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Analysis of DNA methylation landscape
reveals the roles of DNA methylation in the
regulation of drug metabolizing enzymes
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Abstract

Background: Drug metabolizing enzymes (DMEs) exhibit dramatic inter- and intra-individual variability in expression
and activity. However, the mechanisms determining this variability have not been fully elucidated. The aim of
this study was to evaluate the biological significance of DNA methylation in the regulation of DME genes by
genome-wide integrative analysis.

Results: DNA methylation and mRNA expression profiles of human tissues and hepatoma cells were examined by
microarrays. The data were combined with GEO datasets of liver tissues, and integrative analysis was performed on
selected DME genes. Detailed DNA methylation statuses at individual CpG sites were evaluated by DNA methylation
mapping. From analysis of 20 liver tissues, highly variable DNA methylation was observed in 37 DME genes, 7 of which
showed significant inverse correlations between DNA methylation and mRNA expression. In hepatoma cells, treatment
with a demethylating agent resulted in upregulation of 5 DME genes, which could be explained by DNA methylation
status. Interestingly, some DMEs were suggested to act as tumor-suppressor or housekeeper based on their unique
DNA methylation features. Moreover, tissue-specific and age-dependent expression of UDP-glucuronosyltransferase 1A
splicing variants was associated with DNA methylation status of individual first exons.

Conclusions: Some DME genes were regulated by DNA methylation, potentially resulting in inter- and intra-individual
differences in drug metabolism. Analysis of DNA methylation landscape facilitated elucidation of the role of

DNA methylation in the regulation of DME genes, such as mediator of inter-individual variability, guide for correct
alternative splicing, and potential tumor-suppressor or housekeeper.
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Background

Inter-individual differences in responses to drug therapy
vary widely. Such differences are due in part to variable
pharmacokinetics, which can be explained by diver-
sity in genes affecting drug absorption, distribution,
metabolism, and excretion (ADME) [1]. For example,
genetic polymorphisms in cytochrome P450 (CYP)
genes, such as CYP2C9, CYP2CI19, and CYP2De,
affect drug metabolizing activity and lead to different
drug responses [2—4]. Inter-individual differences are
also observed in CYP3A4 expression and activity [5, 6] but
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are rarely associated with any detectable polymorphisms
in the CYP3A4. Additionally, UDP-glucuronosyltransferase
1A1 (UGTI1AI) mutant genotypes *28 and *6 are
related to poor glucuronidation activity and have
been shown to act as useful indictors of adverse
reactions to cancer chemotherapy with irinotecan
(CPT-11) [7, 8]. However, some individuals who do
not have these mutant genotypes also suffer from
adverse reactions to irinotecan [9].

Intra-individual differences are also involved in the
regulation of ADME-related genes. For example, the
expression and metabolizing activity of UGT1A iso-
forms vary among tissues and during normal development
[10, 11]. The UGTIA locus encodes nine functional iso-
forms through an exon sharing mechanism in which the
transcripts of individual first exon cassettes are spliced to
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exons 2-5, leading to the expression of individual UGT1A
isoforms [12]. Although the tissue-specific and age-
dependent expressions of the UGT1A isoforms are
important determinants of drug efficacy and adverse
reactions, the regulatory mechanisms involved in UGT1A
expression cannot be explained by genetic polymorphisms.
Thus, the mechanisms underlying inter- and intra-
individual differences in responses to drug therapy have
not been fully elucidated.

In order to examine these mechanisms, we investigated
the involvement of epigenetics, the mechanism of herit-
able changes in gene regulation without DNA sequence
alteration. We previously found that epigenetic mecha-
nisms, such as DNA methylation, are involved in the regu-
lation of drug metabolizing enzymes (DMEs) in colon
cancer cells [13, 14]. The CYPIB1 and CYP3A4 genes
were shown to be transcriptionally upregulated by treat-
ment with a demethylating agent, and such upregulation
could be explained by hypermethylation at CpG sites
located in the 5’-promoters of the CYPIBI and pregnane
X receptor (PXR) genes. To date, more than 50 ADME-
related genes have been reported as targets for epigenetic
regulation [15, 16]. Although these ADME-related genes
were found to be aberrantly regulated by epigenetic mech-
anisms in tumor cells, most ADME-related genes have
been discovered unexpectedly by multiple independent
studies during the search for tumor suppressor genes.
Therefore, we still have a limited understanding of the
biological significance of epigenetic mechanisms in the
regulation of ADME-related genes.

In the present study, we examined global DNA methyla-
tion and mRNA expression profiles of human tissues and
hepatoma cell lines using microarray platforms. These two
omic datasets were combined with similar corresponding
datasets derived from the Gene Expression Omnibus
(GEO) database at the National Center for Biotechnol-
ogy Information (NCBI). In order to evaluate the
significance of DNA methylation in the regulation of
DME genes, we examined which DME genes were regu-
lated by DNA methylation in normal liver tissues and
hepatoma cells, whether the tissue-specific and age-
dependent expression of UGT1A isoforms could be
regulated by DNA methylation, and whether DNA
methylation profiles could be used to elucidate the spe-
cific roles of DME genes. To this end, we performed
DNA methylation mapping to determine the methyla-
tion levels and variations at individual CpG sites in re-
lation to the structure of individual DME genes. Recent
studies demonstrated that global and detailed analysis
of dynamic DNA methylation profiles facilitated the
finding of the informative fraction of CpG sites [17, 18].
Therefore, we would be able to identify the role of
DNA methylation of DME genes by analysis of DNA
methylation landscapes.
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Results

DNA methylation profiles of DME genes in human tissues
We examined DNA methylation profiles of two adult
liver tissues (NLA and NL2), fetal liver tissue (NLF),
adult small intestinal tissue (NSI), and three hepatoma cell
lines (HepG2, HuH7, and JHH1) by HumanMethyla-
tion450 Bead Chip. These data were combined with GEO-
registered datasets of 18 healthy adult liver tissues. The
levels of DNA methylation for more than 480,000
CpG sites were determined as the 8 values (0<p<1).
Cluster analysis demonstrated that methylation levels
of DME genes, including 55 CYP genes and 62 phase
II DME genes, differed markedly among distinct tis-
sue groups. The representative profiles of six CYPs
(CYP1A2, CYP1B1, CYP2CY9, CYP2C19, CYP2D6, and
CYP3A4), and two controls (ACTB and BMP4) were
shown in Fig. 1. Although the 20 adult liver tissues
were derived from two different race populations (2
Chinese and 18 German), they exhibited similar DNA
methylation profiles. However, some DME genes such as
CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4
showed relatively variable methylation statuses, compared
to CYPIBI and two control genes. To examine the land-
scape of DNA methylation in more detail, we performed
the DNA methylation mapping of individual DME genes
(Fig. 2 and Additional file 1: Figure S1). For each CpG site,
the range of variation was defined as a S value, which
was calculated from the difference between the highest
and lowest S values among the 20 livers. Next, for all CpG
sites located in the 5’ regulatory region (defined as
TSS1500, TSS200, or 5'UTR in the array platform), the
maximum Sy value was used for estimation of the degree
of inter-individual differences in DNA methylation. The
distribution of maximum fy values (degrees of variation)
of the genes is shown as a histogram in Fig. 3. We ex-
pected that the control genes would show the least
variation because the expression of these genes should
be tightly regulated by DNA methylation on their pro-
moter CpG islands, as reported by Edgar et al. [19].
Therefore, these genes were used as negative controls
of inter-individual variation. We finally identified 37
(32 %) DME genes with significantly variable DNA
methylation statuses, for which the maximum Sg values
were more than those of all eight control genes (ACTB,
B2M, GAPDH, TBP, BMP4, IGFBP3, MLH1, and MGMT)
(maximum g > 0.296).

DME genes regulated by DNA methylation in adult livers

Transcript datasets were also registered for 10 of the 18
liver tissues examined for DNA methylation analysis.
We analyzed the mRNA expression profiles of DME
genes in these 10 adult livers and detected the highest
expression of CYP2EI and CYP3A4 genes, consistent
with a previous report [20] (Additional file 2: Figure S2A).
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Fig. 1 Heat maps of the DNA methylation profiles of the representative 6 CYP and 2 control genes by cluster analysis. The top of the map
indicates samples from 20 normal adult livers (L1 to L81, NLA and NL2), 1 fetal liver (NLF), 1 adult small intestine (NSI), and 3 hepatoma cell lines.
The right of the map indicates the target ID and gene name (CYP1A2, CYP1BI1, CYP2C9, CYP2C19, CYP2D6, CYP3A4, ACTB, and BMP4) examined for
individual CpG sites. The representative methylation profiles of individual genes were selected by excluding profiles showing the similar patterns

each other. Therefore, the hierarchical similarity tree was not shown in the map. Higher DNA methylation levels are shown in red, while lower
DNA methylation levels are shown in black
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In addition, the majority of the DME genes exhibited vari-  (CYPIA2, CYP2CI19, CYP2D6, GSTA4, GSTMS, GSTTI,

able levels of mRNA expression compared to the
housekeeping genes (with coefficients of variation
(CVs) of more than 17.1 %; Additional file 2: Figure 2B).
We found inverse correlations between mRNA expression
and DNA methylation levels in seven DME genes

and SULTIAI). In particular, the CYP2C19, GSTA4,
and GSTMS genes had CpG sites that simultaneously
showed inverse correlations and highly variable methyla-
tion statuses (Br>0.296; Fig. 4 and Additional file 3:
Figure S3).
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Fig. 2 Representative results of DNA methylation mapping for 20 liver tissues. In each panel, the horizontal axis indicates the positions of CpG
sites arranged in the 5' to 3" direction. The 5' regulatory region (TSS1500, TSS200, or 5'UTR) is underlined. The vertical axis indicates the 8 value,
with the variations expressed as box-and-whisker plots. The maximum Sg value within the 5’ regulatory region is indicated by a circle for each
gene. a CYPIBI, b CYP3A4, ¢ B-actin (ACTB), and d bone morphogenetic protein 4 (BMP4)
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DME genes regulated by DNA methylation in three
hepatoma cell lines

Cluster analysis revealed that the three hepatoma cell
lines showed clearly distinct methylation profiles com-
pared to normal liver tissues (Fig. 1). Aberrant DME
gene methylation detected in hepatoma cells is sum-
marized in Additional file 4: Figure S4. We defined a
hypermethylated or hypomethylated CpG site as hav-
ing a S value of more than 0.5 for comparisons
between hepatoma cell lines and normal liver (NL2).
This cutoff value was determined by validation ana-
lysis, as described below. Using this criterion, 36
DME genes had hypermethylated CpG sites within
the 5' regulatory region in at least one hepatoma cell
line. To determine whether the hypermethylation ob-
served in hepatoma cells was associated with down-
regulation of the DME gene, DNA methylation was
reversed by treatment with 5-aza-2'-deoxycytidine
(DAC), and mRNA expressions were examined using
a SurePrint G3 Human Gene Expression 8 x 60K v2
microarray. As a result, 44 (38 %) DME genes showed
upregulation by more than twofold following DAC
treatment (Additional file 5: Figure S5). Therefore, these
DME genes were downregulated by specific DNA methy-
lation events. Among these DME genes, the downregula-
tion of CYPIBI, CYP8B1, GSTM?2, GSTPI1, UGT2B15, and
UGT3A2 in hepatoma cells could be explained by DNA

methylation status. The results of array-based DNA methy-
lation and mRNA expression analyses were examined for
validity using combined bisulfite restriction analysis
(COBRA) and quantitative real-time PCR assays, respect-
ively. The criterion for judging hypermethylation was
determined by the results of the tumor suppressor genes
used as positive controls (Additional file 6: Figure S6). By
using a cutoff value of 5>0.5, we identified five DME
genes (CYPIBI1, CYP8BI, GSTM2, GSTPI, and UGT3A2)
that were regulated by DNA methylation in hepatoma
cells. Representative results for the CYPIBI gene are
shown in Fig. 5.

DNA methylation and alternative splicing of UGT1A isoforms
Next, the transcript levels of UGTI1A isoforms were exam-
ined in different tissues using quantitative real-time PCR.
The tissue-specific expression profiles shown in Additional
file 7: Figure S7 were similar to the results of a previous
study [10-12]. The UGT1A genes were then classified into
two major groups according to the tissues in which they
were dominantly expressed: hepatic type (ie, UGTIAIL,
UGTIA3, UGT1A4, UGT1A6, and UGT1A9) and intestinal
type (ie, UGTIAS, UGT1A7, UGTIAS, and UGTIAI0).
Although the level of UGTIA8 expression in adult
livers was somewhat higher than that in small intestines,
UGT1AS, unlike the other hepatic-type UGT1As, showed
relatively high expression in the small intestine as well.
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Fig. 4 Representative results of correlation analysis. A significant inverse correlation between DNA methylation level (3 value) and mRNA
expression level was detected for the CYP2C19 (a) and GSTA4 (c) genes (p < 0.05, Spearman’s rank correlation test). The level of mRNA
expression, shown as the vertical axis, was normalized to the expression level of ACTB (set as 100 %). CpG sites with significant correlations are
indicated by asterisks in methylation mapping for the CYP2C719 (b) and GSTA4 (d) genes. Additionally, CpG sites with Bg values of more
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Therefore, we classified /GTIA8 as an intestinal-type
gene. DNA methylation mapping on the UGTIA locus
revealed that DNA methylation status was largely
variable among different tissues (Additional file 8:
Figure S8). We focused on the first exon of each isoform
and found that the hepatic-type genes UGT1A1, UGT1A4,
UGTI1A6, and UGT1A9 tended to be methylated at higher
levels in the small intestine than in the liver (Fig. 6).
In order to perform statistical analysis, moreover, DNA
methylation status in individual CpG sites were also com-
pared between 18 adult livers and one normal small intes-
tine (NSI) or one normal fetal liver (NLF). We further
focused on the CpG sites most proximal to each transcrip-
tion start site (excluding more distal CpG sites of
TSS1500). In hepatic-type UGT1A genes, as a result, we
found that /5 values of the NSI and NLF were statistically
higher than medians of 18 individual 5 values of normal
adult livers (Additional file 9: Table S1). In contrast, the
methylation levels of the intestinal-type genes UGTI1AI0
and UGT1AS8 were relatively higher in the liver than in the
small intestine. This suggested that DNA methylation

status around the first exon determined the splicing
isoforms of the UGTIA gene and led to tissue-
specific expression. In addition, higher levels of DNA
methylation were observed in fetal livers than in adult
livers. This tendency was found in hepatic-type genes ra-
ther than intestinal-type genes, implying that the low
levels of expression observed in the fetal liver may re-
sult from downregulation by DNA methylation.

Classification of DME genes based on their DNA
methylation landscape

Interestingly, DME genes had unique features of the
DNA methylation landscape (Fig. 1), which could be
classified into at least three groups, as summarized in
Fig. 7. The first group showed highly variable methyla-
tion among normal livers (maximum fg > 0.296) and in-
verse correlations with mRNA expression. DME genes
in this first group may be candidates for explaining
inter-individual variations in drug metabolizing activity;
we classified genes in this group as the highly variable
methylation (HVM) type. Genes in the second group,
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Fig. 5 Validation of mRNA expression and DNA methylation of the CYP1B1 gene in hepatoma cells. a The level of DNA methylation was
mapped on the CYP1BT gene locus in the three hepatoma cell lines. The gene structure and location of the CpG sites are shown in the lower
panel. b The levels of CYPTBT mRNA were detected by quantitative real-time PCR in hepatoma cells treated with TSA and/or DAC. The vertical axis
indicates the mRNA level of treated cells relative to paired control cells without treatment. Each column represents the mean + SD (n=3). ¢ The
CYP1B1 gene methylation status of the three control cell lines and adult liver tissues was examined by COBRA assay. DNA fragments cleaved by
Taql digestion represent methylated DNA (M), while noncleaved fragments represent unmethylated DNA (U)
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similar to the CYP1BI gene, showed stable methylation
statuses among normal livers but were hypermethylated
in tumor cells. These DNA methylation features were
similar to those of tumor suppressor genes (i.e., the TSG
type). The last group retained low levels of methylation
in both normal and tumor livers, suggesting these genes
may act as housekeeping genes. Typical housekeeping
genes, such as ACTB and GAPDH, had similar features
of methylation mapping and expression profiles in our
study. For example, the level of DNA methylation was
highly stable and low in the 5" regulatory region (hypo-
methylated 5'UTR) but considerably high within the
gene body (hypermethylated exons). In addition, the
mRNA expression of the housekeeping genes was stable
among normal livers, with CVs of less than 17.1 %. Al-
though it was difficult to fulfill all these criteria, we
found two DME genes (CYP2RI and CYP46A1) that had
characteristics similar to those of housekeeping genes
(i.e., HKG type).

Discussion

We used GEO datasets previously registered elsewhere
[21] and combine these datasets with our original data.
We demonstrated that genome-wide integrative ana-
lysis using GEO datasets was a powerful tool for identi-
fication of novel roles of DNA methylation. We cannot

rule out the possibility of batch effects, which are the
technical artifacts such as laboratory conditions, experi-
ment time, reagent lots, and/or laboratory personnel
differences [22]. However, the datasets obtained from
the same laboratory were used for the study of methyla-
tion mapping and correlation analysis. Therefore, we
think that such effect was reduced to the lowest level in
our study.

The DNA methylation statuses of DME genes varied
among normal liver tissues. We found seven DME genes
(ie, CYPIA2, CYP2C19, CYP2D6, GSTA4, GSTMS,
GSTT1, and SULT1A1I) that showed significant inverse cor-
relations between DNA methylation and mRNA expression
levels. Some other DME genes also tended to show such
correlations, but statistical significance was not reached.
These results suggested that a small but significant fraction
of DME genes were transcriptionally regulated by DNA
methylation, resulting in different mRNA expression levels
among individuals. Further investigations with larger sam-
ple sizes may allow for identification of additional targets
for DNA methylation. Recent studies demonstrated that
considerable numbers of hepatic genes are also regulated
by 5-hydroxymethylcytosine (5hmC) [23]. Therefore, the
levels of 5hmC should be evaluated in our next studies.

Interestingly, CYP1A2, CYP2C19, CYP2D6, and SULT1AI
tend to show inter-individual variations in activity, and this
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has become a major problem in clinical practice. Our
data supported that these variations may result from
the variable DNA methylation statuses of these DME
genes. For example, DNA methylation status could
explain the discrepancy in the relatively variable ex-
pression of CYP2C19 among Caucasian populations in
which there is a low frequency of mutant genotypes
[4]. Although considerable inter-individual differences
were observed in CYP3A4 expression (CV 22.9 %;
Fig. 2b), we did not detect a significant relationship
between DNA methylation and mRNA expression. As
reported by Kacevska et al. [24], DNA methylation at
more 5 distal regions (position -1547 or -10,762)
may be associated with CYP3A4 regulation. Alterna-
tively, PXR gene methylation, but not CYP3A4 gene
methylation, may contribute to CYP3A4 downregula-
tion in colon cancer cells, as previously described by
our laboratory [14].

We also found five DME genes (CYP1BI, CYP8BI,
GSTM2, GSTPI, and UGT3A2) that were likely to be
downregulated by DNA methylation. Further analyses,
such as chromatin immunoprecipitation, will be required
to establish functional evidence for this relationship.
Interestingly, the methylation statuses of these five DME
genes were highly stable in normal livers, suggesting that
DNA methylation may play different roles in the regula-
tion of DME genes between normal and cancerous
livers. As expected, DNA methylation in the 5'-regula-
tory region of housekeeping and tumor suppressor genes
was stable and restricted to low levels. In contrast, the
methylation levels of these genes were relatively high
within the exons. These results were supported by a pre-
vious study showing that DNA methylation plays critical
roles as markers of exon-intron boundaries and tran-
scriptional silencing [25, 26].

In this study, we demonstrated that DNA methylation
could function as a guide for correct alternative splicing
of the UGTIA gene in a tissue-specific manner. Despite
the limited cases in our study, our findings were sup-
ported by recent genome-wide analyses showing that
many genes are regulated by alternative splicing via
DNA methylation [18, 25, 26]. Oda et al. also reported
that tissue-specific UGTIA10 expression is regulated by
DNA methylation [27]. We found that the relatively low
expression levels of DME genes in the fetal liver could
be associated with the higher methylation levels ob-
served in these genes. Thus, DNA methylation mapping
may provide novel insights into the tissue-specific and
age-dependent splicing switch of DME genes regulated
by DNA methylation.

From these results, we propose that the roles of DME
genes in the liver depend on the DNA methylation land-
scape (Fig. 7). Variable methylation of the DME gene ob-
served in normal livers may be one of the mechanisms
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mediating inter-individual variation in drug metabolizing
activity and drug efficacy if the methylation status is as-
sociated with mRNA expression. Therefore, the DNA
methylation statuses of the seven HVM-type genes may
be indicators for prediction of drug efficacy and safety.
Although there were considerable number of DME
genes that showed highly variable DNA methylation
(maximum fr>0.296) without inverse correlation to
gene expression, such DNA methylation was probably
unrelated to gene expression and other mechanisms
might be involved in the regulation of these DME genes.
The cutoff value as maximum Sy > 0.296 may not be the
best for categorizing HVM type, because maximum Sg
can depend on the number of CpG sites examined for
each gene. However, some DME genes such as CYPIA2
are regulated by DNA methylation at exclusively con-
fined CpG sites [28]. In order to detect any informative
signals without averaging effect, therefore, we evaluated
PBr value with single (maximum) CpG site rather than
with the fraction of CpG sites. We also found five TSG-
type genes that were thought to act as tumor suppressor
genes because they exhibited DNA methylation features
similar to those observed in the BMP4 and IGFBP3
genes. Therefore, these TSG-type genes may have novel
functions related to gatekeeping or genome stability in
tumor cells. On the other hand, some HKG-type genes
were suggested to function as housekeeping genes. Based
on this extremely stable DNA methylation status, we
predicted that the expression of these HKG-type genes
should be tightly regulated, which may explain why
DME genes with stable DNA methylation had conserved
CpG islands. Interestingly, DMEs with a small range of
variation in DNA methylation were known to metabolize
endogenous substrates rather than xenobiotics. In con-
trast, DMEs with highly variable DNA methylation
(including CYPIA2, CYP2CI19, and CYP2D6) catalyze
the metabolism of many xenobiotics, including drugs
used in the clinical setting. These types of DMEs may
flexibly modify their DNA methylation and expression
profiles to metabolize and excrete various xenobiotics.
We hypothesize that DNA methylation may play differ-
ent roles in the regulation of DME genes depending on
context. For example, HKG-type genes are regulated by
“rigid” DNA modifications to strictly retain the epige-
nome. On the other hand, HVM-type genes are regu-
lated by “plastic’” DNA modifications to flexibly rewrite
the epigenome for adjustment to new environments.
Thus, HVM-type genes tend to show higher inter-
individual variations in DNA methylation status.

Conclusions

We described the global DNA methylation landscape of
DME genes in human tissues and demonstrated that a
small but specific fraction of DME genes was regulated
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by DNA methylation. Variations in DNA methylation
may result in inter-individual differences in the efficacies
and toxicities of many drugs. DNA methylation of DME
genes may represent landmarks of tissue-specific and
age-dependent splicing switches and may be useful indi-
cators for predicting the unknown functions, such as
tumor-suppressor or housekeeper.

Methods

Cell culture and treatment

Human hepatoma HepG2, HuH7, and JHH1 cells were ob-
tained from American Type Culture Collection (Manassas,
VA, USA) and cultured in Dulbecco’s minimal essential
medium (Invitrogen, Carlsbad, CA, USA) containing 10 %
fetal bovine serum at 37 °C in a humidified atmosphere
containing 5 % CO,. In order to reverse DNA methylation,
the cells were treated with 0.5 or 5 uM 5-aza-2'-deoxycyti-
dine (DAC; Sigma-Aldrich, St. Louis, MO, USA) for 72 h.
After DAC treatment, the cells were treated with trichosta-
tin A (TSA; Sigma-Aldrich) at 200 nM (HepG2 and HuH7
cells) or 20 nM (JHH1 cells) for 24 h.

DNA and RNA samples

Genomic DNA was extracted from hepatoma cells using
a standard proteinase K/sodium dodecyl sulfate and phe-
nol/chloroform method. Total cellular RNA was isolated
using an RNeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Genomic
DNA and total RNA of human adult liver tissues (NLA
and NL2), fetal liver tissue (NLF), adult small intestinal
tissue (NSI), and adult colonic tissue (NC) were ob-
tained from commercially available products (Capital
Biosciences, Gaithersburg, MD, USA and BioChain
Institute, Newark, CA, USA). Because we had no infor-
mation other than age, gender, and race (Chinese) for
these samples, we did not submit our research proposal
to an ethical committee.

DNA methylation analysis

Genomic DNA from tissues and hepatoma cells was
subjected to sodium bisulfite modification using an
EpiTect Plus DNA Bisulfite Kit (Qiagen) and examined
for DNA methylation using an Infinium HumanMethy-
lation450 Bead Chip (Illumina, San Diego, CA, USA),
which interrogates over 480,000 CpG sites in the gen-
ome [29]. The level of DNA methylation for each CpG
site was reported as the 5 value, which ranged from 0
(fully unmethylated) to 1 (fully methylated). Data have
been deposited in the GEO repository with accession
numbers GSE67477 and GSE67484 (Additional file 10:
Table S2). DNA methylation data of 55 CYP genes and
62 phase II DME genes, including 17 glutathione S-
transferase (GST), 10 N-acetyltransferase (NAT), 13 sul-
fotransferase (SULT), and 22 UGT genes, were selected
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and used for subsequent analyses. For the control, four
housekeeping genes (ACTB, B2M, GAPDH, TBP), two
tumor suppressor genes (BMP4 and IGFBP3), and two
DNA repair genes (MLHI and MGMT) were also exam-
ined. The results were visualized in heat maps using
Cluster 3.0 software (http://bonsai.hgc.jp/~mdehoon/
software/cluster/software. htm#ctv). The DNA methyla-
tion status of candidate DME genes was validated by
COBRA method [30]. Briefly, after polymerase chain re-
action (PCR) using a TaKaRa EpiTaq HS kit (Takara Bio
Inc., Shiga, Japan), the resulting products were digested
with an appropriate restriction enzyme, such as Hpy-
CHA41V, Taql, or BstUI (New England Biolabs, Ipswich,
MA, USA). The digested products were electrophoresed
on 2 % agarose gels followed and visualized by ethidium
bromide staining. Primers used are listed in Additional
file 11: Table S3.

mRNA expression analysis

First-strand cDNA was synthesized from total RNA sam-
ples using a Transcriptor First Strand cDNA Synthesis Kit
(Roche Diagnostics, Mannheim, Germany) according to
the manufacturer’s protocol. The mRNA expression pro-
files were examined using a SurePrint G3 Human Gene
Expression 8 x 60K v2 microarray (Agilent Technologies,
Palo Alto, CA, USA). The signal intensity for each probe
was normalized by the 75th percentile. The data have been
deposited in the GEO repository with the accession num-
ber GSE67318 (Additional file 10: Table S2). The mRNA
expression data for the CYP gene, phase II DME genes,
and control genes were selected and used for subsequent
analyses. The level of each transcript was validated by
quantitative real-time PCR analysis using a FirstStart
Universal SYBR Green Master (ROX) kit (Roche Diagnos-
tics). Transcript levels of individual L/GTIA isoforms and
ACTB were evaluated by TagMan Gene Expression Assays
(Life Technologies, Gaithersburg, MD, USA). All pri-
mer sets used were described in Additional file 11:
Table S3. Each real-time PCR analysis was performed
in triplicate.

GEO datasets used for integrative analysis

DNA methylation datasets of liver tissues derived from
18 healthy German individuals were found in GEO re-
cords (GSE48325) [21]. These data were obtained in an-
other study using the same HumanMethylation450
platform (GPL13534) and could be combined with our
data for two adult liver tissues (NLA and NL2). More-
over, transcript datasets were also found for 10 of the
18 liver tissues in GEO records (GSE48452) and used
for correlation analysis between DNA methylation and
mRNA expression.
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DNA methylation mapping

DNA methylation mapping was carried out for two pur-
poses. First, in order to estimate the variable DNA methy-
lation statuses of the 20 adult liver tissues, the j value of
each CpG site was expressed as a box-and-whisker plot.
Second, we aimed to identify informative CpG sites in
which DNA methylation levels were different between tis-
sues or cell lines. We constructed line graphs connecting
each CpG site arranged in the 5’ to 3" direction according

to the relative location and distance of each CpG site.

Statistical analysis

Correlations between DNA methylation levels of each
CpG site were examined for all CpG sites in the 5 regula-
tory region by Spearman’s rank correlation coefficient in
10 liver tissues. In the DNA methylation mapping of the
UGTIA isoforms, Wilcoxon signed rank test was used to
compare median of 18 individual S values of normal
adult liver and one normal small intestine (NSI) or one
normal fetal liver (NLF). These analyses were performed
using GraphPad Prism 5 software (GraphPad Software,
La Jolla, CA, USA), and differences or correlations with

p values of less than 0.05 were considered significant.

Availability of supporting data
(1) GSE67477 (DNA methylation)
(2) GSE67484 (DNA methylation)
(3) GSE67318 (mRNA expression)

This series is linked to GSE67485.

Additional files

Additional file 1: Figure S1. Results of methylation mapping of 20 liver
tissues. In each panel, the horizontal axis indicates the positions of CpG
sites arranged in the 5’ to 3’ direction. The 5’ regulatory region (TSS1500,
TSS200, or 5'UTR) is underlined. The vertical axis indicates the 8 values of
individual CpG sites with the variations expressed as box-and-whisker
plots. The maximum S value within the 5’ regulatory region is indicated
by a circle for each gene. (PDF 377 KB)

Additional file 2: Figure S2. Distribution of the mRNA expression
levels and CV values of DME and control genes. (A) The horizontal axis of
the histogram represents the logarithm of the mean value of the
transcript (normalized values by the 75th percentile) for 10 liver
specimens. (B) The horizontal axis of the histogram represents the CV (%)
of the transcript. (PDF 33.6 KB)

Additional file 3: Figure S3. Representative results of correlation
analysis. Significant inverse correlations between DNA methylation levels
and mRNA expression levels were detected for the other five DME genes
(CYP1A2, CYP2D6, GSTMS5, GSTT1, and SULTTAT; p < 0.05, Spearman’s rank
correlation test). The mRNA expression level, shown as the vertical axis,
was normalized to the level of ACTB mRNA (set as 100 %). CpG sites with
significant correlation are indicated by asterisks in the methylation map
for each gene. CpG sites showing B values of more than 0.296 are
indicated by circles. (PDF 54.3 KB)

Additional file 4: Figure S4. DNA methylation profiles of DME genes in
three hepatoma cell lines. DME genes with hypermethylated or
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hypomethylated CpG sites are listed and shown by closed and shaded
boxes, respectively. The number of CpG sites showing hypermethylation
or hypomethylation is also indicated in each box. (PDF 31.9 KB)

Additional file 5: Figure S5. Changes in the mRNA expression levels of
DME genes in three hepatoma cell lines after DAC treatment. DME genes
showing upregulation in at least one hepatoma cell line (greater that
twofold change) following DAC treatment are listed. The fold change is
indicated in each box, and genes with fold changes of more than two
are indicated by closed boxes. The six DME genes exhibiting correlations
between mRNA expression and DNA methylation status are shown in
highlighted boxes. (PDF 37.9 KB)

Additional file 6: Figure S6. DNA methylation mapping of BMP4 and
IGFBP3 tumor suppressor genes in the three hepatoma cell lines. In each
panel, open circles located on the horizontal axis indicate the positions
of CpG sites arranged in the 5’ to 3’ direction according to the relative
distance of each CpG site. Exons are indicated by green boxes, and
translated regions are shown in dark green. The fold change in mRNA
expression is shown on the right side of the panel. Following DAC
treatment, the BMP4 and IGFBP3 genes were exclusively upregulated in
JHH1 (7.0 fold) and HepG2 (8.8 fold) cells, respectively, and
hypermethylation was also detected in methylation mapping for these
two cell lines, with B values of more than 0.5. (PDF 167 KB)

Additional file 7: Figure S7. Expression levels of UGTTA transcripts in
different tissues. The vertical axis indicates the mRNA expression levels of
UGTTA isoforms normalized to the level of UGTTAT expression in adult
liver (NL2; set as 100 %). Each column represents the mean +SD (n =3).
(PDF 35.5 KB)

Additional file 8: Figure S8. DNA methylation mapping on the UGTTA
locus. The vertical axis of the upper panel shows the level of DNA
methylation on the UGTIA locus for different tissues. Open circles on the
horizontal axis indicate the positions of CpG sites corresponding to the
UGTTA gene structure shown in the lower panel. The UGTTA isoforms are
transcribed by an exon sharing mechanism in which the transcripts of
the individual first exon cassette are spliced to exons 2-5. The CpG sites
boxed in red correspond to the first exon of each isoform. (PDF 179 KB)

Additional file 9: Table S1. Levels of DNA methylation around the first
exons of the UGTTA isoforms. The nine UGTIA isoforms were classified
into two groups (hepatic and intestinal types). The levels of DNA methylation
at individual CpG sites of the first exons were expressed as (8 values and
separately compared between 18 adult livers and one normal small intestine
(NSI) or one normal fetal liver (NLF). The 8 values colored in red were
statistically higher than the median of f values of normal adult livers.
The (3 values colored in blue were statistically lower than the median of
B values of normal adult livers. The CpG sites proximal to TSS200 region
(except TSS1500 region) were indicated by bold frame. (XLSX 15.2 KB)

Additional file 10: Table S2. Datasets deposited in the GEO repository.
(DOC 46.5 KB)

Additional file 11: Table S3. Primers used for MRNA expression and

DNA methylation analyses. (DOC 44.5 KB)

Abbreviations

ACTB: actin, beta; B2M: 32 microglobulin; BMP4: bone morphogenetic
protein 4; COBRA: combined bisulfite restriction analysis; CYP: cytochrome
P450; DAC: 5-aza-2'-deoxycytidine; DME: drug metabolizing enzyme;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: Gene Expression
Omnibus; GST: glutathione S-transferase; IGFBP3: insulin-like growth factor
binding protein 3; MGMT: O-6-methylguanine-DNA methyltransferase;
MLH1: MutL homologue 1; NAT: N-acetyltransferase; SULT: sulfotransferase;
TBP: TATA box-binding protein; TSA: trichostatin A; UGT: UDP-
glucuronosyltransferase; UTR: untranslated region.
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