 4213
(61.9%) in HGA were hypo-methylated compared to
normal tissues. On the contrary, most DMR (660/868,
76.0%) differences between HGA and LGA were hyper-
methylated. Aside from a little overlap between HGA
genes, significantly distinct DMRs were located between
LGA vs normal and HGA vs LGA which indicates that
LGA vs normal and HGA vs LGA are possibly not the
same process with a degree difference but two different
epigenetic processes. These genome-wide demethylation
patterns may indicate that though hypo-methylation

dominates the carcinogenesis of CRC, hyper-methylation
sites may contribute more to the distinct malignancy of
these lesions.

To find functional differences between differing
methylation patterns in normal, pre-cancerous, and can-
cerous tissues, enrichment analysis was applied to 603
genes with DMRs between HGA and LGA which deter-
mined that most enriched terms were related to nervous
system and signal transduction (Fig. 2a). The term gut—
brain-axis describes an integrative physiology concept
that incorporates all, including afferent and efferent
neural, endocrine, nutrient, and immunological signals,
cross-talk between the central nervous system, and the
gastrointestinal system that may be dysregulated during
carcinogenesis [25]. Our Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis further
highlighted the significance of dopaminergic synapse
and serotonergic synapse to CRC development. Sero-
tonin (5-hydroxytryptamine; 5-HT) is popularized as a
contributor to feelings of well-being and happiness
though its actual biological function is complex and
multifaceted with roles in modulating cognition, reward,
learning, memory, and numerous physiological processes
[30]. Brain 5-HT gets much more respect, and certainly
more press and research, than the vastly larger store of
5-HT in the gut though both are important for physio-
logical functions [31]. Dopamine (3,4-dihydroxyphe-
nethylamine; DA) is an organic chemical of the
catecholamine and phenethylamine families that func-
tions as both a hormone and a neurotransmitter and
plays several important roles in the brain and body [32].
In the brain, dopamine functions as a neurotransmitter
to send signals to other nerve cells [32]. Outside the
central nervous system, dopamine functions primarily as
a local paracrine messenger to reduce gastrointestinal
motility and protect the intestinal mucosa [32]. The
interaction of tumor and the nervous system has also
been found in gastric cancer and liver cancer [33, 34].
Our study suggests that the gut—brain axis and related
molecules may be important contributors to the
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Fig. 4 DNA methylation ADHFET and ACSS3 in normal, adenoma, and cancer. a Pathway of ethanol degradation Il [26]. b Relationship between
DNA methylation and gene expression of ADHFE!. ¢ Relationship between DNA methylation and gene expression of ACSS3. d Left panel is identification of
cutoff where the X axis is sample number of classification error; right panel is DNA methylation of ADHFET in normal, adenoma, and cancer samples. e
Heatmap of sites within ADHFET promoter in normal, adenoma, and cancer samples. f ROC of the prediction of ADHFET for colorectal adenoma and

cancer. g DNA methylation of ACSS3 in normal, adenoma, and cancer samples

development and progression of CRC even at the aden-
oma stage.

DNA methylation has always been considered as a po-
tential biomarker for many diseases due to its tissue spe-
cificity and stability [35]. Here, we analyzed DNA
methylation patterns as a mechanism to distinguish dis-
ease samples (including adenoma and cancer) from nor-
mal samples during CRC development. We identified
209 hyper-methylated sites and 441 hypo-methylated
sites between LGA and normal samples and noted that
both hyper- and hypo-methylated sites could effectively
distinguish between normal and CRC tissues. Further
validation with random forest and neural network ana-
lyses confirmed our observations. Specifically, AUCs of
ROC curves for our prediction model using hyper-
methylated sites were larger than those using hypo-
methylated sites, despite the observation that hypo-
methylated sites were more than twice the number of
hyper-methylated ones. Since tumors are known to have
whole-genome hypo-methylation, we speculate that gene
hyper-methylation at several key sites and/or global
hypo-methylation during early CA may be the driver
events for CRC. To reduce bias caused by unstable
methylation on single CpG sites, we compared mBV of
these sites among tissue groups. We found that hyper-
methylated mBVs were significantly different between
normal tissue and cancers (P < 2.2 x 107%), while no
significance was found between the adenoma and CRC
(P = 0.288, Fig. 3g). Permutation analysis based on boot-
strap strategy suggest that the model based on hyper-
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Fig. 5 Comparison of ADHFET with SEPT9. a ROC comparison of
ADHFET and SEPT9. b DNA methylation of SEPT9 in normal, adenoma,
and cancer samples

methylated sites has better discrimination power than
the model of hypo-methylated sites (P < 2.2 x 107%, Fig.
3h) which may lend support to the theory that hyper-
methylation at several key sites may trigger widespread
hypo-methylation throughout the genome during cancer
development.

Colorectal adenoma is considered the middle stage be-
tween normal status and cancer; therefore, our study fo-
cused on identifying and comparing the differences in
DNA methylation patterns among normal, pre-
cancerous, and cancerous colorectal tissues. IPA enrich-
ment analysis of hyper-DMRs identified in very early
stage cancers selected Ethanol degradation II as the top
term for functional impact, in which ADHFEI and
ACSS3 were hit. Intense early changes in DNA methyla-
tion patterns at the promotor region of these genes sup-
port their potential use as adenoma biomarker. It is
known that ADHFEI encodes for hydroxyacid-oxoacid
transhydrogenase which is responsible for the oxidation
of 4-hydroxybutyrate in mammalian tissues [36]. Some
studies have also reported that the gene is associated
with cell proliferation and differentiation [36-38]. In
CRC tissue, ADHFE]1 is hyper-methylated in the pro-
moter region corresponding to downregulation of ex-
pression that may facilitate tumor growth [38]. Our
results suggest that the DNA methylation of the
ADHFEI promoter is a potential biomarker for distin-
guishing colorectal adenoma and cancer from normal
tissue.

As the only FDA-approved liquid biopsy marker for
DNA methylation, SEPT9 has been applied for colon
cancers screening [39]. Actually the detection signal of
SEPT9 has been shown to be more distinguishable in tis-
sues than at cfDNA samples [40]. The better perform-
ance of ADHFEI than SEPT9 at tissue level made it a
promising liquid biopsy biomarker for CRC. Further ef-
forts with a larger, more diverse sample population are
needed to validate the predictive efficacy of this bio-
marker at cfDNA.

In addition, a recent study found a promising bio-
marker cgl0673833 which distinguished tumor pa-
tients from healthy people by cfDNA [41]. However,
the methylation level of this marker showed only a
slight upward trend from normal tissues to adenoma
and cancer, in our samples as well as in public data.
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In view of the very low methylation of cgl10673833 in
the blood, most likely its detection of cancer was
mainly due to largely increased metabolism of the
tumor tissue that caused increased shedding of
ctDNA. Comparing with ¢gl0673833, the better dis-
crimination of normal to adenoma and cancer by
ADHFE] raises a great potential for this candidate as
a methylation marker to indicate pathological
changes.

Besides ADHFEI, we obtained a group of 209 hyper-
methylated DMSs in our LGA samples. For their poten-
tial being candidates of methylation markers, we exam-
ined these sites in 656 cases of whole blood from GEO.
As shown in the heatmap of Additional file 1: Fig. S7,
207 out of 209 sites showed their low methylation level
as < 0.3 in average, implying the potential of these sites
deserving further investigation for early diagnosis.

Conclusions

Adenoma samples are perfect proxy for colorectal car-
cinoma early biomarker identification. Our study fo-
cused on adenoma, in order to get the earliest clue to
detect colorectal disease. DNA methylation is a promis-
ing biomarker for cancer diagnosis and surveillance for
its tissue specificity and robustness. We established the
DNA methylation landscape of LGA and HGA and
noted the hyper-methylated peak has a regular decrease
companied with disease procession. Furthermore, we
found the development of adenoma is associated with
functions of nervous system, while the initiation of the
adenoma is more associated with cell biological func-
tions. Another relatively independent work was based on
the precious finding in LGA, in which we found
ADHFE] is a potential early diagnosis biomarker of colo-
rectal carcinoma and adenoma. Eight hundred thirty-
three samples from the public database strongly support
the gene is a promising biomarker.

Methods

Sample collection and pathological confirmation

In the Department of Gastroenterology of Peking Uni-
versity Third hospital from March 2015 to June 2016,
we collected 18 LGA and 22 HGA specimens from pa-
tients who underwent endoscopic treatment for CA re-
moval and obtained adjacent normal tissue specimens
from 20 patients with adenoma during the treatment.
Tissue specimens were embedded in paraffin, sectioned
and stained with hematoxylin and eosin, and confirmed
by pathologist by light microscopy. All the patients were
treatment naive before their surgeries. Clinical informa-
tion of patients, and sample position in corresponding
microarray are provided in Additional file 1: Table S5
and S6.
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DNA isolation and bisulfite conversion

DNA was isolated using QIAmp DNA Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s
protocol. Bisulfite conversion was performed using the
EZ DNA Methylation-Gold Kit according to the instruc-
tion manual (Zymo Research, Irvine, CA, USA).

Methylation data processing

Epigenome-wide DNA methylation assessment for this
study was performed using the Illumina Infinium Hu-
man Methylation 450 BeadChip (Illumina, San Diego,
CA, USA), which simultaneously profiles the methyla-
tion status for > 485,000 CpG sites at single-nucleotide
resolution and covers 96% of CpG islands with add-
itional coverage of island shores (<2 Kb from CpG
Islands), island shelves (2—4 Kb from CpG islands), and
regions flanking them. The raw data from the array was
processed using the GenomeStudio Methylation (version
1.8, Illumina) module which calculated methylation
levels. The GenomeStudio is the software for array data
processing of Illumina, which integrates data
normalization, background adjustment, and methylation
calculation. Normalization was performed by comparing
control probes when the option was set as controls, and
background adjustment was performed automatically by
the software selecting Subtract Background. The distri-
bution of beta values before and after normalization
across all was analyzed (Additional file 1: Fig. S8), and
multi-dimensional scaling (MDS) according to 10,000
most variable positions showed the homogeneity of sam-
ples and their clustering according to pathological
groups. Beta MDS were also analyzed according to 1000
and 20,000 most variable positions for all samples before
and after normalization (Additional file 1: Fig. S9). The
methylation status for each CpG site was calculated as
the ratio of fluorescent signals (f = Max(M,0)/[Max(M,
0) + Max(U,0) + 100]), ranging from O to 1 using the
average probe intensity for the methylated (M) and
unmethylated (U) alleles. B = 1 indicates complete
methylation; 5 = 0 represents no methylation. Probes lo-
cated on sex chromosomes or failed detection P value
testing of at least one sample or SNP (single-nucleotide
polymorphism) were removed from analysis using R
package IMA (vision 3.1.2) [42]. DMRs were defined as
rank sum test following false discovery rate (FDR) ad-
justed P value <0.05 and |AB| > 0.15, and DMSs were
defined as rank sum test following FDR adjusted P value
<0.05 and |AB| > 0.20. Promoter regions were defined
as 5'UTR, TSS200, TSS1500, and first exons.

Public datasets and processing

To ensure consistency of data processing, we only com-
pared our samples with publically accessible samples
with raw idat files. GSE68060, GSE68838, GSE77954,
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GSE77965, GSE81211, GSE101764, GSE107352, and
GSE75546 were collected from GEO while E-MTAB-
6450 was collected from ArrayExpress [43-48] (Add-
itional file 1: Table S6). Some cell line samples and
metastatic cancer samples were removed upon further
study. In total, we collected 278 normal samples, 51 ad-
enoma samples, and 504 cancer samples. All datasets
using raw idat files were preprocessed using R package
minfi (vision 1.28.4) [49]. The sites which failed detection
at P = 0.01 were rewritten to the nearest neighbor average
to ensure an adequate number of sites for analysis. Six
hundred fifty-six cases of whole blood data were collected
from GEO (accession number GSE40279).

Comparison of the ability of discrimination between
normal, LGA, HGA, and CRC tissue

For random forest prediction, we used R package ran-
domForest (vision 4.6.14) with the number of trees set at
5000 [50]. For neural network prediction, we used R
package nnet (vision 7.3.12) with number of units in the
hidden layer as 2, weight decay as 10 and with a max-
imum number of iterations at 400 [51]. The R package
pROC (vision 1.14.0) was used for ROC analysis to com-
pare the abilities of various models to distinguish be-
tween hyper- and hypo-methylated sites by the area
under the curve (AUC) analysis [52].

t-SNE analysis, PCA analysis, and gene enrichment
analysis

t-Distributed stochastic neighbor embedding (t-SNE) ana-
lysis was performed by R package t-sne (vision 0.1-3) [53].
PCA was performed by R function princomp and visual-
ized by first two principal components. KEGG and GO
enrichment were analyzed online by DAVID 6.8 (https://
david.ncifcrf.gov) [54, 55]. Ingenuity Pathway Analysis
(IPA) was also used for enrichment analysis for more elab-
orate results with the P value cutoff set at 0.05 [26].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513148-020-00851-3.

[ Additional file 1. Supplementary figures and tables ]
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