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Abstract

Background: The two most common repetitive elements (REs) in humans, long interspersed nuclear element-1
(LINE-1) and Alu element (Alu), have been linked to various cancers. Hepatitis C virus (HCV) may cause
hepatocellular carcinoma (HCC) by suppressing host defenses, through DNA methylation that controls the
mobilization of REs. We aimed to investigate the role of RE methylation in HCV-induced HCC (HCV-HCQ).

Results: We studied methylation of over 30,000 locus-specific REs across the genome in HCC, cirrhotic, and healthy liver
tissues obtained by surgical resection. Relative to normal liver tissue, we observed the largest number of differentially
methylated REs in HCV-HCC followed by alcohol-induced HCC (EtOH-HCCQ). After excluding EtOH-HCC-associated RE
methylation (FDR < 0.001) and those unable to be validated in The Cancer Genome Atlas (TCGA), we identified 13
hypomethylated REs (11 LINE-T and 2 Alu) and 2 hypermethylated REs (1 LINE-T and 1 Alu) in HCV-HCC (FDR < 0.001). A
majority of these REs were located in non-coding regions, preferentially enriched with chromatin repressive marks
H3K27me3, and positively associated with gene expression (median correlation r=0.32 across REs). We further
constructed an HCV-HCC RE methylation score that distinguished HCV-HCC (lowest score), HCV-cirrhosis, and normal liver
(highest score) in a dose-responsive manner (p for trend < 0.001). HCV-cirrhosis had a lower score than EtOH-cirrhosis
(p=0.038) and HCV-HCC had a lower score than EtOH-HCC in TCGA (p = 0.024).

Conclusions: Our findings indicate that HCV infection is associated with loss of DNA methylation in specific REs, which
could implicate molecular mechanisms in liver cancer development. If our findings are validated in larger sample sizes,
methylation of these REs may be useful as an early detection biomarker for HCV-HCC and/or a target for prevention of

HCC in HCV-positive individuals.
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Introduction

Hepatocellular carcinoma (HCC) is the most frequent pri-
mary liver malignancy and a leading cause of cancer-related
death, with 746,000 deaths worldwide in 2012 [1, 2]. In the
USA, death rates from HCC increased by 43% from 2000
to 2016 [3] with only a 17.4% 5-year survival rate [4]. HCC
rates are driven largely by infection with the hepatitis C
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virus (HCV) in much of the western world [5]. From 2010
to 2016, new HCV infections tripled in the USA [6] and
HCC diagnoses increased accordingly by 4.5% [7]. Identify-
ing molecular markers of HCV infection may not only help
understand hepatocarcinogenesis in patients with chronic
HCYV infection, but lead to the development of HCV and/
or HCC screening tools and therapeutic strategies.
Repetitive elements (REs), including long interspersed
element-1 (LINE-1) and Alu element (Alu), activate onco-
genic pathways in HCC [8]. LINE-1 and Alu represent the
two most abundant types of RE sequences that can
mobilize in the human genome [9]. Their unfettered mo-
bility can cause genetic instability as they copy and paste
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themselves to new locations [10, 11], leading to diseases
including cancer [12, 13]. LINE-1 and Alu can profoundly
alter DNA structure and gene expression [14] by introdu-
cing alternative splice sites and exon skipping [15].
Intronic insertions of LINE-1 have been associated with
mRNA destabilization, resulting in reduced expression
[16]. Additionally, insertions of Alu into the 5" and 3’ re-
gions of genes can potentially alter their expression by
altering mRNA stability [17]. In HCC, including HCV-
induced cases, LINE-1 and Alu mobilization have been
found to be a crucial etiological factor in HCC through
their activation of oncogenic pathways [8]. Accumulating
observations also imply interactions between HCV and RE
mobilization: HCV may activate RE activity via interferon
suppression [18, 19] and HCV could be reverse tran-
scribed by RE activity [20].

DNA methylation is a key regulatory mechanism of
RE mobilization, helping maintain genomic integrity
[21, 22]. Hypomethylation of REs removes obstacles to
mobilization, and this reactivation of REs (including
LINE-1 and Alu) is frequently observed in HCC pa-
tients [23]. A recent study showed that global average
LINE-1 methylation was lower in HCV-positive than
HCV-negative cases [24]. While this suggests distinct
patterns of RE methylation by HCV status, the current
standard of averaging the methylation of REs across
the genome offers a “bird’s eye view” of global methy-
lomic status that may nonetheless sacrifice significant
biological information [25], since specific REs can vary
in their methylation statuses and play distinct roles in
cancer development [26-28].

We recently developed a novel algorithm, REMP [25],
to overcome the limitations of global RE methylation

Table 1 Demographic and clinical features
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measurement. This enables us to, for the first time, ob-
tain reliable methylation information at individual REs
across the entire genome in liver tissue samples. In this
study, we performed and validated genome-wide and
functional genomic analyses to identify individual REs’
(LINE-1 and Alu) methylation markers that are sensitive
to HCV-induced HCC. Additionally, we devised a score
for potential use in diagnosis or therapeutic guidance
that combines these RE methylation markers.

Results

Clinical features of liver tissue

Clinical features of the liver tissue analyzed (i.e., our samples
from the University of Florida Shands Hospital (UFSH), and
samples from TCGA) are summarized in Table 1. Among
diseased (HCC or cirrhotic) liver samples, we observed simi-
lar features (age, sex, and tumor stage) between UFSH and
TCGA data (p >0.1). The HCV group was younger than the
alcohol (EtOH) group, but the two groups shared similar
sex distribution, largely male (80-90%).

RE methylation profiling and prediction across the
genome

Our REMP algorithm [25] (see the “Materials and methods”
section) predicts methylation in REs throughout the genome
and substantially enhances the coverage provided by REs
profiled in the Illumina array (Fig. 1a). We examined 32,439
REs (3813 LINE-1 and 28,626 Alu) using UFSH data and
21,257 REs (2812 LINE-1 and 18445 Alu) using TCGA
data. Most of these examined REs were predicted by a sub-
set of REs profiled in the Illumina array (Fig. 1b). Among
this subset, predicted and profiled REs had a median
correlation of ~0.88 in UFSH and ~095 in TCGA

UFSH (n =86) TCGA (n=49)
HCV-HCC EtOH-HCC HCV-cirrhosis EtOH-cirrhosis Normal liver HCV-HCC EtOH-HCC Non-cancerous Liver
(n=11) (n=11) (n=10) (n=10) (n=44) (n=20) (n=20) (n=9)
Age [mean 576 (7.2) 64.5 (7.5) 542 (54) 63.0 (6.8) 57.7 (16.0) 59.7 (11.2) 68. 4 (6.6) 703 (11.4)
(SD)
p value' 0.20
Sex [Freq. (%)]
Female 2(182) 2(182) 2 (20.0) 1(10.0) 19 (43.2) 4 (20.0) 3 (15.0) 5 (55.6)
Male 9(81.8) 9 (81.8) 8 (80.0) 9 (90.0) 25 (56.8) 16 (80.0) 17 (85.0) 4 (444)
p value' 0.99
Tumor stage [Freq. (%)]
| 3(27.27) 3(27.27) - - - 9 (45.0) 9 (45.0) -
I 4 (36.36) 2(1818) - - - 5(25.0) 4(20.0) -
Il 3(27.27) 4 (36.36) - - - 4 (20.0) 5(25.0) -
Unknown 1 (9.09) 2(18.18) - - - 2 (100) 2 (10.0) -
p value' 048

'p value was calculated using t test for continuous data and chi-squared test for categorical data among patients with HCV-HCC and EtOH-HCC combined
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Fig. 1 Overview of REs of interest. a Overview of the genomic distributions of the predicted and profiled REs examined in this study. Our
predicted methylation in REs is genome-wide and substantially enhanced coverage compared to the REs profiled by the lllumina array. b The
number of REs we reliably obtained in UFSH (28,626 Alu and 3813 LINE-1) and TCGA (18,445 Alu and 2812 LINE-1). ¢ The genomic distributions of
REs in UFSH and TCGA were similar, with most in either a gene intronic region or an intergenic region
J

(Additional file 1: Figure S1), indicating reliable predictions.
Consistent between UFSH and TCGA, about 60% of the
Alu and about 75% of the LINE-1 repeats we examined were
located in either the intronic region of a gene or an inter-
genic region (Fig. 1c).

Differentially methylated REs in diseased liver induced by
HCV/EtOH

We compared diseased liver tissue induced by HCV/EtOH
(ie, HCV/EtOH-HCC and HCV/EtOH-cirrhosis) with
normal liver tissue to identify differentially methylated REs

(dmREs), applying a stringent false discovery rate (FDR)
cutoff of < 0.001. We observed 123 dmREs (93 LINE-1 and
30 Alu) in HCV-HCC in the UFSH samples (Fig. 2a) and
254 dmREs (197 LINE-1 and 57 Alu) in HCV-HCC in the
TCGA samples (Fig. 2b). We observed more dmREs in the
HCV liver groups than the EtOH liver groups. In UFSH,
there was a total of 98 dmREs in EtOH-HCC (Fig. 2¢); in
TCGA, there was a total of 20 dmREs differentially methyl-
ated in EtOH-HCC (Fig. 2d). About 90% of these dmREs
were hypomethylated. In contrast, we observed fewer
dmREs in cirrhosis tissue in UFSH. There was a total of 10
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Fig. 2 Number of differentially methylated REs in HCV/EtOH-HCC tissues, each compared to normal liver. Hypomethylated REs, in particular LINE-
1, predominated among the identified dmREs (FDR < 0.001) across HCV-HCC and EtOH-HCC and both UFSH and TCGA data (a—d). In addition, we
observed a greater number of dmREs in HCV-HCC compared to EtOH-HCC (a vs ), particularly in the TCGA data (b vs d). Note that the sample
sizes between EtOH and HCV samples were equal in order to minimize statistical bias
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dmREs (8 LINE-1 and 2 Aly, all hypomethylated) identified
for HCV-cirrhosis (Additional file 1: Table S1), and no
dmRE were identified for EtOH-cirrhosis (data available
upon request).

HCV-HCC dmREs: consistencies between UFSH and TCGA
Of the 123 UFSH dmREs in HCV-HCC, a total of 76 (69
LINE-1 and 7 Alu) were available in TCGA for valid-
ation. Among these 76 REs, 24 LINE-1 (23 hypomethy-
lated) and 3 Alu (2 hypomethylated) were validated in
TCGA data (FDR <0.001) (Additional file 1: Table S2).
We observed consistent directions of association for
these 76 dmREs in both datasets (r = 0.68, Fig. 3a).

HCV-HCC dmREs: consistencies between HCC and
cirrhosis tissue

None of the 123 dmREs in HCV-HCC reached the FDR
<0.001 threshold in HCV-cirrhosis, and we did not ob-
serve consistent directions of association between the
123 UFSH dmREs in HCV-HCC and HCV-cirrhosis
(Fig. 3b). However, 6 REs (3 LINE-1 and 3 Alu) with
FDR < 0.1 (nominal p <0.005) showed consistent direc-
tion and magnitude of effects in both diseases (Fig. 3b,
Additional file 1: Table S3).

HCV-associated dmREs in HCC
After excluding dmREs in EtOH-HCC relative to normal
liver tissue, and those not validated in TCGA, we identified

15 HCV-related dmREs including 13 hypomethylated REs
(11 LINE-1 and 2 Alu) and 2 hypermethylated REs (1
LINE-1 and 1 Alu). Based on the RefSeq database, we an-
notated these 15 REs with 12 proximal (within 500 kbp)
genes (see Additional file 2 for genomic view). Figure 4
demonstrates the distinct methylation patterns of these 15
REs in the HCV-HCC group compared to all others (HCV-
cirrhosis, EtOH-cirrhosis, and normal liver) in the UFSH
data. As expected, these REs were largely hypomethylated
in HCV-HCC and (to a slightly lesser extent) EtOH-HCC
(Fig. 4a). Our heatmap with a dendrogram (Fig. 4b) also
demonstrates distinct clustering of dmREs both between
HCC and cirrhosis/normal tissue, and between HCC sub-
types (HCV-HCC and EtOH-HCC) (Fisher’s exact test p <
0.0001 for both).

Functional analysis

As expected, given REs” abundance in intergenic and gene
intronic regions [10, 25], the 15 HCV-associated dmREs in
HCC were also primarily located in these two genomic re-
gions (Table 2). Bioinformatic analysis using the histone
chromatin immunoprecipitation sequencing (ChIP-seq)
data from Roadmap Epigenomics Project indicates that
these 15 REs were enriched in H3K27me3 (repressive chro-
matin marks, p=0.030) and depleted in its antagonistic
mark H3K27ac (active chromatin marks, p = 0.037); how-
ever, we observed no enrichment patterns in either
H3K4mel or H3K4me3 (transcriptional activation marks)
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Fig. 3 Directional consistency of the effect sizes of dmREs in HCV-HCC. a UFSH vs. TCGA. HCV-HCC REs were directionally consistent between
UFSH and TCGA data, regardless of the significant levels in TCGA. b HCV-HCC (UFSH) vs. HCV-cirrhosis (UFSH). Note that among these dmREs in
HCV-HCC, no RE had FDR < 0.001 in HCV-cirrhosis. However, the six (orange marks) REs that showed directional consistency were also the most

(Additional file 1: Table S4). Of the 12 genes annotated to
these dmREs, all but 1 (H2BFM) had sufficiently detectable
gene expression data in TCGA for functional analysis. We
then combined results from three analyses: (1) dmREs, (2)
correlation between methylation in dmREs and their

proximal gene expression, and (3) differential gene expres-
sion between normal liver and HCV-HCC, to examine the
potential regulatory roles of HCV-associated dmREs in
HCC. Among the remaining 13 dmREs, 10 showed direc-
tionally consistent results throughout these 3 analyses
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Fig. 4 Distinct methylation patterns of HCV-HCC REs across groups. Heatmaps were generated using the methylation levels of 136 CpGs located
in the 12 LINE-1 and 9 CpGs in the 3 Alu. a Heatmap with samples manually ordered by five groups. b Heatmap with samples and genes
clustered by hierarchical cluster analysis using Manhattan distance and Ward's linkage algorithm. HCC clusters were independent of cirrhosis/
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RE RE location (hg19)? Proximal ~ Distance  Genomic  Differential RE methylation vs gene  Differential gene Directionally
type gene to region methylation analysis  expression correlation expression analysis  consistent
symbol proximal (HCV-HCC vs analysis (HCV-HCC vs
gene normal) normal)
(bp) Mean p Max. Min. p log, fold p
difference  value  Correlation®  value® change value
LINE- chr10:134875427- ADGRAT 25296 Intergenic  —0.331 697E -023 0613 —3.358 0.004 No
1 134876211 -07
LINE- chr6:9810984- /A N/AC Intergenic  —0.203 123E  N/A® N/AC N/A® N/AS  N/A®
1 9817010 -06
LINE- chr7:4388884- SDK1 80,252 Intergenic  —0.382 108 062 0.008 -0018 0.980 Yes
1 4389235 -07
LINE- chr7:4085177- SDK1 0 Intronic —0.365 329E 033 0.161 -0018 0980 Yes
1 4085587 -06
LINE- chr7:157594780- PTPRN2 0 Intronic -0.385 440E 072 0.004 -1.053 0.116 Yes
1 157595648 —05
LINE- chr11:2499185- KCNQ1 0 Intronic —0.408 1.83E 053 0.034 1.343 0.076 No
1 2499531 —-05
LINE- chr5:8084329- MTRR 183,093  Intergenic —0.168 147 =051 0.044 0.062 0866 Yes
1 8090357 -05
LINE-  chr2:242938503- LINCO1237 0O Intronic —0337 1.18E  0.28 0.274 0.764 0.344 No
1 242938722 -05
LINE- chr7:157318533- PTPRNZ2 12,488 Intergenic  —0443 219t 067 0.003 —1.053 0.116  Yes
1 157319261 -09
LINE- chr8:142852678- MROH5 335347  Intergenic —0409 299t 054 0.269 0573 0.737  Yes
1 142853054 —05
LINE- chr8:143458657— TSNARET 0 Intronic 0.107 273 058 0.020 0.960 0.013 Yes
1 143458848 —05
LINE- chr2:1166233- SNTG2 0 Intronic -0.276 144E 082 0.047 -0.102 0.955 Yes
1 1166668 —-05
Alu  chr13:30062564- MTUS2 0 Intronic ~ —0.275 9858 052 0.156 —3.564 0335 Yes
30062769 -07
Alu  chrX:103294139- H2BFM 222 Promoter? —0.390 1.13E  N/A® N/A® N/A® N/A®  N/A®
103294294 -06
Alu  chré:31598686- PRRC2CA 0O Intronic ~ 0.137 290E 025 0.284 1.089 0.001 Yes
31598816 -06

?Ranked by statistical significance, within LINE-1 and Alu, respectively

PMaximum magnitude of correlation and minimum p values across the CpGs in the RE

“No proximal gene identified within 500 kbp
4Within 2000 bp upstream of the transcription start site
“Extremely low expression across samples

(Table 2). Notably, 11 of the 13 REs (or 8 of the 10 direc-
tionally consistent REs) had positive correlations with their
proximal genes’ expression levels (Additional file 1: Figure
S2). In particular, for genes PTPRN2 and SDK1, each had
two differentially hypomethylated LINE-1s that are in or
adjacent to the genes and positively correlated with their
expression levels in HCV-HCC tissue (Fig. 5a, b). Consist-
ently, these two genes in HCV-HCC tissue had lower gene
expression levels relative to non-cancerous liver tissue in
TCGA, despite the lack of statistical significance. To valid-
ate these results, we integrated our ChIP-seq data on
H3K27me3 and RNA-seq data on both genes PTPRN2 and
SDK1 from a subset of our UFSH samples. Focusing on the
flanking regions of the aforementioned differentially

hypomethylated LINE-1s of both genes (Fig. 5¢, d), we ob-
served that HCV-HCC tissue gained H3K27me3 marks in
the genes (Fig. 5e, f) and both genes were downregulated in
HCV-HCC compared to normal liver (Fig. 5g, h).

Clinical utility of HCV-HCC RE methylation score

Using methylation data of the aforementioned 15
HCV-associated dmREs in HCC, we applied penalized
logistic regression to build a parsimonious model and
predict HCV-HCC and normal liver status in the
UFSH dataset (see the “Materials and methods” sec-
tion), which selected 6 informative REs (3 LINE-1 and
3 Alu, Additional file 1: Table S5). By weighting these
six elements on the magnitude of their differential
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methylation, we constructed an HCV-HCC RE methy-
lation score (HEMS) and compared it in the tissue
groups from both datasets. We observed strong pair-
wise correlations in UFSH, with HEMS being the low-
est in HCV-HCC tissue liver and highest in normal
liver tissue (with EtOH-HCC and cirrhosis tissue in
between) (p for trend <2E-16, Fig. 6a). HEMS in
HCV-cirrhosis was significantly lower than in EtOH-
cirrhosis (p = 0.038, Fig. 6a). We observed similar pair-
wise correlations in TCGA, with HEMS being lowest
in HCV-HCC than non-cancerous liver (p =3.1 E-11)

and HEMS in EtOH-HCC in between (p for trend =
4.1E-8, Fig. 6b). HEMS in HCV-HCC was lower than
that in EtOH-HCC in TCGA (p = 0.024) but not sig-
nificantly so in UFSH (p = 0.22).

Discussion

This is the first study examining a possible biologic role of
methylation in individual LINE-1 and Alu elements in
HCV-infection-induced HCC. We evaluated methylation of
over 30,000 LINE-1 and Alu in HCC tissue samples using
our recently developed prediction algorithm “REMP” [25].
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We found that, compared to alcoholic patients HCV-
positive patients had a greater number of dmREs. We also
identified LINE-1 and Alu elements associated with HCV-
HCC located mainly in intronic and intergenic regions,
preferentially enriched in H3K27me3 marks, and positively
correlated with proximal gene expression. Finally, we
assessed the potential clinical utility of these RE methyla-
tion markers via a constructed HCV-HCC RE methylation
score (HEMS) capable of distinguishing HCC, cirrhotic,
and healthy liver tissue as well as differentiating between al-
cohol- and HCV-induced mechanisms. These findings
point to a potentially useful role for RE methylation in the
early detection and personalized prevention of HCC and
possibly other liver diseases.

We observed a greater number of dmREs in HCV-
positive cases regardless of clinical outcome in both

datasets. Our previous investigation of UFSH data ob-
served more differential methylation predominantly out-
side of REs in EtOH-HCC relative to HCV-HCC [29].
Therefore, RE may be more susceptible to differential
methylation via HCV infection. These findings further
support the hypothesis that HCV and RE may interact
with one another [18-20] to sequentially drive inflamma-
tion, cirrhosis, and ultimately cancer.

The overlapping RE methylation patterns in both HCV-
cirrhosis (FDR < 0.1) and HCV-HCC suggest that HCV acts
on the same REs to drive cancer development. We ob-
served an overall smaller effect size in HCV-cirrhosis rela-
tive to HCV-HCC and consistent direction of methylation
for 6 REs. Some proximal genes targeted by these 6 REs
(FSCN1, GSTP1, JAM3, CHRNA6, NFATS, and PRRC2A)
are related to immune response, viral infection, and/or
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HCC based on ontological analysis. For example, FSCN1 is
regulated by several microRNAs, including some which are
in turn regulated by HCV [30]. NFATS is involved in HCV
propagation [31] and is a key regulator of critical pathways
in HCV infection [32]. Furthermore, almost all of these
overlapping REs had lower methylation relative to normal
liver tissue, suggesting a role for hypomethylation specific-
ally in the aforementioned processes toward cancer. These
RE methylation markers, if confirmed in larger longitudinal
studies, may serve as useful HCC early detection bio-
markers and prevention targets among HCV-infected liver
patients.

Based upon our methylation and expression analyses,
we observed a potential functional role of hypomethyla-
tion in 12 HCV-HCC dmREs that downregulated their
proximal genes (PTPRN2, SDKI, MTRR, MROHS5, TSNA
REI, SNTG2, MTUS2, and PRRC2A), many of which were
previously associated with HCC. For example, PTPRN2 and
SDK1 are targeted by two hypomethylated LINE-1s in HCV-
HCC tissues. PTPRN2 encodes a tyrosine phosphatase-like
protein whose immature isoform, proPTPRN2 has been
overexpressed in human cancers [33]. Methylation of non-
REs in PTPRN2 has been associated with HCC risk previ-
ously [34], and it may also be indirectly associated with HCC
risk via insulin-dependent diabetes mellitus [35]. SDK1 is an
androgen-responsive gene and its overexpression modulates
cellular migration in prostate cancer [36]. A cross-species
cancer study also suggested that SDK1 may be located in an
unstable genomic region [37], while RE methylation itself is a
strong regulator of genomic stability. Interestingly, a recent
study of 69 pairs of HCC and adjacent non-cancerous tissue
also identified both SDKI and PTPRN?2 as the top candidate
genes epigenetically regulated in hepatitis virus-related HCC
[38]. Our findings indicate a possible role for RE methylation
of key genes in liver cancer development.

Although the role of gene intronic and intergenic
methylation in regulating gene expression remains elu-
sive, the observed correlations between RE methylation
and proximal gene expression suggest a potential mech-
anism as REs are largely located in non-coding regions,
i.e., gene intronic regions and intergenic regions [10, 25].
Previous studies have consistently observed the so-called
“DNA methylation paradox” [39] where methylation in
the gene intronic regions positively correlates with gene
expression [40, 41], consistent with most of our observa-
tions. RE methylation may be clinically relevant as it
suppresses RE mobility, which in turn stabilizes local
chromatin and silences cryptic transcription start sites
or cryptic splice sites, resulting in higher overall tran-
scriptional efficiency. RE methylation is evolutionally
conservative and DNA methyltransferases DNMT]I,
DNMTI1A, and DNMTIB are dedicated to RE methyla-
tion maintenance [42, 43]. This epigenetic regulation of
REs, once perturbed, may lead to significant clinical
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differences. Previous studies have observed relationships
between hypomethylation at specific RE loci and both
increases in RE transcription and changes in targeted
gene expression [44, 45]. Nonetheless, our results
showed that a few hypomethylated REs were correlated
with higher expression level of annotated genes, e.g.,
LINE-1s annotated by MTRR and MROH5 (Table 2).
Note that both of these LINE-1s were relatively far away
from their annotated genes (> 150 kb). Therefore, a fu-
ture mechanistic study is warranted to consolidate the
biological connections between RE methylation with
consideration of the characteristics of REs (e.g., location,
distance from the gene) and explore potential regulatory
mechanisms including RE insertions, alternative splicing,
and RE exonization.

We tested the potential clinical utility of the identi-
fied RE methylation markers by HEMS using our data
on HCC tumor and normal liver tissue. The average
methylation in Alu and LINEs has been widely used as
surrogate for global methylation [46] but its clinical
value is limited due to the loss of locus-specific infor-
mation. HEMS is a weighted sum of locus-specific RE
methylation sites tailored and relevant to HCV-HCC.
HEMS was associated with the proximal cause of hep-
atic malignancy, i.e,, HCC < cirrhotic liver < normal
liver. Moreover, HEMS was lower in HCV- than in
EtOH-associated diseased liver, especially cirrhotic
liver. Therefore, HEMS serves as a potentially useful
diagnostic tool in detecting HCV-related liver diseases.
Further sensitivity/specificity studies with larger sam-
ple sizes and more risk factors are warranted to con-
firm HEMS as biomarkers of HCV-HCC.

This study is subject to limitations. The current study’s
sample size is not as large as our previous study on the
same population, mainly due to more stringent methyla-
tion data preprocessing. Because of the inherent higher
measurement error in profiling methylation in repeat se-
quences, the RE methylation prediction also tends to amp-
lify the error, yielding a less reliable prediction. Therefore,
the disadvantages of incorporating these samples could
outweigh the advantages in sample size gain. However,
our validation analysis shows highly consistent results that
support the robustness of the predicted data in two inde-
pendent datasets. Additionally, different populations and
different quality in methylation data can lead to different
coverage of predicted RE loci, potentially explaining why
40% of the RE loci we examined in UFSH data were not
predicted in TCGA data. Nonetheless, we only considered
those REs robustly predicted in TCGA for validation to
enhance the validity and generalizability of our findings
while sacrificing some potentially informative RE methyla-
tion loci identified in UFSH data. Finally, as our analyses
are effectively cross-sectional in nature, the possibility of
reverse causality for our findings should be considered.
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For example, the differences of HEMS between HCV- and
EtOH-HCC were smaller than that between HCV- and
EtOH-cirrhosis; this may reflect the design of the score ra-
ther than mechanistic pathways. Moreover, the limited
number of overlapping RE loci between HCC and cir-
rhotic tissue suggests that additional genes and biological
pathways are involved in cancer initiation in cirrhotic tis-
sue. This may likewise reflect different epigenetic changes
taking place after disease development, rather than mech-
anistic changes preceding it.

Conclusions

In summary, our findings indicate that HCV infection
has an impact on the loss of DNA methylation in certain
REs, particularly LINE-1. Studies of individual RE
methylation in specific genomic loci may provide add-
itional biological information for understanding non-
coding DNA epigenetics in viral carcinogenesis, and for
developing novel diagnostic and therapeutic tools. If our
findings are validated in larger studies, future research
should explore these potential applications of RE methy-
lation including the use of bioinformatic tools such as
REMP to predict locus-specific RE methylation and
studies of RE methylation in additional cancer types
(e.g., cervical cancer).

Materials and methods

Patients, tissue acquisition, and DNA extraction

Patient inclusion criteria, tissue acquisition, DNA extrac-
tion, and methylation profiling have been described pre-
viously [29]. Briefly, cirrhotic and HCC tissue samples
were obtained by surgical resection at the University of
Florida Shands Hospital (UFSH). Healthy livers were ob-
tained from patients undergoing surgery for colorectal
carcinoma metastases to the liver or benign liver lesions.
Out of 289 samples, we considered a subset of 138 rele-
vant to current study: 53 normal liver tissue samples, 13
HCC samples induced by HCV infection (HCV-HCC),
14 HCC samples induced by alcoholism (EtOH-HCC),
39 cirrhotic liver samples induced by HCV (HCV-cirrho-
sis), and 19 cirrhotic liver samples induced by alcohol-
ism (EtOH-cirrhosis). Further exclusion of samples was
done in the downstream methylation data preprocessing
step. Tissues were snap-frozen and stored at - 135°C.
The tissue collection protocol was approved by the Insti-
tutional Review Board and patient consent. Genomic
DNA was isolated and quality-checked by standard pro-
tocols prior to bisulfite treatment using the EZ DNA
Methylation Kit (Zymo, Irvine, CA) and hybridized to
the Infinium 450 k HumanMethylation BeadChip (Illu-
mina, San Diego, CA) according to manufacturer
specifications.
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Methylation data preprocessing

To ensure data quality and comparability for RE methylation
prediction, we applied a stringent preprocessing pipeline on
both UFSH and TCGA data (Additional file 1). The final
methylation working dataset contains 480,426 CpG probes
and 86 samples (44 normal, 11 HCV-HCC, 11 EtOH-HCC,
10 HCV-cirrhosis, and 10 EtOH-cirrhosis). In TCGA, we
downloaded the raw IDAT data files from 20 HCV-HCC tis-
sues (risk factor annotated as “hepatitis C” only), 20 EtOH-
HCC (risk factor annotated as “alcohol consumption” only),
so that they are comparable to our HCC samples in UFSH
data. We included nine non-cancerous liver tissues with no-
or-minor cirrhosis (Ishak fibrosis score < 2), which were from
independent individuals different from the HCC groups.

Prediction of methylation levels in individual REs

We applied our previously developed machine learning
algorithm, REMP [25] to compute methylation of CpGs
located in REs by taking advantage of the preprocessed
methylation data described above. Briefly, the algorithm
learns cis-correlation patterns of the CpGs in RE regions
and their neighboring CpGs (< 1000 bp away) profiled by
the Illumina array platform to carry out predictions on
the un-profiled RE regions. Meanwhile, it evaluates the
reliability of the prediction so that only REs with two or
more CpGs reliably predicted or profiled are retained.
With these REs, we then took the mean methylation
levels of their predicted or profiled CpGs, representing
their individual REs’ methylation levels, as primary data
for analyses. Methylation levels of these CpGs in REs
were used as secondary data to further confirm findings.

Analysis of dmREs in HCV-HCC

For both UFSH and TCGA data, we applied limma
(linear models for microarray data) [47] to identify
candidate REs differentially methylated between the
diseased liver tissue induced by HCV (i.e., HCV-HCC
and HCV-cirrhosis) and normal liver tissue. This
process was repeated in comparison between diseased
liver tissue induced by alcohol consumption (i.e.,
EtOH-HCC and EtOH-cirrhosis) and normal liver tis-
sue. HCV-HCC vs. normal liver and EtOH-HCC vs.
normal liver comparisons were repeated in TCGA
data. These regression models were adjusted for age
and sex. Additionally, to account for experimental
batch effects and other technical biases, we derived
surrogate variables from intensity data for non-
negative internal control probes using principal com-
ponents (PCs) analysis [48]. For both our data and
TCGA data, the top four PCs explained >95% of the
variation across the non-negative internal control
probes and thus were included in the model. We used
Benjamini-Hochberg adjusted FDR to account for
multiple testing. To better control false-positive
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findings, we considered a stringent FDR cutoff of <
0.001 statistically significant and differentially
methylated.

To evaluate the directional consistency (i.e., consist-
ently hypomethylated or hypermethylated) of the dmREs
in HCV-HCC, we further compared effect sizes (i.e., ad-
justed mean methylation differences in diseased liver
compared to normal liver) of dmREs in HCV-HCC with
the effect sizes of the same REs in either HCV-HCC in
TCGA data or in HCV-cirrhosis in UFSH data.

To validate the dmREs and ensure that they were asso-
ciated with HCV-HCC, our final list of HCV-HCC REs
for further analyses included only those that (1) were
validated in TCGA (i.e., FDR <0.001), and (2) did not
overlap with dmREs associated with EtOH-HCC in ei-
ther UFSH or TCGA data.

Functional analysis

We used TCGA methylation data and RNA-seq data to
understand whether the identified HCV-HCC-associated
REs with differential methylation levels affect their tar-
geting or proximal gene expression (within 500 kbp of
the REs). Considering that our statistical power may be
constrained due to limited sample size, we further evalu-
ated directional consistency by accounting for all three
analyses: differential methylation analysis (UFSH data
validated by TCGA data), methylation-expression correl-
ation analysis (TCGA data), and differential gene expres-
sion analysis (TCGA data). For example, if an RE is
hypomethylated in tumor tissue, it is directionally con-
sistent if that RE is positively/negatively correlated with
its targeting or proximal gene expression and the gene is
downregulated/upregulated in tumor tissue. To test for
functional enrichment of identified HCV-HCC REs, we
conducted permutation-based enrichment analyses of
four histone modification marks (H3K4mel, H3K4me3,
H3K27me3, and H3K27ac) [49] in normal liver tissue
derived from the Roadmap Epigenomics Project [50]
(Additional file 1). We also randomly selected a subset
of the UFSH samples for RNA-seq in 2 HCV-HCC and
2 normal liver samples. One of the HCV-HCC and one
of the normal liver samples also had ChIP-seq data avail-
able to confirm the findings of prioritized gene(s) and
histone mark(s). The RNA-seq and ChIP-seq were per-
formed as previously described [51].

HCV-HCC RE methylation score

We aimed to develop an RE methylation score that can
be used to inform HCV-associated HCC/cirrhotic liver
(Additional file 1). We investigated whether the score
differed by HCC, cirrhotic liver, and normal liver. We
also applied the formula to EtOH-related samples from
UFSH and TCGA to evaluate the fidelity of the score in
HCV infection. We compared the mean score across
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groups using multiple linear regression adjusted for age
and sex.

Additional files

Additional file 1: Figure S1. High correlation between the profiled and
predicted LINE-1/Alu methylation. Figure S2. Scatter plot of HCV-HCC
associated RE methylation and proximal gene expression. Table S1.
Differentially hypomethylated REs in HCV-cirrhosis (FDR < 0.001). Table S2.
Differentially methylated REs in HCV-HCC using UFSH data and validation
in TCGA (76 REs: 69 LINE-1 + 7 Alu). Table S3. Differentially methylated
LINE-1 and Alu in HCV-HCC (FDR < 0.001) that were directionally
consistent in HCV-cirrhosis. Table S4. Enrichment of the 15 HCV-HCC REs
in four regulatory histone modification marks measured in normal liver
tissue (ID E066) in Roadmap Epigenomics Project. Table S5. Coefficients
of HCV-HCC RE methylation score' (DOCX 920 kb)

Additional file 2: Extended figures. (PDF 7145 kb)
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