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Abstract

Background: We conducted an epigenome-wide association study (EWAS) on obesity in healthy youth and young
adults and further examined to what extent identified signals influenced gene expression and were independent of
cell type composition and obesity-related cardio-metabolic risk factors. Genome-wide DNA methylation data from
leukocytes were obtained from 700 African Americans aged 14-36. We also measured genome-wide DNA methylation
data from neutrophils as well as genome-wide gene expression data from leukocytes in a subset of samples (n = 188).

Results: The EWAS identified 76 obesity-related CpG sites in leukocytes with p < 1 x 107", In silico replication in the
ARIC study of 2097 African Americans aged 47-70 validated 54 CpG sites. Out of the 54 CpG sites, 29 associations with
obesity were novel and 37 were replicated in neutrophils. Fifty one CpG sites were associated with at least one cardio-
metabolic risk factor; however, the number reduced to 9 after adjustment for obesity. Sixteen CpG sites were associated

with expression of 17 genes in cis, of which 5 genes displayed differential expression between obese cases and lean
controls. We also replicated 71.5% of obesity-related CpG sites previously reported.

Conclusion: In this study of youth and young adults, we identified 29 novel CpG sites associated with obesity and
replicated the majority of the CpG sites previously identified. We further demonstrated that the majority of the obesity-
related CpG sites in leukocytes were not driven by cell composition or obesity-related cardio-metabolic risk factors. We
also provided the direct link between DNA methylation-gene expression-obesity for 5 genes.
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Background

Obesity is a complex disease resulting from interactions
between genes and environmental factors that can be
modified and/or mediated by epigenetic changes. DNA
methylation is a pivotal and stable epigenetic mechanism,
and DNA methylation levels at particular loci have been
associated with obesity and its related cardio-metabolic
traits [1]. Recently, four large-scale epigenome-wide
association studies (EWAS) [2-5] in middle-aged and
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older adults identified multiple DNA methylation loci in
blood leukocytes that were associated with body mass
index (BMI). However, the high prevalence of obesity
comorbidities and use of medications in middle-aged or
older populations may hide or bias obesity-related DNA
methylation changes. For this reason, we investigated 700
healthy African American youth and young adults. With
genome-wide DNA methylation data from leukocytes in
the full data set and genome-wide DNA methylation data
from purified neutrophils and genome-wide gene expres-
sion data from leukocytes in a subset of 188 subjects, the
present study has three objectives. First, we conducted an
EWAS of obesity in youth and young adults to identify
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new signals and further validate the findings with replica-
tion in an independent cohort of 2097 middle-aged
African Americans from the Atherosclerosis Risk in
Communities (ARIC) study [2]. Second, for these obesity-
related DNA methylation loci, we checked whether the
associations can be replicated in one purified cell type
(neutrophils), whether the associations were driven by
obesity-related cardio-metabolic traits, and whether the
DNA methylation status of these loci was associated with
gene expressions. Third, we examined to what extent we
can replicate the findings previously reported in middle-
aged and older adults. The identification of obesity-related
DNA methylation changes in youth and young adult may
provide new insights into the mechanisms linking obesity
to associated clinical conditions at the early stages of the
disease process and may provide new targets for early
prevention.

Methods

Subjects

A total of 700 African American youths and young
adults aged 14-36 were included in the current study.
These subjects were participants from 3 existing cohorts
(for details, see Additional file 1): the Epigenetic Basis of
Obesity-Induced Cardiovascular Disease and Type 2
Diabetes (EpiGO) study [6] (96 obese [BMI percentile >
95%] vs. 92 lean controls [BMI percentile <50%] aged
14-20), the LACHY study [7] (284 participants from the
general population aged 14—18), and the BP stress study
[8] (228 participants from the general population aged
18-36). All of these participants were free of chronic or
acute disease and not on daily prescription medication
for treatment of diseases. All participants were recruited
from the southeastern USA. Height and weight were
measured by standard methods using a wall-mounted
stadiometer and a scale, respectively. BMI was calculated
as weight/height®>, and BMI percentile was calculated
according to their age, sex, height, and weight. These
studies were approved by the Institutional Review Board
of Augusta University and performed following the
guidelines of the Declaration of Helsinki. Written
informed consent was provided by all participants or by
their parents if they were less than 18 years.

DNA extraction and genome-wide DNA methylation
For the participants from the EpiGO study, DNA was
extracted from both peripheral leukocytes and neutrophils
using the QIAamp DNA Mini Kit (QIAGEN). Peripheral
neutrophils were obtained using the approach previously
described [9]. For the other participants, DNA was
extracted from stored buffy coats using the same kit.
Genome-wide DNA methylation levels of all these sam-
ples were analyzed by the Illumina Infinium Human
Methylation 450K Beadchip (Illumina Inc.). The Minfi
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package [10] and CPACOR (incorporating Control Probe
Adjustment and reduction of global CORrelation) package
[11] were used for initial quantification, data preprocess-
ing, and quality control (QC). The key QC steps included
the following: (1) Detectable probes were defined as the
probes with detection p value <1 x107'® in more than
95% samples; (2) Detectable samples were defined as the
samples with more than 95% CpG sites having a detection
p value <1x107' and correct classification of gender
based on the genome-wide DNA methylation data; (3)
Probes on the X and Y chromosomes and the 65 SNP
markers were excluded; (4) Illumina background correc-
tion and quantile normalization were applied to all inten-
sity values, and beta value was further calculated and used
as the index of CpG methylation levels; (5) A principal
component analysis (PCA) of the control probe intensities
(excluding negative control probes) was performed and
the resulting PCs 1 to 30 were stored; (6) White blood cell
sub-populations were estimated using the approach
described by Houseman et al. [12]; and (7) A linear regres-
sion model was conducted for each CpG site with DNA
methylation level as the dependent variable and the 30
PCs from the control probe intensities as well as the
estimated cell compositions as the independent variables.
The residuals were calculated and used as indices of DNA
methylation levels in further analysis. The above steps
were conducted for each cohort separately.

RNA extraction and genome-wide gene expression assays
For the participants of the EpiGO study, RNA samples
were extracted from the peripheral leukocytes stored in
the RNA cell protection reagents (QIAGEN Inc.) using
the QIAamp RNA mini Kit (QIAGEN Inc). RNA
concentration and purity were evaluated on a NanoDrop
spectrophotometer 2000 (Thermo Scientific Inc.). RNA
integrity (RIN) was evaluated on a Bioanalyzer 2100
(Agilent Inc.). The RIN scores of all these samples were
greater than 8, indicating the high quality of RNA.
Genome-wide gene expression data were obtained using
the Illumina HumanHT-12 v4 Expression BeadChip (Illu-
mina Inc). This chip targets more than 48,000 probes that
provide genome-wide coverage of well-characterized
genes, gene candidates, and splice variants. The Genome-
Studio Gene Expression Module (Illumina Inc.) was used
for initial quantification, and the lumi package [13] was
used for data preprocessing and QC. The key QC steps in-
cluded the following: (1) Probes with detection p value <
0.05 in more than 50% of the samples were defined as
“present”; (2) Log transformation and quartile
normalization were applied to the gene expression data;
and (3) A linear regression model was conducted for each
probe with gene expression level as the dependent variable
and batches (16 batches with 12 samples in each batch) as
the independent variables. The residuals were calculated
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and used as the indices of gene expression levels in further
analysis.

Statistical analysis

The R package Limma [14] was used for the identification
of differentially methylated CpG sites and differentially
expressed genes related to the obesity phenotypes.

For DNA methylation analysis on peripheral leukocytes,
the residual derived from the regression of each single
CpG site methylation level (beta) on cell compositions
and PCs from the control probes was used as dependent
variable with age and sex as covariates. The test of interest
was group (obese vs. lean) in the EpiGO study and BMI in
the LACHY and BP stress cohort. Meta-analysis across
the three cohorts was conducted using METAL [15] by
converting the direction of effect and p value observed in
each study into a signed Z score. This approach is very
flexible and allows results to be combined when the S-co-
efficients and standard errors from individual studies are
in different units. To account for multiple testing, a stand-
ard Bonferroni correction for the 473,788 CpG sites gives
p<1x107" as the significance threshold.

For DNA methylation analysis on peripheral neutrophils,
the residual derived from the regression of each single CpG
site methylation level on PCs from the control probes was
used as dependent variable with age and sex as covariates.
The test of interest was group (obese vs. lean).

For gene expression analysis on peripheral leukocytes,
the residual derived from the regression of each probe gene
expression level on batches was used as dependent variable
with age and sex as covariates. The test of interest was
group (obese vs. lean).

The differentially methylated CpG sites identified for
obesity and BMI in peripheral leukocytes with a p
value< 1 x 10™%7 were carried forward for replication in
the African American participants of the ARIC study [2]
(n=2097, 64% females, age range from 47 to 70).
Leukocyte DNA and the same Illumina 450K platform
for methylation analysis were used in ARIC study. Repli-
cation was defined as consistent direction of the -
coefficient and FDR < 0.05 in the BMI-related CpG sites
from the ARIC study. The replicated CpG sites were
taken forward in the following analyses: First, they were
checked in obesity-related CpGs identified from neutro-
phils. Replication was defined as consistent direction of
the B-coefficient and FDR< 0.05 in neutrophils. Second,
their associations with seven cardio-metabolic traits in-
cluding SBP, fasting glucose, fasting insulin, fasting tri-
glycerides (TG), fasting total cholesterol (TC), fasting
HDL-cholesterol (HDLC), and fasting LDL-cholesterol
(LDLC) were tested in EpiGO and LACHY cohorts with
and without the adjustment of obesity status/BMI. A p
value < 0.05 was defined as significant. Third, cis-regula-
tion of these CpG sites of gene expression (within +
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250 kb of the CpG sites) was explored. Partial correl-
ation of gene expression and DNA methylation was con-
ducted with age, gender, and group (obese vs. lean) as
covariates. A Bonferroni corrected p value < 0.05 accord-
ing to the number of genes tested for each CpG site
(range from O to 28) was defined as significant correl-
ation. Obesity-related differentially expressed genes were
defined as genes with their expression levels showing
significant difference between obese cases and lean con-
trols at p value < 0.05.

Pathway enrichment analysis was conducted for the
genome-wide DNA methylation obtained from leukocytes
using gene set enrichment analysis (GSEA) [16]. GSEA
was performed on an unfiltered, ranked list of genes
(ranked by the p values without consideration of direc-
tions), and a running-sum statistic was used to determine
the enrichment of an a priori defined gene sets (pathways)
based on the gene ranks. Statistical significance of pathway
enrichment scores were ascertained by permutation test-
ing over size-matched random gene sets and multiple test-
ing was controlled by the false discovery rate (FDR). A
FDR of 5% was used. Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene sets were used as the reference
gene sets. The CpG site showing the most significant p
value within a gene was used to represent the DNA
methylation level of the gene.

We also checked whether we could replicate previously
identified obesity-related CpG sites (n=277) in our
current study of youth and young adult [2-5]. Replication
was defined as a consistent direction of the B-coefficient
and FDR < 0.05.

Results

Discovery meta-analysis in the youth and young adult
Table 1 lists the general characteristics of the subjects. We
identified 76 CpG sites significantly associated (p <1 x 10
~%7) with obesity in the meta-analysis of the three cohorts
(Manhattan and QQ-plot, Fig. 1; Additional file 2: Table
S1). Obesity was positively associated with the methylation
of 65 CpG sites and negatively associated with the methy-
lation of 11 CpG sites. The top CpG site (cgl2170787, p =
1.13 x 107 locates in the intron 5 of the SBNO2 gene
(Strawberry Notch Homolog 2). Two more CpG sites
(cg18608055, p =3.69 x 107 ¢g07573872, p=1.12x10
799 locating in the same region also passed the threshold
for genome-wide significance. CpG site ¢g07573872 is lo-
cated in a Cp@ island shore region and has been reported
to be associated with BMI previously [2]. CpG sites
cg18608055 and cgl2170787 are 4524 bp and 4623 bp
away from cg07573872 (Additional file 3: Figure S1). The
SBNO2 gene is expressed in peripheral leukocytes and is a
key player in the IL-10-regulated anti-inflammatory sig-
naling pathway [17].
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Table 1 General characteristics of the subjects

General characteristics EpiGO LACHY BP stress
Lean Obese cohort

N 92 96 284 228
Female (%) 50.0 51.0 50.0 575

Age (years) 17717 177£18 162+13 278+£33
Age range (years) 140-209 14.1-210 138-190 189-356
BMI (kg/mz) 188+£13 398+£68 241+£56 314+86
BMI range (kg/m?) 150-217 28.1-70.1 164-459  17.6-596
BMI percentile (%) 187£11.0 988+1.1 657+£283 -

BMI percentile range (%) 0.8-41.7 95.0-99.9 23-99.7 -

In silico replication with ARIC study

Of the 76 CpG sites significantly associated with obesity in
our discovery meta-analysis, 54 replicated (FDR < 0.05) in
the ARIC study (Table 2), of which 33 survived Bonferroni
correction (p < 6.58 x 10™*). These 54 CpG sites annotated
to 45 genes. In addition to SBNO2 which exhibits 3 signifi-
cant CpG sites, SOCS3 (suppressor of cytokine signaling
3: cgl8181703, cg04610187, and ¢gl0508317), CISH
(Cytoking-Inducible Src-Homology 2 —containing protein:
¢g21585138 and ¢g23005227), and VMPI (Vacuole Mem-
brane Protein: ¢g16936953, ¢g12054453, c¢g24174557,
cg18942579, and cg010409343) also have 2 or more sig-
nificant CpG sites. The locations of these CpG sites within
each gene and their correlations were provided in
Additional file 3: Figure S1. Out of the 54 CpG sites asso-
ciated with obesity, 29 CpG sites (annotated to 25 genes)
were novel signals (highlighted in gray in Table 2).

Replication of obesity-related CpG sites identified from
mixed cells in purified neutrophils

The 54 CpG sites were taken forward to check whether
the associations with obesity could be validated in one
purified cell type: neutrophils. The results were listed in

Page 4 of 9

Additional file 2: Table S2. Thirty-seven CpG sites were
found to be associated with obesity in neutrophils (FDR <
0.05 and consistent directions of effect), confirming that
for the majority of the CpG sites (68.5%), the significant
associations with obesity are not driven by potential cell
compositions in leukocytes. For the 17 CpG sites that
were not validated in neutrophils, it is difficult to deter-
mine whether these signals are driven by cell composi-
tions or that neutrophils are not the biologically relevant
cell type to target. The fact that 6 of the 17 CpG sites were
hypermethylated (i.e., beta >0.8) in neutrophils compared
with 0 in the 37 replicated CpG sites (p = 1.2E-4) indicated
that at least for some of the obesity-related CpG sites
which could not be validated in neutrophils, neutrophils
might not be the relevant cell type to target.

Association with cardio-metabolic phenotypes

We examined the associations between the 54 replicated
CpG sites and 7 cardiometabolic traits (SBP, fasting insu-
lin, fasting glucose, fasting lipid panel including TG, TC,
HDLC, and LDLC). Without the adjustment of obesity or
BMI, we observed 148 significant associations (p < 0.05,
Additional file 2: Table S3) with 39 for SBP, 45 for insulin,
1 for glucose, 14 for TG, 5 for TC, 25 for HDLC, and 19
for LDLC. CpGs that were significantly associated with
higher SBP, insulin, glucose, TG, TC, and LDLC were also
associated with higher BMI levels. For HDLC, CpGs were
associated with lower BMI levels (Fig. 2). After the adjust-
ment of obesity or BMI, only 11 associations remained sig-
nificant (Additional file 2: Table S4). The results indicate
that the majority of the associations of these CpG sites
with cardiometabolic phenotypes are driven by obesity.

Gene expression analyses

Of the 54 CpG sites, 16 were significantly associated
with expression of 17 unique genes in cis (Bonferroni
corrected p value <0.05) (Additional file 2: Table S5).
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Fig. 1 Left panel: Manhattan plot of the genome-wide DNA methylation analysis in youths and young adults. The dotted line indicates the
Bonferroni threshold of 1E—07 for significance. Right panel: QQ plot of the genome-wide DNA methylation analysis in youth and young adults
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Table 2 Validated CpG sites in the ARIC study

The youth and young adult

TargetID Closest gene Chr.  Position discovery panel ARIC
Directions* P value Beta** P value FDR
cgl2170787 SBNO2 19 1130965 - 1.13E-16 -0.00347  1.30E-05  7.60E-05
cg18181703 SOCS3 17 76354621 - 1.94E-16 -0.00679  3.80E-07  4.13E-06
cg18608055 SBNO2 19 1130866 - 3.69E-16 -0.00460  5.80E-04  1.34E-03
€g26470501 BCL3 19 45252955 - 4.87E-14 -0.00247  1.84E-02  2.65E-02
¢g09349128 CRELD2 22 50327986 - 1.15E-13 -0.00590  1.40E-08  2.66E-07
cgl6611584 AKAP10 17 19809078 -+ 7.37E-12 0.00810  2.08E-04  5.27E-04
¢g03940776 SYNJ2 6 158490013 - 8.82E-12 -0.00306  1.40E-04  4.09E-04
cg04610187 SOCS3 17 76360794 - 8.95E-12 -0.00510  1.89E-03  3.34E-03
¢g10919522 ELMSANI1 14 74227441 - 1.18E-11 -0.00548  4.00E-06  3.04E-05
cg08548559 PIK3IP1 22 31686097 - 1.49E-11 -0.00743  1.40E-07  1.77E-06
cg12593793 LMNA 1 156074135 - 1.79E-11 -0.00385  1.59E-04  4.32E-04
cg06178669 HRASLS2 11 63334608 - 3.50E-11 -0.00507  3.12E-03  5.15E-03
cg21585138 CISH 3 50645106 - 4.52E-11 -0.00572  1.10E-06 ~ 9.29E-06
cg07136133 PRRS5L 11 36422377 - 6.77E-11 -0.00484  6.70E-09  2.10E-07
cg01671681 PLCHI 3 155421735 - 2.02E-10 -0.00440  1.48E-04 4.17E-04
cg03957124 COX6A1P2 6 37016869 - 291E-10 -0.00268  2.77E-03  4.67E-03
cg16936953 VMP1 17 57915665 - 3.17E-10 -0.00777  2.40E-05  1.22E-04
cgl0601624 PLEKHG6 12 6404377 - 3.34E-10 -0.00454  6.90E-05  2.91E-04
cg07037944 DAPK2 15 64290807 - 5.48E-10 -0.00349  2.47E-04  6.06E-04
cgl7178175 NFE2L2 2 178109973 - 5.56E-10 -0.00397  1.38E-03  2.69E-03
cg06568880 SMG6 17 2166583 A+ 6.00E-10 0.00258 1.63E-03  3.10E-03
cg10508317 SOCS3 17 76355146 - 7.45E-10 -0.00197  1.31E-03  2.62E-03
cg09152259 MAP3K2 2 128156114 - 8.03E-10 -0.00429  7.10E-04  1.54E-03
cg21163717 DOK2 8 21769903 - 8.41E-10 -0.00339  1.27E-04  3.86E-04
cg07573872 SBNO2 19 1126342 - 1.12E-09 -0.00689  2.80E-08  4.26E-07
€g23005227 CISH 3 50645426 - 1.26E-09 -0.00416  1.73E-03  3.20E-03
€g22866430 SNORAS59A 1 12566378 A+ 2.68E-09 0.00179 1.30E-02  1.90E-02
cg12054453 VMP1 17 57915717 - 2.71E-09 -0.00745  8.10E-05  3.08E-04
cg07094298 TNIP2 4 2748026 - 3.08E-09 -0.00534  8.10E-05  3.08E-04
©g24174557 VMP1 17 57903544 - 3.35E-09 -0.00556  1.91E-04  5.01E-04
cgl19750657 UFM1 13 38935967 A+ 5.50E-09 0.00805  5.50E-06  3.80E-05
¢g23076949 FBRSLI 12 133016265 ++ 5.58E-09 0.00316 1.01E-03  2.13E-03
cg06647068 CHSTI11 12 104853274 - 6.48E-09 -0.00367  1.20E-02  1.78E-02
cgl7061862 WEE1 11 9590431 - 6.70E-09 -0.00458  1.26E-03  2.59E-03
cg03183540 LOC101927822 8 134931756 - 6.97E-09 -0.00282  2.50E-03  4.31E-03
¢g05845030 DCN 12 91573247 - 9.27E-09 -0.00260  2.51E-02  3.54E-02
cg24531955 LOXL2 8 23154691 - 1.20E-08 -0.00416  3.80E-05  1.70E-04
¢g03257930 RNU6-996P 9 110399293 - 1.50E-08 -0.00251  6.11E-03  9.67E-03
¢g00760203 PLXDC1 17 37254921 A+ 1.64E-08 0.00458  9.20E-05  3.18E-04
¢g20849150 LINCO01358 1 59522993 - 2.34E-08 -0.00401  3.40E-05 1.62E-04
cg18942579 VMP1 17 57915773 - 2.52E-08 -0.00658  8.90E-05  3.18E-04
¢g02734358 GPRIN3 4 90227074 - 4.22E-08 -0.00525  3.29E-04 7.81E-04
cg22143698  ANKRD33B 5 10608058 -+ 4.46E-08 0.00628 1.50E-05  8.14E-05
cg08857797 VPS25 17 40927699 -+ 4.98E-08 0.00634  3.40E-09  2.10E-07
¢g07960624 SAMDI2 8 119208486 - 6.13E-08 -0.00578  6.98E-04  1.54E-03
¢g03929796 ALAS1 3 52231840 - 6.94E-08 -0.00317  8.36E-03  1.30E-02
cg08239103 SOX6 11 16623818 - 7.32E-08 -0.00342  4.74E-03  7.66E-03
¢g06946797 RIM2 16 11422409 - 7.38E-08 -0.00702  8.30E-09  2.10E-07
cg04163119 PRICKLE4 6 41754006 - 7.77E-08 -0.00153  9.49E-03  1.44E-02
cg13134297 CRHR2 7 30737556 - 8.47E-08 -0.00374  1.10E-04  3.48E-04
cg01409343 VMP1 17 57915740 - 8.53E-08 -0.00546  1.03E-04  3.40E-04
cgl4531564 SDF4 1 1154853 - 8.54E-08 -0.00410  1.10E-05  6.97E-05
cg06164260 BCL6 3 187454439 - 9.42E-08 -0.00410  5.30E-07  5.04E-06
cg23018755 MAFG 17 79881529 A+ 9.85E-08 0.00339 1.86E-03  3.34E-03

Newly discovered associations are highlighted in gray
*1+" indicates that DNA methylation levels increase with obesity status or BMI. The order is Epigo, LACHY, and BP stress cohort
**DNA methylation changes with 1 unit increase in BMI

Furthermore, of these 17 genes, the expression levels of and gene expression for these 5 genes. With the excep-
5 genes were significantly associated with obesity (p<  tion of the correlation between ¢g06178669 and
0.05) (Additional file 2: Table S5). Figure 3 shows the HRASLS2 (HRAS-like suppressor 2), increased methyla-
corresponding relationships between DNA methylation  tion was associated with decreased gene expressions. For
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SOCS3, CISH, PIM3 (Pim-3 proto-oncogene, serine/
threonine kinase), and KLF4 (Kruppel-like factor 4),
obesity was associated with decreased methylation and
increased gene expression, while for HRASLS2, obesity
was associated with decreased methylation and
decreased gene expression (Additional file 2: Table S5).

Pathway analyses

The pathway analyses yielded significant (FDR < 0.05) en-
richment of 33 KEGG pathways for obesity-related DNA
methylation ~ changes in  peripheral  leukocytes
(Additional file 2: Table S6). These pathways represent pro-
cesses involved in inflammatory pathways (e.g, cell
adhesion molecules, JAK-STAT signaling pathway, intes-
tinal immune network for IGA production), autoimmune
response (e.g., type 1 diabetes, allograft rejection, graft
versus host disease), and obesity-related comorbidities (e.g.
type 2 diabetes, vascular smooth muscle contraction, can-
cer, and asthma).

Replication of previously reported CpG sites for obesity in
middle-aged and elderly adults

We attempted to replicate the previously reported CpG
sites for obesity. At the time this study was conducted, 4
large EWASs (with replication cohorts) for obesity were
available: the ARIC study by Demerath E et al. [2]
(reported 37 CpG sites), the Cardiogenics Consortium
study by Dick K et al. [4] (reported 3 CpG sites), the
GOLDN study by Aslibekyan S et al. [5] (reported 8
CpG sites), and the study reported by Wahl S et al. [3]
(reported 254 CpG sites). These 4 studies resulted in
277 unique CpG sites associated with obesity. Out of
these 277 CpG sites, 198 (71.5%) could be replicated
with consistent direction of effect and a FDR <0.05 in
our study (Additional file 2: Table S7), indicating that

majority of the obesity-related CpG sites identified in
middle-aged and elderly adults already show changes in
youth and young adulthood.

Discussion
In this epigenome-wide association study of African
American youth and young adults, we identified 29
novel CpG sites associated with obesity and the repli-
cated majority of the CpG sites previously identified in
middle-aged and older adults. We further demonstrated
that majority of the obesity-related CpG sites identified
from leukocytes are not driven by cell compositions or
obesity-related cardio-metabolic risk factors. We also
provided direct links between DNA methylation, gene
expression, and obesity status for 7 CpG sites in 5 genes.
Unlike genetic markers that are the same in all cells
and unlikely to change over a lifetime, epigenetic regula-
tion is tissue specific and plastic (i.e., findings may re-
flect the consequence rather than the cause of the
disease) [18]. In addition to availability, the choice of
leukocytes in this study as well as in the previous
epigenome-wide association studies of obesity in middle-
aged and elder people is based on the fact that obesity is
characterized by a state of chronic, low-grade inflamma-
tion [19]. With the established role of epigenetic regula-
tion in shaping the immune and inflammatory response
[20], identification of the epigenetic markers specifically
involved in obesity-induced inflammation has the poten-
tial to provide novel insight into the pathogenesis of
obesity-related disorders. The choice of leukocytes also
assumes that the observed epigenetic changes will reflect
consequences rather than causes of obesity. Although
the cross-sectional design of the current and previous
studies [2—-5] does not provide information on the direc-
tion of causality, the Mendelian randomization model
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used in one [3] of the previous adult studies strongly
suggested that obesity-related DNA methylation changes
identified in peripheral leukocytes are predominately the
consequence rather than the cause of obesity. One con-
cern in analyzing epigenetic changes in peripheral
leukocytes in obese individuals is that the effect of obes-
ity itself on the immune system can be hidden or biased
by the coexistence of obesity-related diseases and the
use of medication, which is very common in middle-
aged and elderly individuals. To avoid this problem, in
this study, we focused on youth and young adults. This
is a population having shown obesity-related metabolic
risk that has not developed into clinical disease yet. We
did observe that many obesity-related CpG sites were as-
sociated with cardiometabolic traits. However, after the
adjustment of obesity, this number decreased dramatic-
ally, indicating that a large majority of the associations

of these CpG sites with cardiometabolic phenotypes is
driven by obesity.

In comparing with the previous studies in middle-aged
adults and elderly [2-5], we identified 29 novel CpG
sites (annotated to 25 genes). We were also able to
present triangular  relationships between = DNA
methylation, gene expression, and obesity at 5 genes in-
cluding SOCS3, CISH, PIM3, KLF4, and HRASLS2. With
the exception of HARSLS?2, obesity was associated with
decreased DNA methylation level and increased gene
expressions. Interestingly, both SOCS3 and CISH are
involved in the JAK-STAT signaling pathway and are the
key negative regulators of the activation of this pathway
[21]. The JAK-STAT signaling pathway is activated
during inflammation and used by a variety of cytokines.
The JAK-STAT signaling pathway activates its own
suppressors: suppressors of cytokine signaling (SOCS)
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molecules including SOCS1-7 and CISH. This negative
feedback control is essential for the effective dissipation
of cytokine signaling to prevent excessive inflammation
and detrimental effect on other signaling pathways.
However, the increased levels of SOCS proteins can in-
duce insulin resistance in peripheral organs [22] and lep-
tin resistance in the central nervous system [23]. There
are very limited studies on PIM3, KLF4, and HARSLS2.
However, PIM1, a protein from the same family and
structurally and functionally similar to PIM3, is also pri-
marily involved in the JAK/STAT signaling pathway.
PIM-1 transcription is initiated by STAT factors and can
also bind to regulators of the JAK/STAT pathway, result-
ing in a negative feedback loop [24]. Taken together, the
activation of the JAK/STAT signaling pathway in obesity
transcriptionally upregulates its own suppressors
through DNA methylation mechanisms. On the one
hand, the increased production of negative regulators
can prevent excessive inflammation, while on the other
hand, these increased negative feedback products may
increase the risk of obesity-related disorders, a compen-
satory mechanism that has been observed in the devel-
opment of many diseases.

Our study in healthy youth and young adults also repli-
cated 71.5% of obesity-related CpG sites previously re-
ported in middle-aged and elderly adults, indicating that
the majority of the obesity-related CpG sites already show
changes in adolescence. It will be interesting to find out
the age of onset of these changes. In a recent study explor-
ing this question on the first EWAS-identified gene
(HIF3A), Pan et al. [25] observed that DNA methylation
levels at the three previously described HIF3A CpG sites
were already associated with greater weight and adiposity
at birth. On the other hand, the strong consistency of
obesity-related DNA methylation signals across ethnic
groups (African Americans in this study comparing with
Caucasians, Asians, and African Americans in previous
studies) and age emphasizes the importance of conducting
large-scale epigenome-wide meta-analysis similar to what
has been done in the GWAS. This action will discover
more obesity-related epigenome-wide changes and enable
the recognition of the overall picture of the role of DNA
methylation in obesity and its related disorders.

One possible concern in these EWAS studies on obes-
ity using peripheral blood is the heterogeneity of leuko-
cytes since different cell populations have distinct
epigenetic signatures [26]. This concern was dramatically
reduced with the development of algorithms estimating
the cell subset compositions based on genome-wide
DNA methylation data [12]. Our study further confirms
this through successfully replication of 68.5% of the
obesity-related CpG sites from leukocytes in one purified
cell type: neutrophils. The reason that neutrophils were
selected is that previous studies including ours [9, 27]
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have observed that obesity is consistently associated with
neutrophilia, manifesting not only by elevated neutrophil
count but also increased percentage. However, we be-
lieve that replication of the findings from leukocytes in a
variety of other single cell types remains important to
guide further functional in vitro studies.

Several limitations to the present study need to be rec-
ognized. First, although the study by Wahl S et al. [3] in
adults have shown that obesity-related DNA methylation
changes identified in peripheral leukocytes are predom-
inately the consequence rather than the cause of obesity,
we cannot test the direction of the causality of these
newly identified obesity-related CpG sites in youth and
young adults due to the cross-sectional design and the
lack of genotype data. Second, although 71% of the
signals from the discovery cohort were validated in the
replication cohort, the lack of replication of other signals
might be due to the age difference between the discovery
cohort and the replication cohort. Third, due to the lack
of genotype data, we cannot adjust the potential bias
resulted from ancestry compositions.

Conclusion

In summary, this EWAS study in healthy youth and
young adult confirmed the majority of previously identi-
fied obesity-related DNA methylation loci in middle-
aged and elderly adults and identified 29 novel CpG sites
associated with obesity. The findings from the current
study have the potential to enable development of new
strategies for early prevention and treatment.

Additional files

Additional file 1: Detailed description of the participants for each study.
(DOCX 22 kb)

Additional file 2: Table S1. CpG sites with p < 1E=7 in this youth and
young adult study. Table S2. Performance of the 55 CpG sites in neutrophils.
Table S3. Association of the 55 CpG sites with cardiometabolic traits without
adjustment of obesity/BMI. Table S4. The significant associations between
CpG sites and metabolic traits after the adjustment of obesity/BMI. Table S5.
DNA methylation, gene expression, and obesity. Table S6. Significantly
enriched pathways (FDR < 0.05). Table S7. Replication of previous reported
CpG sites identified in middle-aged and elderly population. (XLSX 64 kb)

Additional file 3: Figure S1. Positions and correlations of the multiple
CpG sites in SBNO2, SOCS3, VMP1, and CISH genes. (PDF 425 kb)

Abbreviations

ARIC: Atherosclerosis Risk in Communities; BMI: Body mass index; BP: Blood
pressure; CISH: Cytoking-Inducible Src-Homology 2-containing protein;
CPACOR: Incorporating Control Probe Adjustment and reduction of global
CORrelation; CpG: 5'—C—phosphate—G—3'; DNA: Deoxyribonucleic acid;
EpiGO: Epigenetic Basis of Obesity-Induced Cardiovascular Disease and Type
2 Diabetes; EWAS: Epigenome-wide association study; FDR: False discovery
rate; GOLDN: Genetics of Lipid Lowering Drugs and Diet Network;

GSEA: Gene set enrichment analysis; GWAS: Genome-wide association study;
HDLC: Fasting HDL-cholesterol; HIF3A: Hypoxia-inducible factor 3 alpha
subunit; HRASLS2: HRAS-like suppressor 2; IL-10: Interleukin-10; JAK-

STAT: Janus kinase/signal transducers and activators of transcription;

KEGG: Kyoto Encyclopedia of Genes and Genomes; KLF4: Kruppel-like factor


dx.doi.org/10.1186/s13148-017-0435-2
dx.doi.org/10.1186/s13148-017-0435-2
dx.doi.org/10.1186/s13148-017-0435-2

Wang et al. Clinical Epigenetics (2018) 10:3

4; LACHY: Lifestyle, Adiposity, and Cardiovascular Health in Youth;

LDLC: Fasting LDL-cholesterol; PCA: Principal component analysis; PIM1: Pim-
1 proto-oncogene, serine/threonine kinase; PIM3: Pim-3 proto-oncogene,
serine/threonine kinase; QC: Quality control; RIN: RNA integrity;

SBNO2: Strawberry notch homolog 2; SBP: Systolic blood pressure;

SNP: Single-nucleotide polymorphism; SOCS: Suppressors of cytokine
signaling; SOCS3: Suppressor of cytokine signaling 3; TC: Fasting total
cholesterol; TG: Fasting triglycerides; VMP1: Vacuole membrane protein

Acknowledgements
Not applicable.

Funding
This study was supported by grant HL105689 and HL125577 from the
National Institute of Health (NIH) and GRNT20480211 from AHA.

Availability of data and materials

The genome-wide data that support the findings of this study are available
from the authors upon reasonable request and with permission of the
Institutional Review Board of Augusta University.

Authors’ contributions

XW and SS designed the study and drafted the manuscript; YP, GH, YH, and
WG conducted the data analysis; HZ, XW, VB, HS, and YD participated in the
data collection; HS made critical changes to the manuscript; JP, KN, MC, and
ED conducted the in silico replication of the study. All authors read and
approved the final manuscript.

Ethics approval and consent to participate

These studies were approved by the Institutional Review Board of Augusta
University and performed following the guidelines of the Declaration of
Helsinki. Written informed consent was provided by all participants or by
their parents if they were less than 18 years.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Pediatrics, Georgia Prevention Institute, Medical College of
Georgia, Augusta University, HS-1640, Augusta, GA 30912, USA. *Cancer
Center, Augusta University, Augusta, GA, USA. 3Department of Epidemiology,
University of Groningen, University Medical Center Groningen, Groningen,
the Netherlands. “Division of Epidemiology and Community Health, School
of Public Health, University of Minnesota, Minneapolis, MN 55454, USA.
*Department of Epidemiology, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27514, USA. ®Human Genetics Center, School of Public
Health, University of Texas Health Sciences Center at Houston, Houston, TX
77030, USA.

Received: 15 March 2017 Accepted: 15 December 2017
Published online: 05 January 2018

References

1. van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent
developments on the role of epigenetics in obesity and metabolic disease.
Clin Epigenetics. 2015;7:66.

2. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH,
Hedman AK, Sandling JK, Li LA, Irvin MR, et al. Epigenome-wide association
study (EWAS) of BMI, BMI change and waist circumference in African
American adults identifies multiple replicated loci. Hum Mol Genet. 2015;
24(15):4464-79.

3. Wahl'S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS,
Zhang W, Yang Y, et al. Epigenome-wide association study of body mass
index, and the adverse outcomes of adiposity. Nature. 2017;541(7635).81-6.

20.

21.

22.

23.

24.

25.

26.

27.

Page 9 of 9

Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, Meduri E,
Morange PE, Gagnon F, Grallert H, et al. DNA methylation and body-mass
index: a genome-wide analysis. Lancet. 2014;383(9933):1990-8.

Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, Sha J,
Pankow JS, Liu C, Irvin MR, et al. Epigenome-wide study identifies novel
methylation loci associated with body mass index and waist circumference.
Obesity (Silver Spring). 2015;23(7):1493-501.

Xu X, Su'S, Barnes VA, De Miguel C, Pollock J, Ownby D, Shi H, Zhu H, Snieder
H, Wang X. A genome-wide methylation study on obesity: differential
variability and differential methylation. Epigenetics. 2013;8(5):522-33.

Gutin B, Johnson MH, Humphries MC, Hatfield-Laube JL, Kapuku GK, Allison JD,
Gower BA, Daniels SR, Barbeau P. Relationship of visceral adiposity to
cardiovascular disease risk factors in black and white teens. Obesity (Silver Spring).
2007;15(4):1029-35.

Wang X, Poole JC, Treiber FA, Harshfield GA, Hanevold CD, Snieder H. Ethnic and
gender differences in ambulatory blood pressure trajectories: results from a 15-year
longitudinal study in youth and young adults. Circulation. 2006;114(25):2780-7.

Xu X, Su S, Wang X, Barnes V, De Miguel C, Ownby D, Pollock J, Snieder H,
Chen W. Obesity is associated with more activated neutrophils in African
American male youth. Int J Obes. 2015;39(1):26-32.

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry
RA. Minfi: a flexible and comprehensive bioconductor package for the analysis of
Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363-9.

Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan ST, Afzal U, Scott J,
Jarvelin MR, Elliott P, et al. A coherent approach for analysis of the lllumina
HumanMethylation450 BeadChip improves data quality and performance in
epigenome-wide association studies. Genome Biol. 2015;16:37.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate
measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing lllumina microarray.
Bioinformatics. 2008;24(13):1547-8.

Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for
assessing differential expression in microarray experiments. Bioinformatics.
2005;21(9):2067-75.

Willer CJ, Li'Y, Abecasis GR. METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics. 2010;26(17):2190-1.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.

El Kasmi KC, Smith AM, Williams L, Neale G, Panopoulos AD, Watowich SS,
Hacker H, Foxwell BM, Murray PJ. Cutting edge: a transcriptional repressor
and corepressor induced by the STAT3-regulated anti-inflammatory
signaling pathway. J Immunol. 2007;179(11):7215-9.

Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and
prospects for epigenetic therapy. Nature. 2004;429(6990):457-63.

Karalis KP, Giannogonas P, Kodela E, Koutmani Y, Zoumakis M, Teli T.
Mechanisms of obesity and related pathology: linking immune responses to
metabolic stress. FEBS J. 2009;276(20):5747-54.

Wilson AG. Epigenetic regulation of gene expression in the inflammatory response
and relevance to common diseases. J Periodontol. 2008;79(8 Suppl):1514-9.
Wunderlich CM, Hovelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-
STAT3-SOCS3 signaling in obesity. JAKSTAT. 2013;2(2):23878.

Galic S, Sachithanandan N, Kay TW, Steinberg GR. Suppressor of cytokine
signalling (SOCS) proteins as guardians of inflammatory responses critical
for regulating insulin sensitivity. Biochem J. 2014;461(2):177-88.

Lubis AR, Widia F, Soegondo S, Setiawati A. The role of SOCS-3 protein in
leptin resistance and obesity. Acta Med Indones. 2008;40(2):89-95.
Bachmann M, Moroy T. The serine/threonine kinase Pim-1. Int J Biochem
Cell Biol. 2005;37(4):726-30.

Pan H, Lin X, Wu Y, Chen L, Teh AL, Soh SE, Lee YS, Tint MT, Maclsaac JL,
Morin AM, et al. HIF3A association with adiposity: the story begins before
birth. Epigenomics. 2015;7(6):937-50.

Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D,
Soderhall C, Scheynius A, Kere J. Differential DNA methylation in purified
human blood cells: implications for cell lineage and studies on disease
susceptibility. PLoS One. 2012;7(7):e41361.

Pecht T, Gutman-Tirosh A, Bashan N, Rudich A. Peripheral blood leucocyte
subclasses as potential biomarkers of adipose tissue inflammation and
obesity subphenotypes in humans. Obes Rev. 2014;15(4):322-37.



	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Subjects
	DNA extraction and genome-wide DNA methylation
	RNA extraction and genome-wide gene expression assays
	Statistical analysis

	Results
	Discovery meta-analysis in the youth and young adult
	In silico replication with ARIC study
	Replication of obesity-related CpG sites identified from mixed cells in purified neutrophils
	Association with cardio-metabolic phenotypes
	Gene expression analyses
	Pathway analyses
	Replication of previously reported CpG sites for obesity in middle-aged and elderly adults

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

