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Abstract

Background: Multiple epigenome-wide association studies have been performed to identify DNA methylation
patterns regulated by aging or correlated with risk of death. However, the inter-relatedness of the epigenetic basis
of aging and mortality has not been well investigated.

Methods: Using genome-wide DNA methylation data from the Lothian Birth Cohorts, we conducted a genome-
wide association analysis of all-cause mortality and compared this with age-associated methylation patterns
reported on the same samples.

Results: Survival analysis using the Cox regression model identified 2552 CpG sites with genome-wide significance
(false discovery rate < 0.05) for all-cause mortality. CpGs whose methylation levels are associated with increased
mortality appear more distributed from the gene body to the intergenic regions whereas CpGs whose methylation
levels are associated with decreased mortality is more concentrated at the promoter regions. In comparison with
reported CpGs displaying significant age-dependent methylation patterns in the same samples, we observed a
limited but highly significant overlap between mortality-associated and age-associated CpGs (p value 2.52e−06).
Most importantly, the overlapping CpGs are dominated by those whose overall age-related methylation patterns
reduce the risk of death.

Conclusion: All-cause mortality is significantly associated with altered methylation at multiple genomic sites
with differential distribution in gene regions for CpGs correlated with increased or decreased risk of death. The
age-dependent methylation changes could reflect an active response to the aging process that contributes to
maintain individual survival.
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Background
As an important mechanism in epigenetic regulation,
DNA methylation (DNAm) has been shown to have sig-
nificant impacts on biological processes (aging, develop-
ment) and diseases [1]. Recent advancement in genomic
analysis has enabled collection of large-scale DNAm data
at genome levels on samples from older-aged individuals,

such as the Lothian Birth Cohort (LBC) study [2], for glo-
bal profiling of the aging DNA methylome. For example,
a recent epigenome-wide association study (EWAS)
identified a large number of 67,604 differentially meth-
ylated genomic sites associated with age in the LBC
samples (family-wise error rate, FWER < 0.05) of which
5168 sites were replicated in independent samples [3].
Although studying the age-related change in DNAm

can help to assess the epigenetic regulation during hu-
man aging [4–6] and might be relevant to age-related
changes in health [7], it would be valuable to examine
directly the epigenetic associations with death or all-
cause mortality, an objective measure of the overall
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health of a population. In the literature, several EWASs
on all-cause mortality have been published, for example,
by Zhang et al. [8] and by Svane et al. [9], revealing sig-
nificant sites in association with overall risk of death al-
though with low or even no overlap. Because current
EWAS has been conducted either on chronological age
or mortality, the epigenetic inter->relationship between
aging and mortality has not been well described.
Using the LBC data, we performed survival analysis

on genome-wide DNA methylation levels with two
aims: first, to look for epigenetic markers of all-cause
mortality in the older-aged LBC cohorts, and second,
to explore the epigenetic link between all-cause mortal-
ity and the aging process, by comparing mortality-asso-
ciated methylation changes with age-associated
methylation patterns. The second aim took advantage
of the published EWAS on age-related changes in
DNA methylation levels in the same LBC samples
from Li et al. [3].

Methods
The Lothian Birth Cohort samples
The LBC samples consist of 2195 blood samples taken
from 1425 individuals of two birth cohorts born in
1921 and 1936 (Table 1), with between 1 and 4 whole
blood samples per participant collected over the follow-
up waves.
The 1921 birth cohort (LBC1921) was collected in

the period 1999–2013. The mean initial recruitment
age was 79 years, with 550 individuals (476 with methy-
lation data) at the start. The 1936 birth cohort
(LBC1936) was collected from 2004 to date and con-
tains 1091 individuals (949 with methylation data) with
a mean age at initial recruitment of 70 years. Both are
longitudinal samples with repeated visits about every
3 years in the Lothian region (Edinburgh and its sur-
rounding areas) of Scotland. The LBC samples have
been described in open-access protocol and profile arti-
cles [2, 10, 11]. During each wave, the blood sample for
each participant was collected. Genome-wide DNA
methylation was analyzed using the Illumina Human
Methylation 450K Beadchip containing 485,512 CpG
sites. For this study, only the DNA methylation data
from the last available blood sample of each individual
were analyzed for association with mortality. The LBC

data are accessible through the European Genome-phe-
nome Archive (https://www.ebi.ac.uk/ega/home) with
an accession number EGAS00001000910.
Ethics permission for the LBC1921 was obtained

from the Lothian Research Ethics Committee (Wave 1:
LREC/1998/4/183). Ethics permission for the LBC1936
was obtained from the Multi-Center Research Ethics
Committee for Scotland (Wave 1: MREC/01/0/56), the
Lothian Research Ethics Committee (Wave 1: LREC/
2003/2/29). Written informed consent was obtained
from all subjects. The study was conducted in accord-
ance with the principles of the Helsinki Declaration.

DNA methylation data pre-processing
We removed polymeric probes with European allele fre-
quency above 1% (10,627 CpGs), cross-reactive probes
(29,233 CpGs) [12], and CpGs with more than 5% missing
values or detection p values > 0.05 across all samples (89
CpGs) as probe-level quality control (QC). CpGs from the
sex-chromosomes (X and Y) were also removed from the
analysis (11,648 CpGs). After preprocessing, 445,544 out
of the 485,512 CpGs remained. Sample level QC was per-
formed using conventional quality control measurements
by removing samples in which > 1% of the probes had a
detection p value > 0.05, estimated using the R package
minfi [13]. For subsequent analysis, the methylation β
values were logit transformed into methylation M value as
M = log2 (β/(1−β)).
To account for cell composition effect when measur-

ing DNA methylation in whole blood samples, blood
cell-type composition has been estimated using House-
man’s method [14] implemented in the R package cell-
types450 (https://github.com/brentp/celltypes450). The
package estimated cell-type proportions for CD8T,
CD4T, natural killer cell (NK), B cell, monocyte, and
granulocyte which were included in regression models
as covariates for adjusting blood cell heterogeneity.
To control for potential batch effect, we performed a

principal component analysis (PCA) on the cohorts and
found a subgroup belonging to a specific line of Illumina
450K BeadChip batches (N = 129) (Additional file 1: Fig-
ure S1). Based on the top 2 principal components from
PCA, we ran ComBat [15] using the R package sva [16]
to remove the batch effect. As shown by Additional file 1:
Figure S1, ComBat successfully removed the batch

Table 1 The Lothian Birth Cohorts LBC1921 and LBC1936 with elderly participants conducted from 1999 and onward

Dataset LBC1921 LBC1936 Total

N 476 949 1425

Women 286 (60%) 471 (50%) 757

Deaths 365 (77%) 154 (16%) 519

Age (years) at blood sampling (mean) 78–95 (79) 67–77 (70) 67–95

Year(s) of blood sampling 1999–2013 2004–present
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effect. Correction for batch effect enabled joint analysis
of the 1921 and 1936 birth cohorts, providing higher
statistical power for the EWAS.

Statistical analysis
We fitted a Cox regression model for each CpG to esti-
mate the association between methylation and mortality
adjusting for age at blood sampling, sex, and correcting for
cell composition. Time-to-event was defined as Δage,
measuring the time in years from blood sampling to death
(with right-censoring). Correcting for multiple testing was
done by calculating the false discovery rate (FDR) [17] and
defining FDR < 0.05 as genome-wide significance. R scripts
for data analysis including data preprocessing have been
deposited in GitHub at https://github.com/Silver-Hawk/
Lund_et_al_2019_EWAS_AllCauseMortalityAgePatterns

Pathway analysis
The identified CpGs were linked to nearest genes
using the Illumina 450K BeadChip annotation file and
split into two sets with either negative or positive
mortality associations. Each set was tested for
over-representation of gene sets (pathways) using the
Molecular Signatures Database through Gene Set En-
richment Analysis (GSEA) [18] based on the canon-
ical pathway’s curated gene sets (CP, 1329 gene sets
in the collection). The over-representation analysis is
a statistical test based on hypergeometric distribution
for testing if the submitted list of genes contains
more genes from a pathway or gene set than would
be expected by chance (see below). The test produces
a probability score for each pathway or gene set,
which is corrected by calculating FDR using the Ben-
jamini-Hochberg method [17].

Hypergeometric test
We used a hypergeometric test both for pathway ana-
lysis as described above and for testing if the
age-associated CpGs (N = 67,604) from Li et al. [3] are
over-represented in the significant CpGs for mortality.
Assuming N is the total number of CpGs on the 450K
array after QC (here, N = 445,544 CpGs), m the number
of significant CpGs for mortality, n the number of
CpGs significantly regulated by age, and k the number
of overlapping CpGs significant for both age and mor-
tality. The probability for randomly observing X ≥ k
age-regulated CpGs in the m mortality related CpGs
can be calculated as:

p X ≥kð Þ ¼ 1−
Xk

r¼0

m
r

� � N−m
n−r

� �
=

N
n

� �
:

For pathway over-representation analysis, N is the
number of genes linked to all CpGs on the 450K array,

m is the number of genes linked to mortality-related
CpGs, n is the number of genes in a particular biological
pathway, and k is the number of genes belonging to both
the pathway under testing and the list of genes linked to
mortality-related CpGs.

Results
Single CpG-based EWAS
Applying the Cox regression model to each of the
measured CpGs on the LBC samples (N = 1425,
deaths = 519) identified a total of 2552 CpGs signifi-
cantly associated with mortality, with FDR < 0.05. Dis-
tributions of chromosome-wise and overall p values
are depicted in Fig. 1a and b; CpGs with FDR < 0.05
are marked in red. Of these, 1403 were positively asso-
ciated (Fig. 1b, right) and 1149 negatively associated
(Fig. 1b, left) with mortality. From Fig. 1b, we see that
there are more CpGs whose methylation levels are
positively correlated with mortality than CpGs display-
ing negative correlation. Table 2 shows 22 CpGs with
p value < 1e−06. Among them, only 7 are negatively
associated with mortality. The full list of significant
CpGs (FDR < 0.05) with their associated genes is re-
ported in Additional file 2: Table S1. The QQ plot
(Additional file 3: Figure S2) indicates a large number
of CpGs displaying potential contribution to all-cause
mortality but only the top ones reached genome-wide
significance (FDR < 0.05, red dots) after correcting for
multiple testing.
We compared the distribution over gene regions be-

tween the two sets of CpGs with positive and negative
associations with mortality, to check if there were any
differences in their genomic locations (Fig. 2). CpGs
associated with increased mortality when methylated
(red) appear noticeable more distributed from the
gene body to the intergenic regions whereas CpGs as-
sociated with decreased mortality (blue) are more con-
centrated at the promoter regions, in comparison with
the distribution of all CpGs on the 450K array (black)
in Fig. 2a. A more striking picture is shown by Fig. 2b
which displays the frequency of positive (red) and negative
(blue) mortality association CpGs in all mortality-associ-
ated CpGs at each region, which shows a striking split in
gene regions between the two sets. The frequency in
Fig. 2b is an absolute frequency of positive and negative
mortality association CpGs calculated at each region while
the frequency in Fig. 2a is a relative proportion of positive
or negative mortality-associated CpGs over the regions.

Pathway analysis
As described in the “Methods” section, the CpGs signifi-
cantly associated with mortality were first linked to their
annotated functional genes. Submitting each set of genes
showing negative (N = 936) and positive (N = 1151)
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Fig. 1 Illustration of results from EWAS on mortality presented by plotting − log10(p value) against CpG’s chromosomal location (a, Manhattan
plot) and CpG’s regression coefficient in the Cox model (b, volcano plot)

Table 2 Statistics and annotations for the top 22 CpGs with p < 1e−06

CpG* HR1 SE Z score p value FDR* CHR* MAPINFO* Gene* Gene group* CpG
island*

cg00154443 0.6695028 0.072733 − 5.51634 3.46E−08 0.008403 16 71917454 ATXN1L;ZNF821 Body;TSS200 N_Shore

cg03636200 1.1806664 0.030655 5.417627 6.04E−08 0.009774 17 80005395 N_Shelf

cg04157272 2.1306391 0.142672 5.301819 1.15E−07 0.013814 2 68017838

cg03217572 1.4100455 0.065719 5.228685 1.71E−07 0.013814 7 142561918 EPHB6 Body

cg01083884 1.7394170 0.106624 5.191615 2.08E−07 0.01446 13 113641411 MCF2L Body

cg07202479 3.6623902 0.252289 5.145359 2.67E−07 0.014684 1 159174162 DARC TSS1500

cg10741568 1.7502471 0.109628 5.105981 3.29E−07 0.014684 13 49546137 N_Shelf

cg27649037 1.2494070 0.043894 5.072916 3.92E−07 0.014684 8 53322510 ST18 TSS200

cg16473125 0.6918957 0.072615 − 5.07224 3.93E−07 0.014684 16 55090720 Island

cg09049436 1.4448276 0.072928 5.045959 4.51E−07 0.014779 5 178854758

cg14517004 1.5786783 0.090526 5.043703 4.57E−07 0.014779 22 48946660 FAM19A5 Body

cg06654691 0.5845868 0.1069 − 5.02195 5.12E−07 0.015521 17 40825980 PLEKHH3 Body N_Shore

cg06936355 2.3773894 0.173358 4.995453 5.87E−07 0.015694 9 99213110 HABP4 Body Island

cg24860169 1.4223750 0.070717 4.98224 6.29E−07 0.015694 1 46924753

cg22819488 0.6837794 0.076321 − 4.98058 6.34E−07 0.015694 3 28390286 AZI2;AZI2 1stExon;5′UTR Island

cg07552157 0.7664161 0.053454 − 4.97678 6.47E−07 0.015694 3 142720316 SR140 TSS200 Island

cg00003305 1.3086604 0.054424 4.94274 7.70E−07 0.016988 19 30715645 Island

cg04402350 1.3023196 0.053478 4.939353 7.84E−07 0.016988 4 146857565 ZNF827 Body Island

cg09724798 1.3792984 0.06519 4.932918 8.10E−07 0.016988 12 119741507 LOC144742 TSS1500

cg16503753 0.5136465 0.135248 − 4.92589 8.40E−07 0.016988 14 64319245 SYNE2 TSS1500 N_Shore

cg01773858 1.4928783 0.081542 4.914106 8.92E−07 0.017321 11 73076892 ARHGEF17 Body S_Shelf

cg12145550 0.6807161 0.078476 − 4.90104 9.53E−07 0.017801 20 44600942 ZNF335 TSS200 Island
1Hazard ratio, compared to baseline hazard
*Fields are gathered from the Illumina 450K BeadChip annotation file
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association with mortality separately to GSEA identified
175 and 200 pathways significantly enriched by each of
the two lists of genes (FDR < 0.05) (Additional file 4:
Table S3 and Additional file 5: Table S2). Comparing the
pathways in the two tables, there are shared top path-
ways such as the MAPK signaling pathway. However,
the most significant pathways are characterized by those
involving immune function for genes linked to negative
mortality association CpGs, whereas for positive mortal-
ity association CpGs, the most significant pathways are
characterized by genes encoding the extracellular matrix
(ECM) proteins.

Epigenetic link between aging and mortality
Using the estimates on age-associated methylation
changes from Li et al. [3], we explore the relationship
in DNA methylation regulation between mortality and
aging. In Fig. 3a, we plot the test statistic (z value from
Cox regression model) on each of the 2552 significant
CpGs associated with mortality (FDR < 0.05) on the
x-axis against the corresponding test statistic (t value
from linear regression model) on age (p < 0.05 colored
in red or blue) on y-axis. Among the 1403 CpGs posi-
tively associated with mortality (Fig. 3a, right panel), a
large number (580 CpGs, 41.3%) have decreased methy-
lation and only a small number (28 CpGs, 2%) has in-
creased methylation with aging. The other half (795
CpGs, 57%) of the positive mortality association CpGs
do not show any significant age pattern (p > 0.05).
Among the 1149 negative mortality association CpGs
(Fig. 3a, left panel), 113 (9.8%) CpGs have increased

methylation and only 25 (2.2%) CpGs have decreased
methylation with aging. Methylation level at the major-
ity (1011 CpGs, 88%) of the negative mortality associ-
ation CpGs is not affected by aging (p > 0.05). In
Fig. 3a, CpGs positively associated with mortality but
hypermethylated with age or negatively associated with
mortality but hypomethylated with age convey in-
creased risk of death as a result of aging and are
marked in red; CpGs positively associated with mortal-
ity but hypomethylated with age or negatively associ-
ated with mortality but hypermethylated with age are
beneficial to survival during aging and are marked in
blue. Using hypergeometric test, we estimated the prob-
ability of observing the number of colored CpGs in
each of the four areas in Fig. 3a. Only the blue-colored
CpGs in the bottom-right showed a p value of 2.52e
−06, suggesting it is very unlikely to observe 580 or
more CpGs (k) demethylated with age (p < 0.05) if we
randomly take 1403 CpGs (m) from all CpGs tested (N)
among which 158,144 CpGs (n) are demethylated with
age (p < 0.05, EWAS results from Li et al. [3]).
Figure 3b plots the t values for the 67,604 age-regu-

lated significant CpGs (FWER < 0.05) from the EWAS
on aging by Li et al. [3] on the X-axis against their
z-statistic for mortality association in the Cox models
fitted in this study. Of the 9688 CpGs methylated with
age (Fig. 3b, right panel), 841 (8.7%) are negatively and
239 (2.5%) are positively associated with mortality (p <
0.05), with the majority (88.8%) having no connection
with mortality (p > 0.05). Of the 57,916 CpGs demethy-
lated with age, 367 (0.6%) are negatively and 6328

(a) (b)

Fig. 2 Star plot based on CpGs showing positive (red) and negative (blue) associations with mortality. The arms of the stars represent gene regions
where CpGs are located. a Proportions of CpGs distributed over different regions for positive (red) and negative (blue) mortality-associated CpGs, as
well as for all the CpGs on the array (black). b The absolute proportions of positive (red) and negative (blue) mortality-associated CpGs at each
gene region
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(10.9%) are positively associated with mortality; again,
the majority (88.5%) are not related to mortality (p >
0.05). Similar to Fig. 3a, red/blue colors represent CpGs
whose age-associated methylation patterns increase/de-
crease the risk of death. Applying the hypergeometric
test, we found the distributions of blue-colored CpGs
in Fig. 3b are significantly different from random with
p value = 1.88e−61 for the bottom-right area (n
= 21,281, m= 9688, k = 841) and p = 2.12e−71 for the
top-left area (n = 39,679, m= 57,916, k = 6328), suggest-
ing that the probabilities for randomly observing the num-
ber or more of the blue CpGs in the two areas are
extremely low. Tests for the distribution of the number of
red CpGs showed no difference from random.
Finally, Fig. 3 also presents a small group of 178 CpGs

with genome-wide significance in both EWAS on mor-
tality (FDR < 0.05) and EWAS on aging (FWER < 0.05)
(same set of the large dots in Fig. 3a, b).

Discussion
Compared with the large number of age-regulated CpGs
(N = 67,604) found in the LBC cohorts by Li et al. [3],
the 2552 CpGs (FDR < 0.05) detected in association with
all-cause mortality in this study is in great contrast in
magnitude. A large number of age-related CpGs have
also been reported by Moor et al. [19] with 56,579 CpGs,
of which less than 0.05% were associated with mortality.
Although the number of significant sites identified de-
pends largely on the power of a study, the striking differ-
ence in the number of significant sites for aging and
mortality from the same relatively large LBC sample

could indicate that aging as a complex process can in-
volve numerous epigenetic remodeling in the DNA
methylome to a larger extent than that for mortality.
Note that the above results were all based on blood sam-
ples after adjusting for cell compositions. Tan et al. [20]
discussed the importance of considering cell type hetero-
geneity in epigenetic studies on aging using blood sam-
ples and different options of adjustment. According to
Tan et al. [20], the widely accepted adjustment scheme
that controls for cell compositional effect is an efficient
handling of the cell type issue in consideration of statis-
tical power and systematic bias [21].
Our findings on the relationship between mortality-

and age-associated CpGs seem contradictory to general
expectation as aging is related to increased risk of
death. The patterns showing in Fig. 3 are based on co-
efficients from regression models; thus, the conclusions
are made on the mean levels. Taking the blue CpGs in
the bottom-right panel of Fig. 3a for example, because
of their positive effects on mortality, hypermethylation
at these CpGs lead to increased risk of death. However,
according to their age-dependent methylation patterns,
the mean methylation levels decrease with increasing
age. This means increased mortality among a group of
individuals with increased methylation by age. However,
since the mean methylation is going down with age, the
effects of age-associated methylation change at these
CpGs do not, on average, increase the hazard of death.
We postulate that the significantly over-represented
protective effects of age-associated methylation pat-
terns could reflect the active response to aging that

(a) (b)

Fig. 3 Scatter plots for mortality-associated CpGs plotted against their coefficients for age from the linear model in the EWAS on aging (a) and
for aging-associated CpGs plotted against their coefficients from the Cox model in the EWAS on mortality (b). The colored large dots are 178
CpGs with genome-wide significance in both the EWAS on aging (FWER < 0.05) and the EWAS on mortality (FDR < 0.05)
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helps to maintain survival or, in other words, the main
stream of age-dependent methylation patterns might
represent an epigenetic mechanism for successful aging.
The finding merits further investigation with a focus on
the causation of DNA methylation and aging to provide
clues for elucidating the underlying biology.
As discussed above, the positive and negative mortality

association CpGs in Fig. 3 manifest differently in terms of
aging. From Fig. 2, we see that they are also differentially
distributed over gene regions with positive mortality asso-
ciation CpGs distributed mainly from gene body to the
intergenic region and negative mortality association CpGs
in the promoter regions. The differential distribution
could help to explain the functional differences of the
two lists of CpGs. The top biological pathways signifi-
cantly over-represented by genes linked to the positive
mortality association CpGs (Additional file 4: Table S3)
are mainly implicated in the function of ECM while the
most significant pathways from genes linked to the
negative mortality association CpGs (Additional file 5:
Table S2) are extensively involved in immune functions.
The molecular or biological basis of these differences
merits further investigation.
Svane et al. [9] performed an EWAS on mortality in

middle-aged and old Danish twins (N = 870, deaths = 258)
using the same platform for DNA methylation analysis as
in our study. A total of 2806 significant CpGs with FDR
< 0.05 was revealed. In our primary analysis, without
adjusting for the cohort effect between LBC1921 and
LBC1936, there were 7 significant CpGs (FDR < 0.05)
overlapped with the Danish study. After we corrected
the cohort effect using ComBat, no overlapping CpG
with FDR < 0.05 was found. There were 57 overlapping
CpGs (43 positively and 14 negatively associated with
mortality) with p < 0.05 in their study. In another
EWAS on all-cause mortality, Zhang et al. [8] reported
a list of 58 CpGs from blood samples. Again, no overlap
was observed with this study. It has already been shown
that low or no replication is a frequent phenomenon in
(epi)genome-wide association studies [22]. For example,
of the 2806 CpGs reported by Svane et al. [9], only 2
overlapped with the CpGs found by Zhang et al. [8]
and none with the mortality-related CpGs reported by
a Finnish EWAS [23]. Future large-scale consortium
studies and meta-analysis should be encouraged to nar-
row down the epigenetic targets for all-cause mortality.
Considering methylation changes at different CpGs in

the same regulatory region or gene body could alter the
expression of the same gene, we additionally performed
gene-level replication using the EWAS results from Da-
nish twins. Among their 2806 significant CpGs with FDR
< 0.05, 2112 CpGs could be linked to nearby genes using
the Illumina Methylation 450K BeadChip annotation file,
resulting in a total of 2032 uniquely mapped genes. We

found 330 shared genes from our list of 2036 unique
genes linked to our 2552 CpGs with FDR < 0.05. Different
from CpG-level replication, the gene-level replication led
to a replication rate of over 16%. Using the hypergeo-
metric test, we estimated the probability of having 330 or
more shared genes between the two EWASs if randomly
sampling 2032 genes from the pool of 21,244 proximal
genes of the 450K chip. The probability was estimated as
p = 1.64e−23, meaning that it is highly unlikely to observe
the 330 overlapping genes by chance.
In summary, this genome-wide DNA methylation profil-

ing on the older-age Lothian Birth Cohorts identified 2,
552 CpG associated with mortality. In comparison with
EWAS results on aging from the same sample, most
mortality-associated CpGs do not display age-dependent
patterns and the majority of age-associated CpGs do not
correlate with mortality, but the limited overlap between
them is highly significant from random. Besides, the pre-
dominately beneficial effects to survival from CpGs show-
ing age-dependent methylation patterns could perhaps
reflect active response to aging or represent an epigenetic
regulation for successful aging.
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