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High cortisol in 5-year-old children causes loss
of DNA methylation in SINE retrotransposons: a
possible role for ZNF263 in stress-related diseases

Daniel Nätt1* , Ingela Johansson2, Tomas Faresjö3, Johnny Ludvigsson2 and Annika Thorsell1
Abstract

Background: Childhood stress leads to increased risk of many adult diseases, such as major depression and
cardiovascular disease. Studies show that adults with experienced childhood stress have specific epigenetic
changes, but to understand the pathways that lead to disease, we also need to study the epigenetic link
prospectively in children.

Results: Here, we studied a homogenous group of 48 5-year-old children. By combining hair cortisol measurements
(a well-documented biomarker for chronic stress), with whole-genome DNA-methylation sequencing, we show that
high cortisol associates with a genome-wide decrease in DNA methylation and targets short interspersed nuclear
elements (SINEs; a type of retrotransposon) and genes important for calcium transport: phenomena commonly
affected in stress-related diseases and in biological aging. More importantly, we identify a zinc-finger transcription
factor, ZNF263, whose binding sites where highly overrepresented in regions experiencing methylation loss. This type
of zinc-finger protein has previously shown to be involved in the defense against retrotransposons.

Conclusions: Our results show that stress in preschool children leads to changes in DNA methylation similar to those
seen in biological aging. We suggest that this may affect future disease susceptibility by alterations in the epigenetic
mechanisms that keep retrotransposons dormant. Future treatments for stress- and age-related diseases may therefore
seek to target zinc-finger proteins that epigenetically control retrotransposon reactivation, such as ZNF263.
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Background
Large-scale cohort data show that individuals experiencing
domestic violence, neglect, and abuse during childhood
have a higher incidence of, for instance, adult neuropsychi-
atric problems [1], diabetes [2], and cardiovascular disease
[3]. The broad negative effects of early life adversity may
even lead to accelerated aging [4] and premature death [5].
Individuals who experience childhood abuse show a

hyperactive hypothalamic-pituitary-adrenal (HPA) axis as
adults, which is particularly exaggerated in neuropsychiatric
disorders, such as major depression [6]. Dysfunction of the
HPA axis has also been described in a number of other psy-
chiatric disorders [7], as well as in cardiovascular disease
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[8], and some metabolic disorders [9]. Measuring cortisol,
the end product of the HPA axis, may therefore be an ap-
propriate biomarker when studying the development of
these diseases. However, the spatiotemporal signature of
cortisol in blood is highly fluctuating, depending on for ex-
ample diurnal rhythm and physical activity, making it a
non-optimal biomarker for chronic stress [10]. We, and
others, have recently shown that measuring cortisol in hair
samples gives an average measure of cortisol release for a
period up to several months [10–12]. These levels also cor-
relate with experienced life stressors and stress-related dis-
orders, making it a more stable biomarker for chronic
stress than blood cortisol.
In animal models, chronic stress changes the expression

of key enzymes involved in epigenetic regulation, like
DNA methyltransferases [13] and histone deacetylases
[14]. There is also plenty of evidence showing how chronic
stress leads to epigenetic changes in, for example, DNA
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methylation and histone acetylation, which give rise to
disease-like phenotypes [15]. In humans, it is therefore
thought that epigenetic mechanisms may play an import-
ant role in the detrimental health effects seen in adults
with a history of childhood adversity. A few genome-wide
studies have indeed reported such associations [16, 17].
Using a candidate gene approach, it has also been shown
that childhood abuse is associated with a change in DNA
methylation at the glucocorticoid receptor gene (NR3C1),
an important regulator of the HPA axis [18]. More specific-
ally, this change in DNA methylation targets a binding site
of the early growth response 1 (EGR1, also known as
NGFI-A, Krox-24, Zif268, Znf225, ZENK), an evolutionary
conserved transcription factor that is activated by acute
stress [19, 20].
While there have been several attempts to investigate

how stress exposure during childhood affects DNA methy-
lation in adult humans, there are currently no published
studies on how the epigenome is impacted by chronic ex-
posure to high cortisol levels in young children. While the
retrospective studies do provide possible epigenetic mecha-
nisms associated with a disease, to understand the develop-
ment of that disease, we must investigate material available
prior to disease development. Thus, evaluating healthy in-
dividuals prospectively, during childhood, is essential for
our understanding of how early adversity may affect a di-
versity of adult diseases.
In the present study, we therefore investigated how hair

cortisol levels correlated with differences in the genome-
wide DNA-methylation profiles of 48 healthy 5-year-old
children. Our main findings show that high cortisol expos-
ure in these children is generally associated with genome-
wide hypomethylation similar to that seen in aging, which
targets ZNF263 binding sites, SINE retrotransposons, and
mainly affects genes involved in neurodevelopment and
calcium transport.
Results and discussion
Subjects and samples
The 48 children studied here came from a relatively
homogenous Southeast Swedish population, previously en-
rolled in the more comprehensive All Babies in Southeast
Sweden (ABIS) project; a cohort initially including 17,000
children born between 1997 and 1999, that were
followed prospectively to identify environmental risk
factors for complex diseases. Sociodemographic data is
presented in Additional file 1: Table S1. Hair samples
were taken from the same area close to the scalp. Cor-
tisol levels were then measured using a competitive
radioimmunoassay on the flash frozen pulverized hair, and
the levels were used to group each child into either a
chronically high (Hi) or low (Lo) stress group (Fig. 1a).
Since evidence points to a system-wide effect of early life
stress, affecting multiple diseases (see “Background” sec-
tion), we extracted whole blood DNA from each child.

Stress in children is generally associated with
hypomethylation
DNA was used to generate DNA-methylation profiles by
whole-genome methylated DNA immunoprecipitation se-
quencing (MeDIP-seq). In order to search for differentially
methylated genomic regions (DMRs) between Hi and Lo,
individual sequence reads were counted over 300 bp win-
dows across the human genome. After filtering for low
count windows, count data were used in a generalized lin-
ear model with gender as a covariate. A summary of the
bioinformatics tools used in this paper is presented in
Additional file 1: Table S2.
The majority of the most significant DMRs were hypo-

methylated in the Hi children (Fig. 1b; Additional file 1:
Table S3). While this relationship was strongest at lower
p values (FDR corrected p < 0.05 = 10 DMRs, of which 8
were hypo- and 2 hypermethylated), it was statistically
detectable down to a significance level of p < 0.0001, in-
volving the top 852 DMRs (of which 507 were hypo-
and 345 hypermethylated). The strongest DMR was located
near an intronic DNA transposon in the PRDM14 gene
(Fig. 1c; for individual methylation profiles, see Additional
file 1: Figure S1). Notably, this gene encodes a protein that
directly affects TET-mediated demethylation of DNA [21];
hence, it may be involved in generating the genome-wide
hypomethylation seen in Hi children. Genome-wide loss of
DNA methylation has been seen in many types of diseases
such as cancer [22], autoimmune diseases [23], and some
neuropsychiatric disorders [24, 25]. There are also accu-
mulating evidence that it may accelerate senescence con-
tributing to age-related disorders such as dementia and
cardiovascular disease [26, 27]. That we observe similar
events in our methylation profiles indicates that high corti-
sol exposure early in life may trigger the same pathways.

Differential methylation not explained by genetic
heterogeneity or stress induced bias in cell types
Two confounding factors may explain the appearance
of DMRs in our study: (1) genetic variations between
Hi and Lo that affect the number of available methyla-
tion sites, and (2) cortisol-induced changes in blood cell
composition. To assess the former, we performed a
genetic association study between cortisol groups on
the p < 0.0001 DMRs (n = 852) using the sequenced
reads acquired for the MeDIP-seq analysis. Immuno-
precipitation allows for this type of secondary analysis
since it preserves the underlying genetic information
which is often lost when using other methylome
methods, such as bisulfite sequencing or the popular
Infinium HumanMethylation450 BeadChips. None of
the detected 2228 single nucleotide polymorphisms
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Fig. 1 High cortisol was generally associated with DNA hypomethylation. a Shows hair cortisol levels in the Hi and Lo groups. Gender was later used
as covariate in the whole-genome methylation analysis. b The DMRs between Hi and Lo in the whole-genome methylation analysis were primarily
hypomethylated in Hi (red line) compared to Lo (blue line). This relationship diminished with lower whole-genome p value of the DMRs, but was still
statistically detectable at p < 0.0001 when compared to the whole-genome distribution. c Genomic view of the most significant DMR between Hi and
Lo, located in the fifth intron of PRDM14 (red peak) within a DNA transposon (green boxes) and close to a plausible CTCF binding site (light blue box).
The top axis represents the Log2 p values of individual 300 bp genomic windows; red indicates hypo- and blue hypermethylation in Hi (n = 24)
compared to Lo (n = 24) children. The bottom axis shows relative methylation, given as mean read counts per window of all children (n = 48) divided
by number of CpGs in a given window. The arrows indicate direction of transcription. Note that the promoter region is completely unmethylated.
****p < 0.0001, ***p < 0.001, *p < 0.05, and #p < 0.1. Error bars shows standard errors
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(SNPs) was significantly overrepresented in either the
Hi or the Lo group (Fig. 2a). Since MeDIP enriches for
methylated CpGs, we detected a 3–4 time overrepre-
sentation of C/T, G/A, T/C, and A/G alleles in the
DMRs. These alleles constitute the main genetic vari-
ation affecting the number of methylation sites in the
DMRs, where gain or loss of these sites within either
Hi or Lo may explain the methylation differences be-
tween the two groups. There was a weak negative cor-
relation between the frequency of the T allele in C/T
SNPs and differential methylation, but it was mainly
driven by hypermethylated DMRs and explained only
1 % of the variation, making it a plausible false positive
(Fig. 2b). Together, this indicates that the overall differ-
ence in methylation between the cortisol groups were
independent of the genetic variation in close proximity
to the regions of interest. It must be emphasized that
this does not mean that genetic variation in epigenetic
regulatory elements elsewhere in the genome (e.g.,
genes that affect global DNA methylation) could have
influenced our results.
Studies have also shown that blood cell types differ

in DNA-methylation marks and may under some
circumstances explain variability in methylation between
individuals [28, 29]. To control for this, we compared the
location of our p < 0.0001 DMRs (n = 852) with two inde-
pendent reports listing the location of DMRs between
blood cells [29, 30]. None of the cell-type-specific regions
overlapped with our DMRs, and only few genes closest to
the cell-type-specific DMRs overlapped with the genes
closest to our DMRs (Fig. 2c). Together, this strongly indi-
cates that the genome-wide hypomethylation seen in Hi
children were not affected by cell-type methylation bias.
To further validate our experiment, three differentially

methylated regions were also picked and successfully veri-
fied by bisulfite pyrosequencing: PRDM14 (rank 1), CAC-
NA1S (rank 7), and BRCA1 (rank 89) (see “Methods”
section for details).

Differential methylation targets SINE retrotransposons
Broad scale age- and cancer-related hypomethylation often
occur in repetitive regions outside CpG islands, which is
believed to reactivate transposable elements leading to
lower genome integrity, and possibly increased vulner-
ability to disease [22, 27]. If cortisol-associated hypo-
methylation arises through similar mechanisms, we



A

B

C

1 2 3 4 5 6 7 8 9 10 11 12 13 141516
17
18
19
20
21
22 X

Chromosomal position

-l
o

g
10

(p
)

2

4

6

8

0

20 22- 0-220-220-2

-0.3

-0.7

0.7

0.3

A/G

r2<0.001
n.s.

C/TG/AT/C

r2 =0.01
n.s.

r2<0.001
n.s.

r2<0.001
n.s.

LossGain

D
if

f.
 m

in
o

r 
al

le
le

 f
re

q
u

en
cy

 
(H

i v
s.

 L
o

)

Diff. methylation (Log2 fold change Hi vs Lo)

Fig. 2 Differentially methylated regions were not affected by genetic variation or variation in blood cell type composition. a Manhattan plot of the
results from the genetic association study covering 900 bp centered on each p < 0.0001 DMR (n= 852). Dots represent individual SNPs and red line the
threshold for genome-wide significance. b Scatter plots illustrating the correlations between the relative minor allele frequencies of DMR-associated SNPs
in Hi compared to Lo, and differential methylation of Hi compared to Lo of the same DMR. If a relationship between allele frequency and methylation
level is present, higher relative frequency of alleles that cause gain of methylation sites in hypermethylated DMRs should result in a positive correlation,
while the opposite relationship should be expected with alleles causing loss of methylation sites. In hypomethylated DMRs the reverse relationship is
expected. c Overlap between the DMRs, or their nearest genes, and regions/genes from two independent studies reporting differential methylation
between blood leukocytes; Reinius et al. 2012 [29] and Zilbauer et al. 2013 [30]
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would expect our DMRs to be located in these types
of regions. In support of this, the p < 0.0001 DMR sub-
set was generally depleted of CpG islands (Fig. 3a),
was primarily found within gene regions (Fig. 3b), and
contained some sort of repetitive element (Fig. 3c),
where short interspersed nuclear elements (SINE; a
class of retrotransposons) were particularly abundant.
To assess the strength of the association between SINEs
and DMRs, we performed a series of tests where the ob-
served spatial relationships between different repeat clas-
ses and DMRs were tested against permutated genomic
coordinates of the same spatial intervals. This did reveal
an association between hypomethylated DMRs and SINEs,
but the relationship was even stronger in hypermethylated
DMRs (Table 1; Additional file 1: Figure S2A). Contrary,
hypomethylated DMRs were strongly associated with
genes, while hypermethylated DMRs were not (Table 1;
Additional file 1: Figure S2B). There were also negative re-
lationships between both hypo- and hypermethylated
DMRs and long interspersed nuclear elements (LINEs,
Table 1; Additional file 1: Figure S2C), as well as low com-
plexity DNA (regions with very high C/G or A/T content;
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Fig. 3 Differentially methylated regions were located in intragenic repetitive regions. a Circle diagrams shows the proportion of the p< 0.0001 DMR
subset (n= 852) that overlapped with CpG islands (CpGi), b genes, and c repetitive elements
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Table 1; Additional file 1: Figure S2D). As a control, we
also analyzed CpG islands (Table 1; Additional file 1:
Figure S2E), which showed neither a positive nor negative
relationship to the DMRs. Together, this indicates that
cortisol-associated differential methylation generally targets
SINEs while avoiding other types of repeats. Furthermore,
hypo- and hypermethylated regions had very different
affinities for gene regions which indicate that they are
discriminated by separate mechanisms.

High cortisol is associated with extreme types of variation
Since repeat regions are commonly fully or close to fully
methylated in the human genome, we would expect the
DMRs to be associated with regions saturated with methy-
lation. Our bisulfite pyrosequencing experiment supported
this by generally showing highly methylated CpGs (on aver-
age 87.4 %). A region in BRCA1 illustrates this by having
97.3 % mean methylation, where loss of methylation were
only verified in Hi girls (Additional file 1: Figure S3). The
loss was also accompanied by increased variation in this
group, since the other groups experienced a “ceiling ef-
fect.” MeDIP-seq experiments are normally limited to
relative methylation analysis, which are not suitable for
saturation analysis due to a lack of an upper limit.
Nevertheless, it is possible to study the ceiling effect in
our MeDIP-seq. data by using the coefficient of vari-
ation (CV) as an indirect indication of saturation. CV is
the unitless ratio of the standard deviation to the mean,
and is commonly used to compare variance between
independent variables that may differ in scale and aver-
ages. In theory, if for instance hypomethylated DMRs is
a result of Hi children losing methylation at normally
saturated sites, this would be reflected as a higher CV,
since the CV in Lo children is affected by the ceiling effect
illustrated in the BRCA1 example. The opposite relation-
ship would be seen in hypermethylated DMRs if they also
targets SINEs that are normally saturated with methyla-
tion. In line with this hypothesis, the hypomethylated
DMRs in Hi were indeed significantly associated with
increased variation compared to the same DMRs in Lo
children, and vice versa for hypermethylated DMRs
(Additional file 1: Figure S4). Interestingly, this was mainly
due to Hi children showing more variation in hypomethy-
lated and less variation in hypermethylated DMRs com-
pared to Lo children, which were more stable. This
suggests that Hi children experience stronger fluctuations
in epigenetic tones, pushing the DMRs to the extremes
either by relaxation or supersaturation.

Differential methylation in regions previously associated
with aging
There have been a number of human genome-wide stud-
ies that report differentially methylated regions associated
with aging [31–34]. Since stress has been hypothesized to
increase the rate of biological senesces [4], it would be
interesting to see if the DMRs between Hi and Lo overlap
with genomic regions associated with methylation changes
in senescens. Unfortunately, most of these studies are not
comparable to our data since microarray technologies
have been used that are biased towards CpG islands and
poor in retrotransposon coverage. To our knowledge, only
one study has used a similar method to the MeDIP-seq
used in our study. Hänzelmann et al. used MethylCap-seq
to study the effect of senescence in fibroblast cell cultures
[34]. Similar to the difference between Hi and Lo children,
derived fibroblast showed more hypomethylated regions
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compared to young cells. Considering the top DMRs in
both studies, only 10 overlaps were found (<2 %) between
our p < 0.0001 DMR subset (n = 852) and the 16,962
unique DMRs identified in the fibroblast study. The lack
of overlap was not a surprise since even between biological
replicates within the fibroblast study, there was a very
limited overlap [34]. Nevertheless, when we instead inves-
tigated the 100 strongest hypo- and hypermethylated re-
gions in the fibroblast study (as identified by highest peak)
in our MeDIP-seq data, Hi children showed significantly
more methylation in fibroblast hypermethylated than in
hypomethylated regions (Fig. 4a). This suggests that, even
though the grand effect of high cortisol levels is not
present in senesces-related regions identified in the fibro-
blast cell cultures, there is a statistical similarity between
the datasets that makes it important to further study the
epigenetic link between stress and aging.

Association with genes involved in calcium transport and
neurodevelopment
To identify more mechanistic clues, we annotated the top
852 DMRs to their closest gene. Fifty-one percent of the
DMR associated genes had previously been linked to dis-
ease (n = 407; Fig. 4b). Even though several disease classes
were represented here, we noted that genes associated
with neuropsychiatric disorders, especially those related to
aging, were in majority (see Additional file 1: Figure S5).
This link was confirmed when performing more in-depth
gene enrichment analysis, where for instance genes with
functional terms like “neurodevelopment” and “axon
guidance” were highly enriched within the subset
(Additional file 1: Figure S6). The gene functional analysis
also revealed a significant enrichment of genes that previ-
ously have been shown to interact with decitabine and
azacitidine (drugs known to cause DNA hypomethyla-
tion), as well as genes involved in calcium transport
(Additional file 1: Table S4). Notably, 25 % of all voltage-
gated calcium channel subunits were represented among
the p < 0.0001 DMR associated genes.
It is well-known that excessive exposure to glucocorti-

coids may affect renal excretion and intestinal absorption of
calcium, which together with changes in osteoblastic func-
tion is regarded as the main pathogenesis of glucocorticoid-
induced osteoporosis [35]. This is often seen in asthma
patients given chronic high doses of glucocorticoids [36] or
patients with endogenous Cushing’s syndrome, caused by
an endogenous overproduction of glucocorticoids [37]. A
dysfunctional calcium transport, specifically related to
voltage-gated calcium channels, has also been linked to
age-related cognitive disorders [38], cardiovascular dis-
eases [39], and diabetes [40]. Thus, hypothetically, changes
in epigenetic regulation of calcium channels may at least
partly explain why early life stress affects vulnerability to
these diseases in adulthood.
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Fig. 4 Functional analysis reveals links between DMRs and aging, neurodevelopment, and calcium transport. a Bar diagram shows differential methylation
between Hi and Lo in the 100 strongest peaks previously reported as either hyper- or hypomethylated in aged fibroblast cells [34]. b Shows the normalized
distribution of disease classes associated with the genes located closest to the p< 0.0001 DMRs (n= 407). Normalization was done to control for publication
bias, by dividing the number of DMR genes associated with a disease class with the total number of genes present within that same class. c Heatmap
showing the same subset of the DMRs as in b. Columns represent normalized counts of each child and are ordered by hair cortisol rank. Rows represents
median centered Z-scores of individual DMRs, where the row order has been determined by hierarchical cluster analysis (euclidean distance; also presented
as a dendogram to the right). d Cluster analysis of DMRs associated with genes involved in axon guidance (GO:0007411). Red indicates a significantly robust
cluster determined by bootstrap resampling. Hi high hair cortisol, Lo low hair cortisol, PSY psychology, NEU neurological, CHE chemical dependence, VIS vision,
AGE aging, CAD cardiovascular, HEM hematological, REN renal, METmetabolic, IMM immune, INF infection, CAN cancer, DEV development, REP reproduction,
PHA pharmacogenomic, OTH other
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Consensus sequence in voltage-gated calcium channel
genes
Since there was an overrepresentation of hypomethylated
DMRs in the Hi children and since large scale demethyla-
tion events, in addition to a dysfunctional calcium trans-
port, has been associated with stress-related diseases (see
above), we were particularly interested in hypomethylated
calcium channels. We noted that three of the DMRs asso-
ciated with voltage-gated calcium channel genes (CAC-
NA1S, CACNA1I, CACNA1G) had similar methylation
patterns across all children, both when considering the
disease-associated DMRs (Fig. 4c) and even clearer when
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only considering genes involved in axon guidance (Fig. 4d).
This suggests that these genes are epigenetically con-
trolled by the same mechanism, involving the same
transcription factors.
To investigate if the regions associated with the co-

methylated calcium channels had a common transcription
factor binding site, we used the MEME suite of bioinfor-
matics tools [41–43] to search for consensus sequences
(sequences with high resemblance) in or in the immediate
vicinity (±300 bp) of the associated DMRs. Figure 5a shows
the strongest consensus sequence present in all three cal-
cium channel DMRs. When further searching for presence
of a similar sequence in the p < 0.0001 DMR subset, it was
clear that this consensus sequence was not only present in
the calcium channel DMRs, but generally overrepresented
in hypomethylated regions of Hi children (Fig. 5b). In fact,
39 % of the hypomethylated DMRs contained a similar
sequence, while only 7 % of the hypermethylated DMRs did
so. This suggests that the sequence is generally targeted by
cortisol-associated hypomethylation in these children.

ZNF263 binding sites is targeted by hypomethylation
To get an indication of what transcription factor may bind
the calcium channel consensus sequence, we compared
A

B

Fig. 5 ZNF263 binding is overrepresented in hypomethylated regions both in
co-methylated calcium channel DMRs. b Bars show the number of hypo- and
significantly similar sequences to the calcium channel consensus sequence pr
p values attained from log-odds scores of the sequence similarities. A chi-squ
q < 0.1 to the expected distribution, as shown by the percent hypomethylatio
significantly similar to three predicted zinc-finger transcription factor bind
hypomethylated DMRs that overlapped with transcription factor binding
and posted within the Encode project. To allow for a progressive increas
compared to the top 300 hypermethylated DMRs, where the dotted line r
the ZNF263 binding occurs close to the hypomethylated DMRs, while the EG
only at a 5 kb distance. ****p < 0.0001 and ***p < 0.001 represents chi-square
suite tools; a =MEME, b = TOMTOM, and c FIMO (http://meme-suite.org/)
this sequence to predicted transcription factor binding se-
quences (motifs). At least three zinc-finger transcription
factors were found to have significantly similar binding se-
quences: ZNF263, EGR1, and SP1 (Fig. 5c).
To further address the question which of the transcrip-

tion factors were more likely to be affected by hypomethyla-
tion in these regions, we compared our DMRs to known
in vitro ZNF263, EGR1, and SP1 binding sites acquired
from previous chromatin immunoprecipitation experiments
in cell cultures posted within the Encode project. We found
that ZNF263 binding was associated with our hypomethy-
lated DMRs on a proximate genomic level, while EGR1
binding occurred more distantly to the identified regions
(Fig. 5d). Since DNA methylation is tightly linked to the
local chromatin configuration which in turn determines the
accessibility of the DNA strand, this may indicate a coordi-
nated regulatory relationship between these transcription
factors, but clearly, further investigation is needed here.
Since most of our DMRs contained transposable

elements, we would expect ZNF263 to bind similar
repeat regions, if there is an association. Therefore, we
analyzed the occurrence of repeat/transposable elements
within the ZNF263, as well as EGR1 and SP1, bind-
ing regions previously identified in Encode chromatin
C

D

silico and in vitro. a Shows the most similar sequences within the
hypermethylated DMRs among the p < 0.0001 subset (n = 852) having
esented in a. Q-value thresholds represent false discovery rate-adjusted
are test was used to compare the observed distributions at q < 0.05 and
n of the original DMRs. c The calcium channel consensus sequence was
ing site sequences (motifs). d Shows the percent representation of
sites as measured by chromatin immunoprecipitation sequencing
e in genomic window size, the top 300 hypomethylated DMRs were
epresents the expected overlaps under random conditions. Note that
R1 binding is more distantly located, becoming significantly associated
tests. The consensus/motif analyses were performed using the MEME

http://meme-suite.org
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immunoprecipitation experiments. ZNF263 binding was
indeed more associated with repetitive regions than EGR1
and SP1 binding (Additional file 1: Figure S7). As in our
DMRs, SINEs were the most abundant repeat family in
ZNF263 binding regions.

General discussion
To our knowledge, this is the first prospective study on the
genome-wide epigenetic impact of stress in preschool chil-
dren. This age is characterized by fast intellectual, social,
and emotional development that usually influences the in-
dividual for life. By using hair cortisol as an indicator of
chronic stress in otherwise healthy children, we show that
high cortisol is associated with a decrease in DNA methyla-
tion at ZNF263 binding sites and targets SINE retrotran-
sposons across the human genome.
Little is known about the function of ZNF263, except that

it is predicted to have a repressive effect on gene transcri-
ption and often binds intragenic regions [44]: a feature that
it shares with the DMRs between the Hi and Lo children.
We also show that its binding sites generally overlap with
repetitive elements, particularly with SINEs, which is also a
feature that it shares with the DMRs. Fast evolving, species
specific zinc-finger proteins that contain KRAB domains
(KZNF) have recently been shown to coevolve with novel
retrotransposons, in what seems to be an “arms race,” indi-
cating an important role for KZNFs as repressors of retr-
otransposon activity [45]. In contrast to the KZNFs just
mentioned, ZNF263 is conserved among mammalian spe-
cies, which indicates that it has lost its role in acute host
defense, but instead may have acquired other important
functions.
SINEs have previously been associated with highly

expressed genes [46]. Most of the DMRs between Hi and
Lo children, particularly those associated with disease genes,
were completely depleted of DNA methylation in their first
exon (Additional file 1: Figure S8): a trait that predicts high
gene activity even better than promoter methylation [47]. If
ZNF263 has maintained its repressive role as a KZNF, hy-
pomethylation at its binding sites would predict a repressive
effect on the regulation of SINE-linked genes that are nor-
mally highly expressed (such as many housekeeping genes).
What role this may play in disease is too early to tell, but it
is critical to further study how DNA methylation affects
KZNF binding and SINE linked gene expression.
The repressive effect of KZNFs is dependent on the re-

cruitment of KRAB-associated protein 1 (KAP1). In turn,
KAP1 recruits the histone methyltransferase SETDB1, het-
erochromatin protein 1(HP1), and the NuRD histone deace-
tylase complex, which epigenetically inactivates the KZNF
binding region [44, 45]. Thus, it is possible that the loss of
DNA methylation at ZNF263 binding sites seen in stressed
children is directly mediated by a loss of ZNF263 itself. If
this is the case, it is tempting to speculate that therapies that
increase the level of ZNF263 may regain DNA methylation
in retrotransposons, leading to increased genome integrity
and a positive effect on patients experiencing age and stress-
related diseases, as well as cancer patients. Such therapies
may potentially even affect the aging process: a brave hy-
pothesis requiring extensive further research.
Our results were inconclusive in what role methylation

at EGR1 binding sites plays in the stress of these 5-year-old
children. This immediate early gene is well-known for its
evolutionary conserved activation by different kinds of
environmental stimuli, including acute stress [19, 20]. We
did not detect any effect of high cortisol on the methylation
of EGR1 binding sites in the NR3C1 gene, which encodes
the glucocorticoid receptor that uses cortisol as a ligand.
According to the Encode chromatin immunoprecipitation
data, ZNF263 binding does not occur anywhere near the
NR3C1 gene. This indicates that what we observe prospect-
ively in the blood of high hair cortisol, but otherwise
healthy children, is an independent stress-related mechan-
ism relative to what others have observed retrospectively in
for example brains of adult males [18] or in blood of
adolescents [48] with a history of childhood abuse.
We have already addressed some of the limitations of this

type of human study (see “Differential methylation not ex-
plained by genetic heterogeneity or stress induced bias in
cell types” section). In addition, two more limitations, inter-
related and specific for this study must be discussed: the
low sample size and the sequencing depth. A sample size of
48 children that are mixed in gender is not ideal, particu-
larly since gender is a significant factor in early life adversity
(for recent relevant reviews, see [49–51]). That we only de-
tect 10 significant differentially methylated regions (after
false discovery rate correction) might be an effect of mixed
gender groups where all sex-dependent DMRs have been
statistically blocked by a cofactor in our model. Analyzing
the data from a gender perspective was not an option be-
cause it would create even smaller study groups that would
decrease statistical power to unacceptable proportions. On
the other hand, that we find our main effects in repeat re-
gions, genomic features that are found in many copies
across the genome and often are highly methylated, is en-
couraging in this type of study. With such genomic fea-
tures, evidence is gathered at many loci, which make the
findings not heavily dependent on specific loci in individual
samples. Thus, a low sample size may reliably detect the ef-
fects in this type of region. Highly methylated regions are
also preferably studied with immunoprecipitation-based
methylome sequencing, such as MeDIP-seq or MethylCap-
seq, since very low methylated regions, such as some CpG
islands, need very high sequencing depths to build up the
amount of sequence reads needed to accurately detect dif-
ferences between study groups. Therefore, it is possible that
changes at low methylated CpG islands have “passed under
our radar.”
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In addition to the epigenetic limitations, it must also
be emphasized that studying hair cortisol in young chil-
dren is relatively novel. Even though clear correlations
between experienced stress and hair cortisol have been
validated extensively in adults, only a few studies have
validated the method in young children [12, 52].
Conclusions
Our data shed light over the initial epigenetic changes
associated with stress during childhood and may help to
understand how early adverse experiences epigeneti-
cally predispose an individual for certain diseases. We
propose that this mainly involves demethylation processes,
similar to those seen in aging, which targets SINE retro-
transposons as well as specific zinc-finger protein binding
sites. We have identified one of these proteins, ZNF263,
and appeal to future investigators to study this transcrip-
tion factor in the development of the many complex dis-
eases associated with stress and aging.
Availability of supporting data
The sequencing data supporting the results of this article
is available in the European Genome-phenome Archive
(EGA; hosted by the EBI) repository under accession
number EGAS00001001099 (www.ebi.ac.uk/ega/studies/
EGAS00001001099).
Methods
Ethical statement and Data access
The Research Ethics Committee at The Faculty of Health
Sciences, Linkoping University, Sweden, has approved the
ABIS study at several occasions initially Dnr 1996/287 to
the latest Dnr 2013/253-32. Written consent to participate
in the study was given by the principal persons with paren-
tal responsibility. Sequence data has been deposited at the
European Genome-phenome Archive (EGA; hosted by
the EBI) under accession number EGAS00001001099
(www.ebi.ac.uk/ega/studies/EGAS00001001099). To protect
the personal integrity of the subjects according to Swedish
law, data access is controlled by a committee.
Subjects and Study design
Sample collection has been described elsewhere [12]. In
short, hair and blood samples were collected from a sub-
sample of children participating in the All Babies in
South-East Sweden (ABIS) project, a cohort initially
including 17,000 children born between 1997 and 1999,
followed prospectively with questionnaires and biological
samples at regular intervals to identify environmental risk
factors for complex diseases. In Additional file 1: Table S1,
sociodemographic data on the subsample of ABIS children
enrolled in the present study are presented.
Hair cortisol measurement
Cortisol concentrations were measured using a competitive
radioimmunoassay in methanol extracts of pulverized hair.
A 3-mm thick and 3-cm long hair sample, weighing 5–
6 mg, was cut close to the scalp from the posterior vertex
area of the head. Samples were finely cut into tubes contain-
ing 0.5 mm stainless steel beads. To produce a fine hair
powder, samples were put into aluminum cylinders, frozen
in liquid nitrogen for 2 min, and minced with a Tissue Lyser
II (Retch) at 23 Hz for 2 min. Cortisol was extracted by
adding 1 ml of methanol, followed by incubation on a hori-
zontal shaker at room temperature for 10 h, where the steel
beads were kept in constant motion. Tubes were centrifuged
for 1 min at 13,000 rpm and 4 °C. Of the supernatant,
800 μl was then moved to another tube and lyophilized in a
SpeedVac Plus SC210A (Savant) for 2 h. Samples were then
dissolved in radioimmunoassay buffer and analyzed as
described elsewhere [53]. The intra-assay coefficient of vari-
ation for the radioimmunoassay was 7 % at 10 nmol/l. The
antiserum cross reacted 137 % with 5α-dihydroxycortisol,
35.9 % with 21-deoxycortisol, 35.9 % with prednisolone, but
less than 1 % with endogenous steroids.

Library preparation and MeDIP
We used a similar method as described in detail by Taiwo
et al. [54]. If not otherwise stated, kit manufacturer recom-
mendations were always followed. DNA from 48 whole
blood samples (29 females and 19 males) was extracted
using the FlexiGene DNA kit with RNase treatment
(Qiagen). From each sample, 1.9 μg DNA was diluted in
85 μl buffer FG3 (Qiagen) and fragmented using a
Bioruptor Standard sonicator (Diagenode). A mean
fragment size of 225–250 bp was verified on a Bioana-
lyzer (Agilent). Fragmented samples were DNA end-
repaired, dA-tailed, and adapter ligated using the NEBNext®
DNA Library Prep Master Mix Set for Illumina® kit (New
England Biolabs) with AMPure XP bead cleanups (Beckman
Coulter). MeDIP was then performed overnight in five dif-
ferent batches (balanced based on group) using the MagMe-
DIP kit (Diagenode). Input control samples without
antibody were saved overnight at 4 °C. Immunoprecipitated
methylated fragments, as well as input samples, were recov-
ered using the IPure kit (Diagenode). Using the NEBNext®
Multiplex Oligos for Illumina® (Index Primers 1–12) kit
(New England Biolabs), sequence barcoding was introduced
by high fidelity amplification. The products were run on a
2 % agarose gel electrophoresis, fragments of 300–350 bp
sizes were cut out of the gel using clean scalpels, and
purified using MiniElute Gel DNA extraction kit
(Qiagen). Fragment purity and sizes were verified on a
Bioanalyzer (Agilent). All samples were diluted to
10 nM in RNase free water, verified by Qubit 2.0 flou-
rometer (Invitrogen). Sequencing was performed on a HiSeq
2500 (Illumina), using 100 bp paired-end reads, resulting in

http://www.ebi.ac.uk/ega/studies/EGAS00001001099
http://www.ebi.ac.uk/ega/studies/EGAS00001001099
http://www.ebi.ac.uk/ega/studies/EGAS00001001099
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a mean depth of 36.87 M reads (max = 94.30 M, min =
20.97 M).

Analysis of DMRs
Information about the main bioinformatics tools used is
summarized in Additional file 1: Table S2. The hair cortisol
measurements were used to rank each subject into a high
(Hi > 8.9 fmol/mg) and a low (Lo < 8.9 fmol/mg) group
(total nHigh = 24, nLow = 24, girls nHigh = 16, nLow = 13, boys
nHigh = 8, nLow = 11). FastQ quality thresholds were set to
the Illumina 1.8+ standard. Demultiplexing and conversion
were done using CASAVA v1.8.2 (Illumina). The Burrows-
Wheeler Alignment tool and Picard [55] were used to map
the reads to the hg19 human reference genome and to re-
move PCR duplicates using default settings. Analysis was
done using different packages in the R/Bioconductor soft-
ware environment (http://www.bioconductor.org/). MeDIP
quality was assessed within the MEDIPS package [56]. All
48 samples were saturated and showed MeDIP typical
CpG coverage. CpG Enrichment scores (relH) for MeDIP
samples were >2.0 (mean = 2.53, max = 3.21, min = 2.05),
while input control samples (n = 4) were closer to 1.0
(mean = 1.34, max = 1.46, min = 1.25). Whole-genome
methylation analysis was done by tiling 300 bp windows
across the human genome using the GenomicRanges pack-
age [57]. A filter was applied to maintain ranges that had
more than five counts in at least half of the samples, and
each count table was then normalized using the full quan-
tile normalization procedure in EDASeq [58]. Differential
methylation analysis between Hi versus Lo was done on
filtered normalized count data within edgeR [59], where a
generalized linear model was applied to block out any
remaining effect of gender and immunoprecipitation effi-
ciency (IP-batch), an effect commonly seen in immunopre-
cipitation experiments [60]. p values were generated using
the tagwise dispersions within edgeR and were false dis-
covery rate (FDR)-corrected using the Benjamini and
Hochberg (BH) method. Each DMR was annotated to the
closest gene in relation to transcription start sites.

Post DMR data analysis
CV analysis was done by first generating the CVs of the nor-
malized read counts of individual DMRs within each group
(Hi/Lo) and then comparing hyper- and hypomethylated
CVs with a Mann-Whitney U test. For gene functional ana-
lysis of the DMRs, we used WEB-based GEne SeT AnaLysis
Toolkit (WebGestalt) [61]. For more specific analysis,
genomic feature data (introns, exons, CpG islands) was
downloaded from UCSC table browser, gene/disease class
annotations were downloaded from Disease Association
Database [62], while repetitive regions were collected
from RepeatMasker (http://www.repeatmasker.org/). Cluster
analysis with dendograms and heatmaps was done using
hierarchal clustering with euclidean distances generated
by the gplots [63] and pvclust [64] R packages, where
individual cluster robustness was determined by approxi-
mately unbiased p values calculated by multiscale boot-
strapping (10,000 permutations) within pvclust. We
used the GenometriCorr R package [65] to evaluate
whether the position of our DMR intervals where statisti-
cally associated with different repeat classes in genomic
space. Provided with the genomic intervals of individual
DMRs and repeats, we calculated the overlap and relative
genomic distances (midpoint to midpoint) between the
DMRs and the repeats. By permuting the intervals across
the human genome 10,000 times, a null distribution was
created and compared to the observed distribution
through a Kolmogorov-Smirnov test for relative dis-
tance relationships, and Jaccard’s index for overlap rela-
tionships. Motif analysis on clustered calcium channels
(CACNA1S/G/I) was done using MEME [41] where log
likelihood ratios was computed given the motif model
versus its probability given the 0-order Markov back-
ground model of the provided nucleotide frequency of
each DMR (±300 bp). The consensus motif with high-
est score was then exported to TOMTOM [42] for
similarity analysis of known transcription factor bind-
ing motifs within the Jaspar Core 2014 Vertebrates and
UniProbe Mouse (UniProbe Mouse results not shown) da-
tabases. FIMO [66] was used for enrichment analysis of
the occurrence of similar motifs in the 900 bp regions cen-
tered on each DMR of the p < 0.0001 list. Only false discov-
ery rate-adjusted q values were considered in both the
TOMTOM and FIMO analysis. For Encode TF-binding
analysis, we downloaded and merged all transcription
factor binding peaks for ZNF263, SP1, and EGR1 in all
reported cell lines (ZNF263 =K562, HEK293-T-REx; SP1 =
GM12878, H1-hESC, K562, HEPG2; EGR1 =GM12878,
H1-hESC, K562) available in UCSC’s Transcription factor
ChIP-seq Uniform Peaks Track (Uniform TFBS) [67].

Validation using bisulfite pyrosequencing
We choose to verify three top-ranked DMRs with bisul-
fite pyrosequencing: PRDM14 (rank 1), CACNA1S (rank
7), and BRCA1 (rank 89). According to manufacturer’s
recommendations, 400 ng of DNA was bisulfite-
converted using the EpiTect Fast DNA Bisulfite Kit
(Qiagen) and amplified with the PyroMark PCR Kit
(Qiagen) using the primers in Additional file 1: Table S5.
The biotinylated PCR product was then quantitatively
sequenced on a PyroMark Q96 MD (Qiagen). As ex-
pected, all three DMRs correlated significantly either
negatively with hair cortisol or positively with MeDIP-
seq data (PRDM14CORT: r = −0.47, p = 0.02; CANA1SSEQ:
r = 0.40, p = 0.006; BRCA1CORT = −0.36, p = 0.05). It must
be emphasized that this is a good result considering that
the estimated target windows for our MeDIP-seq ana-
lysis is >800 bp (300 bp analysis windows overlapping

http://www.bioconductor.org
http://www.repeatmasker.org
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225–250 bp fragments), while bisulfite pyrosequencing
targets single nucleotides.

Genetic association in DMRs
By analyzing the mapped reads from the MeDIP-seq in the
Genome Analysis Toolkit (GATK) [68], we detected 3304
suggestive single nucleotide variations located within
900 bp windows centered over the p < 0.0001 DMRs (n =
852). Genetic association filtering and analysis was per-
formed using the default pipeline for single variant analysis
in the Efficient and Parallelizable Association Container
Toolbox (EPACTS; http://genome.sph.umich.edu/wiki/
EPACTS) generating 2228 high quality SNPs.

Additional file

Additional file 1: Supplemental file. Supplemental information
containing the following features. Figure S1. Individual methylation
profiles over the PRDM14 gene. Figure S2. Overlaps between DMRs
and selected genomic features. Figure S3. Bisulfite pyrosequencing
results for the BRCA1 gene. Figure S4. Variation analysis (using CV).
Figure S5. Raw frequencies of disease class representation and
evidence for neuropsychiatric genes within the AGE class. Figure S6.
Gene ontology tree. Figure S7. Candidate Zinc-finger binding to repetitive
sequences. Figure S8. First exon versus last exon methylation. Table S1.
Some demographic and social data of the participating children. Table S2.
Summary of the main bioinformatics tools. Table S3. Differentially
methylated regions in the whole-genome analysis. Table S4. A selection of
the top results from the functional annotation analysis. Table S5. Primers
used for bisulfite pyrosequencing.
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voltage-dependent, L type, alpha 1S subunit; EGR1: early growth response 1;
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