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Abstract

Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention,
since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing
evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to
genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and
non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC)
enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic
insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair
pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species
and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome
also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from
studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene
lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic
mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA
damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer
cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify
these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and

the pros and cons of specific dietary intervention strategies.
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Introduction

Genomic instability is a key feature of cancer develop-
ment, often associated with the acquisition of mutations
in oncogenes, tumor suppressor genes, and DNA repair
genes [1]. Thus, DNA repair pathways and cell cycle
checkpoint controls have important consequences for
genome stability, and have come under much scrutiny
[2]. Defects in genome stability increase the sensitivity
of cells to DNA damaging agents, and provide an
“Achilles heel” for cancer therapeutics [3]. Indeed, there
are numerous efforts to manipulate the DNA damage
response so as to selectively induce tumor cell death
through catastrophic genomic instability [4,5]. Differ-
ences in the DNA damage response between normal
cells and cancer cells often underlie the utility of DNA
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damaging agents in cancer treatment. Radiotherapy and
chemotherapeutic drugs are known to function by DNA
damage-induced tumor cell death, and there are ongoing
efforts to improve sensitivity while overcoming resis-
tance to these agents. Poly(ADP-ribose)polymerase
(PARP) inhibitors that target defects in double-strand
break repair in women with hereditary breast cancer [6]
illustrate the concept of selective “synthetic lethality”.
Other examples include inhibitors of apurinic/apyrimidi-
nic endonuclease-1 (APE1), DNA repair protein RecA
homolog (RAD51), ataxia-telangiectasia mutated (ATM),
and DNA-dependent protein kinase (DNAPK), some of
which have entered clinical trials. As we learn more
about the DNA damage response pathways dysregulated
in cancer cells, new combinations of agents are being
developed with enhanced therapeutic efficacy [7].
Epigenetic mechanisms influence DNA damage and
repair pathways; the reader is referred to related reviews
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in the current journal [8-10]. In eukaryotic cells, DNA
damage repair occurs in the context of chromatin, and
it is now clear that DNA damage response impacts spe-
cific aspects of chromatin structure and chromatin
remodeling. Post-translational histone modifications,
histone variants, and chromatin-binding proteins pro-
vide a regulatory platform for controlling DNA tem-
plate-directed processes, including gene transcription,
DNA replication, and repair of DNA damage [11,12].
Such responses may be mediated by chromatin modi-
fiers involved in histone methylation, acetylation and
biotinylation [13-15].

Recently, it was reported that histone deacetylase
(HDAC) inhibitors have the potential to interfere with
DNA repair mechanisms [16]. A recent review summar-
ized the ways in which HDAC inhibitors trigger apopto-
sis by taking advantage of genomic instability in cancer
cells [14]. The latter review highlighted the ways in
which HDAC inhibitors lead to impaired mitotic pro-
gression, defects in kinetochore assembly, and aberra-
tions in spindle assembly checkpoint controls, resulting
in premature exit from mitosis. HDAC inhibitors regu-
late chromatin structure and activate the DNA damage
checkpoint pathway involving ATM [17]. Histone acetyl-
transferase (HAT) inhibition also has been shown to
impair double-strand break repair [18]. Damage signal-
ing involves phosphorylation of H2AX(S139) (YH2AX)
by ATM/ATR kinases. This is followed by chromatin
opening and the involvement of H3/H4 acetylation, via
HATSs such as Tip60, GCN5 and CBP/p300. Chromatin
restoration after repair involves YH2AX dephosphoryla-
tion by phosphatases PP4 and PP2A and deacetylation
of H3/H4 lysines by HDACs. Additional histone modifi-
cations such as ubiquitination and sumoylation of his-
tones also contribute to this process. Details of this
process have been extensively reviewed elsewhere [19]
and dealt with in more detail in the next section.

Similarly, acetylation of non-histone proteins can
influence chromatin dynamics, protein turnover, and the
DNA damage response. Robert et al [20] have recently
shown in yeast that depletion of class I and 1II HDACs
by mutation, or via HDAC inhibition with valproic acid
(VPA), prevented DNA damage signaling and interfered
with DNA break repair. The DNA resection and recom-
bination protein Sae2 (human C-terminal binding pro-
tein interacting protein, CtIP) was acetylated, resulting
in increased protein turnover and degradation by autop-
hagy. Deacetylation by HDACs stabilized Sae2, but VPA
inhibited this process [20]. Consistent with these obser-
vations, a recent study showed that a class III HDAC
(SIRT®6) positively regulated the repair of double-strand
breaks (DSBs) through deacetylation of CtIP [21].

The investigation of genome stability and epigenetics
dovetails with mechanistic studies on diet and nutrition.
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Based on epidemiological studies, diets rich in fruits and
vegetables can offer protection against cancer develop-
ment [22-25]. Recent reviews have covered the mechan-
isms of dietary agents impacting DNA
methyltransferases, HDAC or HAT enzymes, and micro-
RNAs [26-29]. In the context of DNA damage, a folate/
methyl deficient diet has been conclusively shown to
cause genomic instability [30]. Although dietary antican-
cer compounds modulate drug metabolizing enzymes
and scavenge free radicals, under some conditions they
have been shown to generate reactive oxygen species
(ROS) and cause oxidative DNA damage [31,32].

Given this background, the present review summarizes
recent advances in our understanding of HDACs
involved in the DNA damage response, and the possible
implications for cancer therapy. Targeting genome
integrity in rapidly cycling cells has been a central fea-
ture of cancer therapeutics. However, a growing area of
interest is the dietary agents that can trigger a DNA
damage response via epigenetic mechanisms, involving
altered HDAC/HAT activities.

Changes in chromatin structure during DNA
damage

DNA wraps around an octameric complex of core his-
tones H2A, H2B, H3 and H4 to form nucleosomes.
DSBs induced by ROS, replication stress, or by exogen-
ous agents like UV, radiation, radiotherapy, or other
genotoxic agents are thought to be the most dangerous
lesions for genomic integrity [33]. Although the exact
sequence of events following DSB is still poorly under-
stood, one of the earliest events in the response to DNA
breakage involves phosphorylation of H2AX (yYH2AX)
that surrounds ~2 Mb of each DSB, which marks the
sites of breakage [34,35]. Thus, a common biomarker
for DNA-damage nuclear foci is YH2AX, typically
assayed by immunofluorescence-based approaches.
H2AX is phosphorylated by phosphatidylinositol-3
kinase (PI3K)-like kinases, including ATM, ATM-and
Rad3-related (ATR), ATM related kinase (ATX), and
DNAPK [36,37]. Histone H3 acetylation at tail residues
K9, K14, K18, K23 and K27, and histone H4 acetylation
at tail residues K5, K8, K12, K16 [38] reduces their affi-
nity for negatively-charged DNA. This in turn promotes
relaxation of chromatin, and facilitates access of repair
proteins. The HAT complex TAT-interacting protein 60
(TIP60) acetylates histones H2A, H3, and H4 [39,40],
whereas HDACs participate in histone deacetylation
during repair and chromatin reassembly [41-43], as
shown in Figure 1.

H2AX phosphorylation and core histone acetylation
assist in the recruitment to DSB sites of chromatin
remodeling complexes of the SWI2/SNF2 superfamily
[44-46]. This is followed by the accumulation of other
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PI3K-like members, mediator of DNA damage check-
point protein 1 (MDC1) or p53-binding protein
(53BP1), which play a pivotal role in signaling DSBs
[47]. DSB signaling is further amplified by transducer
checkpoint kinases, CHK1 and CHK2, which, together
with ATM and ATR, phosphorylate breast cancer 1
(BRCA1), RADS5I, p53, and its negative regulator, mur-
ine double minute (Mdm2) [48]. Phosphorylation of p53

leads to its stabilization, causing cell cycle arrest through
induction of cyclin-dependent kinase inhibitor p21 or in
the event of severe DNA damage, apoptosis.

DNA damage is sensed and the repair machinery is
employed, consisting of MRE11-RAD50-Nbsl (MRN)
mediator complexes or RAD51 enzymes [49,50] that
recruit ATM to the site of DSBs [51]. Histone ubiquity-
lation, through ubiquitin ligases RNF8 and 168, is an
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important route for recruitment of additional repair
complexes involving BRCA1/Abraxas/Rap80 [52,53].

Other events include mobilization of high-mobility
group N1 (HMGN1) protein for ATM recruitment, and
heterochromatin protein 1§ (HP1B) [54]. The histone
trimethylation mark, H3K9me3, is recognized by chro-
modomain regions of HP1 and casein kinase 2 (CK2)
that mediate the removal of HP1 protein [55]. The
recruitment and activation of ATM at DSB sites affects
chromatin structure by phosphorylating the KRAB asso-
ciated protein (KAP-1), thus further relaxing the chro-
matin structure [56]. Acetylation of histone H3K56
drives chromatin assembly after repair, and signals the
completion of repair [57].

The mechanisms that restore chromatin architecture
after repair of DSBs involve deacetylation by HDACs
[58], proteasomal degradation of MDC1 foci [59,60],
and turnover of the repair machinery. Chromatin assem-
bly factors, including the histone chaperones chromatin
assembly factor I (CAF-1) and anti-silencing function 1
(Asfl), play essential roles in restoring chromatin struc-
ture and cell cycle progression after DNA repair [57].

Role of HDACs in DNA damage response

Acetylation is a reversible process in which histone and
non-histone protein acetyltransferases transfer the acetyl
moiety from acetyl co-enzyme A to lysine residues, and
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HDACSs remove the acetyl groups. HDACs play major
roles in modulating chromatin accessibility during tran-
scription, replication, recombination, and repair [61,62];
however, the role of individual HDACs in these pro-
cesses is still unclear.

At the present time, 18 HDACs have been identified
in humans that fall into four classes: class I HDACs
(HDACI, 2, 3 and 8) share sequence similarity with the
yeast RPD3 deacetylase, are ubiquitously expressed, and
they are localized mainly in the nucleus. Class II
HDACs (HDAC4, 5, 6, 7, 9 and 10) are homologous to
the yeast Hdal deacetylase, are nuclear and cytoplasmic,
and restricted to certain tissues. Class II HDACs are
further subdivided into class Ila (HDAC4, 5, 7 and 9)
and class IIb (HDAC6 and 10). Class III HDACs are
represented by sirtuins (SIRT1 to SIRT7), a family of
seven HDACs sharing homology with yeast silent infor-
mation regulator 2 (Sir2). Class IV has only one mem-
ber, HDAC11, which shares conserved residues with
both class I and II HDACs [63]. Class I, II, and III
HDACs have been implicated in the DNA damage
response, homologous recombination (HR), and chro-
matin integrity. This is explained below, and summar-
ized in Table 1.

An important substrate of HDACI1 is the tumor sup-
pressor protein p53. Recruitment of HDAC1 by MDM?2
promotes p53 degradation by deacetylation. Thus,

Table 1 HDACs implicated in chromatin structure/function during DNA damage and repair

HDAC Role in DNA damage/repair Substrates involved in DNA damage References
response

Class |

HDACT  Protects from DNA damage, sustains DNA damage checkpoint, maintains ~ H3K56, p21, p53, BRCA1, CHEST, PCNA, [41,64-71,321]
DNA replication, regulates oxidative stress and NHEJ Top II, ATM, ATR, RFC, ING1a, APET1/Ref1

HDAC2  Participates in DNA damage signaling by translocation to nucleus; H3K56, BRCA1, ATR [41,66,68]
regulates DNA repair

HDAC3  Protects from DNA damage, maintains replication fork, mitotic spindle and  H3K9/K14, H4K5/K12 [42,72,75-77]
helps in DNA repair and genomic stability via HDAC3/NCOR/SMRT
complexes

Class

lla

HDAC4  Increases DNA repair by translocation to the nucleus and signaling repair ~ 53BP1 [78,79]

HDAC9  DNA repair through homologous recombination Not yet identified [43]

Class

b

HDAC6  Role in chemosensitization GADD153 (80]

HDACT0 DNA repair through homologous recombination Not yet identified [43]

Class Ill

SIRT1 Protects from oxidative DNA damage, maintains telomere length and p53, FoXO1, WRN, Ku70, Tip60, APET, [81-83,86-94,97,98]
activates DNA repair through HR, NER, and BER H3K56, NBS1, MRN, telomere, XPA, XPC

SIRT3 Transports to mitochondria and reduces oxidative DNA damage Idh2, H4K16 [99,100]

SIRT6 Promotes DNA repair by HR, forms a complex with DNA-PK and resists H3K9/K56, CtIP, XPA, DNAPK [21,101,102]

DNA damage; maintains chromatin structure and genomic stability

Information regarding HDAC 5, 7, 8 and 11 is currently lacking in terms of a definite role in this mechanism.
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HDACI1 decreases DNA damage-induced p53 acetyla-
tion, and inhibits the induction of p21 and MDM2 [64].
HDACI1 also regulates several other proteins involved in
the DNA damage response, such as proliferating cell
nuclear antigen (PCNA) [65], BRCA1 [66], ATM [67],
ATR [68], inhibitor of growth 1a (INGla) [69], replica-
tion factor C (RFC) [70], apurinic apyrimidinic endonu-
clease redox effector factor-1 (APE1/Refl) [71], and
proteins that facilitate non-homologous end-joining
(NHE]) by altering histone H3K56 acetylation [41].

Miller et al. [41] showed that HDAC1 and HDAC2
cooperate in the DNA damage response. Specifically,
HDACI1 and HDAC2 were recruited to DNA damage
sites and regulated the deacetylation of H3K56 and
H4K16, a requirement for DNA repair, particularly
through NHE]. HDAC2 also regulates ATR [68], and
alters histone H3K56 acetylation status during the DNA
damage response. Based on their findings, the authors
suggested that HDAC1 and HDAC2 might repress tran-
scription at sites of DNA damage, thereby preventing
transcription from interfering with repair processes, as
well as remodeling chromatin into a state that promotes
NHE]. They found that Class I/II HDAC inhibitors,
such as butyrate and trichostatin A (TSA), caused
defects in the DNA damage response, including hypera-
cetylation of H3K56 and H4K16, and impairment of
NHE]. Furthermore, HDACI- and 2-depleted cells were
hypersensitive to DNA-damaging agents and showed
sustained DNA-damage signaling, phenotypes that
reflect defective DSB repair. The authors discussed the
potential implications of their findings for HDAC1- and
HDAC2-specific therapy [41].

Bhaskara et al. [42,72] showed that HDAC3 is impor-
tant for DSB repair. HDAC3 associates with nuclear
receptor corepressor (NCOR) and silencing mediator for
retinoic and thyroid receptor (SMRT) [73], and is con-
sidered a locus-specific corepressor that is recruited to
promoters to repress genes regulated by nuclear hor-
mone receptors and other transcription factors [74].
Conditional deletion demonstrated the absolute require-
ment for cell viability of HDAC3 in murine embryonic
fibroblasts (MEFs) [72]. The latter MEFs underwent
apoptosis due to impaired S phase progression and for-
mation of DSBs, rather than altered transcriptional pro-
grams. The DNA damage was blocked when cells were
taken out of the cell cycle by serum starvation, suggest-
ing that HDAC3 acted during S phase. In another study
[42], HDAC3-null MEFs increased histone acetylation
(H3K9, H3K14, H4K5 and H4K12) in late S phase.
Knockdown of NCOR1 and SMRT increased acetylated
H4K5 and caused DNA damage, indicating that the
HDAC3/NCOR/SMRT axis may be critical for maintain-
ing chromatin structure and genomic stability. Further-
more, two studies have linked HDAC3 to maintenance
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of the mitotic spindle assembly [75,76]. Ishii et al. [75]
reported on the localization of HDAC3 to the mitotic
spindle, and showed that HDAC3 knockdown led to
chromosome misalignment, impaired kinetochore-
microtubule attachment, and mitotic spindle collapse.
Eot-Houllier et al. [76] showed that HDAC3 knockdown
induced spindle assembly checkpoint activation and sis-
ter chromatid dissociation. Further, down-regulation of
HDAC3 mimics actions of the HDAC inhibitor suberoy-
lanilide hydroxamic acid (SAHA, vorinostat) in reducing
replication fork velocity and increasing origin firing at
sites of replication, likely due to chromatin changes [77].
Among the class II HDACs, HDAC4, and more
recently HDAC6, HDAC9 and HDAC10, have been
implicated in DNA damage signaling, transcription fac-
tor binding, and DNA repair processes [78-80,43]. Kao
et al. [78] showed that HDAC4 co-localized with 53BP1,
a PI3K-like member with a pivotal role in signaling
DSBs. HDAC4-containing foci gradually disappeared in
repair-proficient cells, but persisted in repair-deficient
cell lines, suggesting that resolution of HDAC4 foci is
linked to successful DNA repair. Silencing of HDAC4
via RNA interference surprisingly also decreased levels
of 53BP1 protein, abrogated the DNA damage-induced
G2 delay, and radiosensitized HeLa cells. These observa-
tions showed that HDAC4 is a critical component of
the DNA damage response pathway that acts through
53BP1, and perhaps contributes in maintaining the G2
cell cycle checkpoint. Basile et al. [79] demonstrated
that HDAC4 shuttles from the cytoplasm to the nucleus
following DNA damage, independent of p53 activation,
and becomes associated with gene promoters via a p53-
dependent mechanism. Thus, HDAC4 is clearly impli-
cated as a component of the DNA damage response.
Namdar et al. [80] reported that HDAC6 inhibition
with tubacin or shRNA activated the intrinsic apoptosis
pathway in cancer cells; this led to accumulation of
YH2AX, and the expression of growth arrest and DNA
damage 153 (GADD153/DDIT3), a transcription factor
upregulated in response to cellular stress. Tubacin treat-
ment enhanced cell death induced by topoisomerase II
inhibitors etoposide and doxorubicin, and by the pan-
HDAC inhibitor SAHA, in transformed cells (LNCaP,
MCEF-7), an effect not observed in normal cells (human
foreskin fibroblast cells). Further, tubacin increased the
accumulation of yH2AX and activated Chk2. GADD153/
DDIT3 induction was augmented when tubacin was
combined with SAHA. The authors suggested that
HDAC6-selective inhibition enhances the efficacy of cer-
tain anticancer agents in transformed cells [80].
Recently, Kotian et al. [43] showed that depletion of
HDAC9 or HDAC10 inhibited HR in a tissue-culture
based homology-directed repair assay. The authors
showed that HDAC9 and HDAC10 were directly
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involved in the HR process, and this was not through
indirect blocking of the cell cycle. Further, depletion of
HDAC9 or HDACIO0 resulted in increased sensitivity to
mitomycin C [43].

Among the NAD"-dependent class III HDACs (sir-
tuins), SIRT1, SIRT3 and SIRT6 have definite roles in
genome stability and repair [21,81-84]. SIRT1 plays cru-
cial roles in multiple biological processes affecting gene
transcription, cellular metabolism, stress response, and
tumorigenesis. SIRT1 is overexpressed in several p53-
deficient tumor cell lines, and the transient knockdown
of SIRT1 leads to increased apoptosis after DNA
damage or oxidative stress [85]. Moreover, several pro-
teins involved in the DNA damage response are deacety-
lated and inactivated by SIRT1. These targets include
p53 [86,87], forkhead box transcription factor (FoxO)
[88,89], the nonhomologous end joining (NHE]) factor,
Ku70 [90], Tip60 [91], the histone modification H3K56
acetylation [92], and MRN repair complex [93]. Thus,
these studies support the idea that SIRT1 can act as an
oncogenic protein when overexpressed in cancer cells.

SIRT1 also is thought to act as a tumor suppressor in
some scenarios, through its role in deacetylating p53
[94] and Ku70 [90]. CK2 phosphorylates and activates
SIRT1, and partly protects cells from ionizing radiation-
induced apoptosis [95], whereas Set7/9 methylates
SIRT1 and disrupts it’s binding to p53, leading to p53
acetylation and activation in response to DNA damage
[96]. Several recent reports have shown the importance
of SIRT1 in enhancing DNA repair [81-83,97]. Palacios
et al. [81] examined the effects of SIRT1 on telomere
maintenance and DNA repair. Using SIRT1-deficient
and gain-of-function mouse models, SIRT1 was identi-
fied as a positive regulator of telomere length in vivo,
and attenuated telomere shortening associated with
aging. The authors showed that SIRT1 interacted with
telomeric repeats in vivo. In addition, SIRT1 overexpres-
sion increased HR throughout the entire genome,
including telomeres, centromeres, and chromosome
arms. These findings link SIRT1 to telomere biology
and global DNA repair, and provide new mechanistic
insights into the known functions of SIRT1 in the pro-
tection from DNA damage [81]. Uhl et al. [82] showed
that Werner helicase (WRN) was required for SIRT1-
mediated HR. WRN, in its mutated form, causes prema-
ture aging and cancer, and has been linked to Rad51-
independent single-strand annealing (SSA) DSB repair
pathway. SIRT1 also regulates other DNA repair path-
ways, viz. base-excision repair (BER) and nucleotide-
excision repair (NER) [83,97,98] through the transcrip-
tion of xeroderma pigmentosum (XPA, XPC) group pro-
teins [97,98]. Yamamori et al. [83] showed that SIRT1
plays a vital role in maintaining genomic integrity by
deacetylating APE1, which is an essential component of

Page 6 of 23

the BER pathway. Increased association of SIRT1 with
APE1 during genotoxic stress facilitated SIRT1-mediated
deacetylation of APE1 in vitro and in vivo, thereby redu-
cing genotoxic insult-stimulated lysine acetylation of
APE1. Fan and Luo [97] showed that SIRT1 plays an
important role in the regulation of NER. Thus, downre-
gulation of SIRT1 significantly sensitized cells to UV
irradiation through interaction with xeroderma pigmen-
tosum group A (XPA), a core factor essential for NER.
SIRT1 has been shown to deacetylate XPA both in vitro
and in vivo [97].

SIRT3 is transported from the nucleus to the mito-
chondria upon cellular stress, as in the case of DNA
damaging agents, and deacetylates histone H4K16 [99].
SIRT3 has been shown to deacetylate and activate mito-
chondrial isocitrate dehydrogenase 2 (Idh2), leading to
increased NADPH levels and an increased glutathione
GSH:GSSG ratio in mitochondria, thereby protecting
cells from oxidative stress-induced cell death. SIRT3 is
thus an essential player in the mitochondrial glutathione
antioxidant defense system [100].

Kaidi et al. [21] have shown that human SIRT6 has a
role in promoting DNA end-resection, a crucial step in
DSB repair by HR. SIRT6 depletion impaired the accu-
mulation of replication protein A (RPA) and single-
stranded DNA at damage sites, reduced the rate of HR,
and sensitized cells to DSB-inducing agents. The authors
identified CtIP as a SIRT6 interaction partner, and
showed that SIRT6-dependent CtIP deacetylation pro-
motes DSB resection. Schwer et al. [101] have shown
that SIRT6 deletion causes hyperacetylated histone
H3K9 and H3K56, two chromatin marks implicated in
the regulation of gene activity and chromatin structure,
in various brain regions. McCord et al. [102] observed
that SIRT6 forms a complex with DNAPK and promotes
DSB repair. In addition, the role of SIRT6 in genomic
stability has been demonstrated in aging mouse models
[84].

Collectively, these studies highlight the roles of multi-
ple HDACs in the DNA damage response and chroma-
tin stability. As a corollary, the question arises as to how
such events might be impacted by HDAC inhibitors.

HDAC inhibitors and the DNA damage response

HDAC inhibitors are being developed as anticancer
agents, as well as therapies for non-oncologic disorders
[63,103]. Inhibitors of the zinc-dependent HDACs
belong to several chemical classes, including hydroxamic
acids, cyclic peptides, electrophilic ketones, short-chain
fatty acids, and benzamides. Some of these inhibitors
affect the interactions of HDACs with protein partners,
independent of the deacetylase activity [63]. Thus,
HDAC inhibitor mechanisms now include competitive
binding in the active site [104], turnover of the HDAC
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protein by proteasomal degradation [105], and HDAC
protein inactivation by alkylation/carbonylation
[106,107]. These HDAC regulatory mechanisms are not
necessarily mutually exclusive.

HDAC inhibitors can induce growth arrest of neoplas-
tically-transformed cells and trigger apoptosis via one or
more pathways. These events are associated with altered
patterns of acetylation in histone and non-histone pro-
teins, including key players involved in the regulation of
gene expression, apoptosis, cell cycle progression, redox
signaling, mitotic division, DNA repair, cell migration,
and angiogenesis [63]. Subsequent to the role of HDACs
in maintaining genome stability, as discussed above, his-
tone hyperacetylation induced by HDAC inhibitors
causes structural alterations in chromatin. This can
open up regions of DNA that are normally protected by
heterochromatin, enabling DNA-damaging agents to
gain access to the exposed template. Importantly,
HDAC inhibitors have been shown to decrease the
expression of DNA repair proteins such as Ku70 [108],
BRCA1 [109], RAD51 [110] and CtIP [20]. It is not
clear whether transcription mediates HDAC inhibitor
actions in these circumstances [111], and indeed non-
transcriptional targets of HDAC inhibitors have been
proposed [112,113]. Thus, HDAC inhibitors have the
potential to target multiple signaling and repair mechan-
isms in the DNA damage pathway by targeting histones
and non-histone proteins, as illustrated in Figure 1.

Several pharmacologic HDAC inhibitors are under-
going clinical trials as monotherapies, or in combination
therapies with other anticancer agents. Two of these
HDAC inhibitors, vorinostat and romidepsin (depsipep-
tide), have been approved for the treatment of cuta-
neous T-cell lymphoma [114]. Apart from effects on
gene transcription, evidence is accumulating that HDAC
inhibitors influence chromatin stability, mitosis, and
DNA repair mechanisms. For example, vorinostat acts
at replication origins [77], downregulates the DNA
repair gene Rad52 [115], and suppresses HR repair
genes such as Brcal, Rad51, Chkl, and Bubrl (a check-
point kinase), via downregulation of E2F1 transcription
factor [16]. These effects also have been reported for
other HDAC inhibitors, such as PCI-24781 [110] and
VPA [16]. Romidepsin downregulated thioredoxin
reductase (TrxR), generated ROS accumulation, and
augmented DNA damage and apoptosis [116]. The
HDAC inhibitor LAQ-824 also triggered ROS produc-
tion, with increased YH2AX and Ku70 acetylation [117].
Many other HDAC inhibitors, including TSA, SAHA
and MS-275, augment the acetylation of Ku70 [108] and
alter genes encoding HR components, such as ATR,
Bloom syndrome gene (BLM), BRCA1, BRCA2, and nij-
megen breakage syndrome 1(NBSI) [109].
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Dietary agents and their effects on chromatin,
DNA damage, and repair in cancer cells

In addition to the potent HDAC inhibitor drugs being
developed as cancer therapeutic agents, there is growing
interest in dietary phytochemicals that also possess
HDAC inhibitor activity [118,119,26]. A synopsis of diet-
ary chemopreventive agents in the context of DNA
damage and repair pathways is shown in Figure 2, and
is summarized below for specific chemical classes. As
discussed next, some dietary compounds have shown
DNA-damaging effects in cancer cells associated with
HDAC inhibition. The order in which the compounds
are presented below corresponds with the approximate
extent of supportive evidence from the literature for
HDAC/HAT modulation and DNA damage end-points.

Isothiocyanates

Brassica or cruciferous vegetables are a rich source of
glucosinolates [120]. The hydrolysis of these glucosino-
lates by the plant enzyme myrosinase generates biologi-
cally active isothiocyanates (ITC) and indoles [121]. For
example, ITC precursors of sulforaphane (SFN) and
phenethyl isothiocyanate (PEITC) are found at high
levels in broccoli and watercress, respectively. Epigenetic
effects of ITCs have been linked to the inhibition of
HDAC activity and histone hyperacetylation, as reported
for SEN [122], allyl isothiocyanate (allyl-ITC) [123], ben-
zyl isothiocyanate (BITC) [124], phenylhexyl isothiocya-
nate (PHITC) [125], PEITC [126], and other longer-
chain isothiocyanates [118]. In addition to altering
HDAC expression and causing histone acetylation, other
histone marks altered by ITCs include histone methyla-
tion [127]. BITC [124] and SFN [128,129] have also
been shown to decrease HDAC protein expression in
cancer cells.

We know from previous studies that methyl isothio-
cyanate [130], BITC [131], allyl-ITC and PEITC [132]
exert genotoxic effects. For example, BITC (10 pM)
increased YH2AX and triggered apoptosis in Capan-2
pancreatic cells [133]. It caused a significant decrease in
the expression and activity of HDAC1 and HDACS3, as
well as NFxB inactivation, in pancreatic cancer cells but
not normal cells. Interestingly, overexpression of
HDACI1 or HDACS3 blocked these effects [124].

SEN has been shown to cause both DSBs and single-
strand breaks (SSBs) in cancer cells. Sekine-Suzuki et al.
[134] observed that 20 uM SFN triggered cell cycle
arrest, induced DSB, and elevated yYH2AX levels in cervi-
cal cancer (HeLa) cells. DSBs generated by SEN were
comparable to that triggered with 12 Gy of X-rays.
These DSBs were repaired mainly by HR through Rad51
foci formation and not by NHE] [134]. Sestili et al. [135]
reported that a short exposure of cells with SEN (10-30
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Figure 2 The role of dietary factors in altering histone acetylation and DNA damage signaling.

puM for 1-3 h) triggered SSBs in Jurkat lymphoma and
HUVEC cells. They found that DNA damage was cau-
sally linked to ROS generation and GSH depletion
[135]. DSBs also were triggered in colon cancer cell
lines SW620 at 10-50 uM [136] and HCT116 cells at 15
puM SEN, resulting in sustained YH2AX expression (our
unpublished data). In prostate cancer cells, SEN-induced
DNA damage involved the Chk2-mediated phosphoryla-
tion of protein phosphatase Cdc25C [137].

We recently reported SFN-induced loss of HDAC3
and HDACG6 protein expression in a time-dependent
manner in HCT116 colon cancer cells, leading to acety-
lation of histone H4 and tubulin, respectively. By 6 h,
SEN was shown to enhance CK2/HDACS3 binding, lead-
ing to HDAC3 phosphorylation and nuclear export by
14-3-3 and Pinl [128]. As noted earlier, this has the
potential to affect chromatin structure and DNA repair
since HDACS3 is critical for chromatin integrity, mitotic
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spindle assembly, and DNA replication [72,75,76]. We
also found that overexpression of HDAC3 or HDAC6
blocked SEN-induced acetylation of respective substrates
[128]. It is interesting to note that prostate [129] and
colon [138] cancer cells were more sensitive to SFN as
compared to normal cells. Clarke et al. [129] demon-
strated differential effects of SFN in normal prostate
cells versus hyperplastic and cancerous prostate cells
based, at least in part, on altered HDAC expression
levels.

Further, ITC-induced oxidative DNA damage has been
attributed to ROS generation [139-142], inhibition of
telomerase [143], lipid peroxidation [144], and covalent
binding to protein targets such as tubulin [145]. Thus, it
appears that SFN preferentially targets cancer cells over
normal cells possibly via a sustained DNA damage
response.

Indole-3-carbinol (13C) and 3,3'-diindolylmethane (DIM)
Cruciferous vegetables contain glucosinolates such as
glucoraphanin, the precursor of SEN, and glucobrassicin,
the precursor of indole-3-carbinol (I3C). The latter com-
pound and its acid condensation products, such as 3,3’-
diindolylmethane (DIM), have been examined exten-
sively for their cancer chemoprotective properties [146].
I3C has been shown to increase ATM signaling and p53
phosphorylation leading to p21 induction and G; arrest
in breast cancer cells [147]. I3C-induced activation of
ATM-Chk2 was further shown to degrade the protein
phosphatase Cdc25A [148]. Bhatnagar et al. [149]
reported that DIM inhibited expression of HDACI,
HDAC2 and HDACS3 in colon cancer cells, which was
associated with inhibition of survivin. Li et al. [150]
demonstrated that DIM-induced HDAC depletion
involved proteasome-mediated HDAC protein degrada-
tion. Although the authors found negligible increases in
the acetylation of gene promoters, a reduction in the
levels of repressive HDACs bound to the p21 and p27
promoters coincided with cell cycle arrest. Further, DIM
caused significant increases in YH2AX and chromatin
relaxation, with phosphorylation of KAP-1 prior to
DNA damage-triggered apoptosis. Interestingly,
decreased HDAC expression appeared 24 h prior to
DNA damage signaling, suggesting HDAC inhibition/
loss as a possible causative mechanism [150].

Other mechanisms related to the DIM-induced DNA
damage response include activation of BRCA1 in breast
and prostate cancer cells. BRCA1/2 signaling by DIM
led to endoplasmic reticulum stress and activation of
the GADD45 promoter [151]. Similarly, another study
demonstrated that I13C, in combination with genistein,
induced GADD gene expression in MCF-7 breast cancer
cells and decreased expression of ER-a., thereby trigger-
ing apoptosis [152].

Page 9 of 23

Parthenolide

Parthenolide (PN) is a sesquiterpene lactone isolated
from Tanacetum parthenium. It has been shown to
cause cell cycle arrest, promote cell differentiation, and
induce apoptosis [153]. In addition to its other actions,
PN was found to specifically deplete HDAC1 protein
without affecting other class I/II HDACs. HDAC1
depletion was found to occur via proteasomal degrada-
tion that was activated through the DNA-damage-trans-
ducer ATM [154]. HDAC1 depletion by PN led to
ubiquitination of MDM2 leading to p53 activation and
sustained DNA damage response [155].

Anacardic acid

A phytochemical that modifies DNA damage via HAT
inhibition is anacardic acid. The anacardic acid 6-penta-
decyl salicylic acid (6-PDSA), from cashew nut shell
liquid, is a potent HAT inhibitor. It inhibits p300 and
p300/CBP-associated HAT activities [156]. In addition,
6-PDSA was shown to inhibit the HAT function of
Tip60 and sensitize cancer cells to ionizing radiation
[157]. Interestingly, a structural analog of 6-PDSA was
reported to reduce histone H3K56 acetylation [158]. On
the contrary, in normal human dermal fibroblasts, inhi-
bition of HAT activity by 6-PDSA prevented UV-
induced increases in YH2AX, p53, and acetyl-H3 [159],
suggesting that histone acetylation is a prerequisite for
efficient DNA damage signaling in normal cells.

Allium compounds

Garlic, onions, shallots and other members of the allium
family contain an interesting and complex range of
water-soluble and fat-soluble organosulfur compounds,
some of which have been implicated as cancer chemo-
preventive agents [160,161]. Allyl derivatives from garlic
were among the first compounds described to impact
histone acetylation status. Allyl mercaptan (AM), diallyl
disulfide (DADS), S-allylcysteine (SAC), S-allylmercapto-
cysteine (SAMC) and allicin increased histone acetyla-
tion (H3/H4) in human cancer cells [123,162-164],
implicating HDACs as possible targets. AM was the
most effective HDAC inhibitor among several garlic-
derived organosulfur compounds and their metabolites,
including SAMC, SAC, diallyl sulfide (DAS), DADS, dia-
llyl trisulfide (DATS) and allyl methyl sulfide (AMS). In
human colon cancer cells, AM caused histone H3
hyperacetylation, and facilitated Sp3 and p53 binding on
the P21WAFI promoter [165].

Recently, DADS and DATS were shown to directly
induce the DNA damage response in cancer cells
[166,167]. In skin cancer cells, 25 uM DATS increased
YH2AX levels as early as 3 h and produced a 10-fold
increase in YH2AX by 24 h. Furthermore, DATS
increased the phosphorylation of p53 by 12 h, and
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induced p21 expression at 24 h. Importantly, such
effects were noted in cancer cells but not in normal ker-
atinocytes [166]. The authors suggested that DATS
might increase ROS levels and inflict DNA damage. A
prior study showed that DATS activated the Chk1-
Chk2-Cdc25C pathway, causing cell cycle arrest in pros-
tate cancer cells [168]. Ling et al. [167] reported that
DADS induced G,/M arrest through a similar pathway
involving Chk1-Cdc25c-cyclin Bl, and the DNA damage
signaling kinase ATR. The specific role of histone acety-
lation in DNA damage signaling has not been elucidated
in these studies. However, the ATR signaling pathway,
known to be activated by allium compounds, is known
to initiate a p53 phosphorylation-acetylation cascade
leading to p21 expression [169]. In fact, the DNA
damage-mediated phosphorylation of p53 promotes
acetylation by increasing interaction between p53 and
HATSs [169]. Whether allium compounds affect DNA
repair mechanisms in addition to DNA damage is not
clear, since one study shows that DADS does not affect
DNA repair genes in a microarray-based study using
cancer cells [170].

Numerous studies have implicated ROS, NOS, and
hydrogen peroxide (H,O,) in the actions of DADS and
DATS, with evidence for anti-cancer activities being
blocked by ROS scavengers such as N-acetyl cysteine
(NAC) and other anti-oxidants [166,171-174].

Selenium

Selenium is an essential trace element found as inor-
ganic forms in soil, but also bioaccumulated as organic
forms in foods such as Brazil nuts and seafood. Anticar-
cinogenic effects have been attributed to selenoproteins,
and more recently to organoselenium metabolites
[175-177]. Selenium may be an effective chemopreven-
tive and anticancer agent in a broad spectrum of human
cancers, viz. prostate, colon, bladder, lung, liver, ovarian,
and leukemia [178]. Some forms of selenium exert epi-
genetic effects via histone modifications. HDAC activity
was decreased, and histone acetylation increased, by
sodium selenite [179], keto-methylselenobutyrate
(KMSB), methyl selenocysteine (MSC), and methyl sele-
nopyruvate (MSP) [180,181]. Histone phosphorylation
also was increased by selenomethionine (SM) on the
promoters of GJB2 (connexin 26) and serum glucocorti-
coid kinase genes [182].

Selenium compounds have been reported to cause
DNA damage-mediated apoptosis in cancer cells [183].
Recently, two papers described the mechanisms by
which selenium compounds trigger DNA damage-
induced cell death in cancer cells but not in normal
cells [184,185]. Qi et al. [184] examined methylseleninic
acid (MSA, 0-10 uM), methyl selenocysteine (MSC, 0-
500 puM), and sodium selenite (0-20 pM) in mismatch
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repair (MMR)-deficient HCT116 colorectal cancer cells
and MMR-proficient HCT116 cells with MutL. homolog
1 (MLH1) complementation. The authors found that
compared with MMR-deficient HCT116 cells, HCT116
+hMLH1 cells were significantly more sensitive to oxi-
dative DNA lesions and YH2AX induction. Further,
response to selenium compounds was dependent on
ATM kinase and ROS, and required hMLH1-hPMS2.
Addition of the ATM kinase inhibitor KU55933, the
antioxidant NAC, or the superoxide dismutase mimic
Tempo, suppressed the selenium-induced effects. The
authors suggested that the hMLH1-hPMS2 complex
senses and processes selenium-induced oxidative DNA
damage and transmits the signal to ATM kinase, leading
to the activation of G2/M checkpoint and death path-
ways [184]. Hence, in this case, a DNA repair complex
acts via genomic instability and mutation to induce cell
death. Wu et al. [185] showed that selenium compounds
activated similar responses in normal MRC5 cells; how-
ever, rather than apoptosis induction they activated cell
senescence, as evidenced by the expression of senes-
cence-associated B-galactosidase and BrdU incorpora-
tion. In view of the HDAC inhibition, as noted
previously for these compounds, it will be interesting to
probe whether histone modifications have a role to play
in the observed DNA damage signaling. In this regard,
we know that MSA and MSC activate ATM [184],
which is known to control the transcription of DNA
damage genes in response to HDAC inhibition [186].
SM, another selenium compound, also decreased cell
proliferation and induced cell-cycle arrest by increasing
GADD34 and GADD153 expression [187]. However,
such effects were not seen in mammary and prostate
cancer cells [188]. Selenocystine, a nutritionally available
selenoamino acid, was shown to induce ROS formation
leading to DNA strand breaks in cancer cells, but not in
normal human fibroblasts [189]. In fact, in normal fibro-
blast cells, selenium was identified as an important
cofactor for various antioxidant enzymes that enhance
DNA repair in cells [190].

Polyphenols

Polyphenols occur naturally in many foods and bev-
erages consumed by humans. Promising cancer chemo-
preventive polyphenols include those in green tea, curry
spices, grapes, soy, and berries.
(-)-Epigallocatechin-3-gallate (EGCG)

EGCG, the most abundant polyphenolic catechin in
green tea, was identified as an antioxidant in vitro [191],
although the possible relevance of this activity to its
anticancer properties in vivo is far from established [29].
EGCG was reported to inhibit enzymes involved in
DNA methylation, and was subsequently identified as a
histone modifier [192-194]. EGCG inhibited HDAC
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activity and increased histone acetylation in prostate
[192], skin [193], and breast cancer cells [194]. Pandey
et al. [192] demonstrated that EGCG reduced mRNA
expression of HDAC1, HDAC2, and HDACS3, leading to
re-expression of GSTP1 in prostate cancer cells. Li et al.
[194] showed that EGCG reactivated estrogen receptor
(ERa) in breast cancer cells, due to decreased binding of
the transcription repressor complex Rb/p130-E2F4/5-
HDAC1-SUV39H1-DNMT1. Interestingly, Choi et al.
[195] identified EGCG as a HAT inhibitor that sup-
pressed transcription factor p65 (RelA) acetylation,
thereby inhibiting nuclear factor kappa B (NFxB), inter-
leukin 6 (IL6), and downstream target genes. In addition
to the HAT and HDAC activities, EGCG inhibited poly-
comb group (PcG) proteins [196] that are key epigenetic
regulators [197]. Treatment of skin cancer cells with
EGCG reduced expression of PcG proteins BMI-1 and
EZH2, leading to global reduction of histone H3K27me3
and reduced cell survival [196].

Although EGCG exhibits antioxidant activity in some
in vitro assays, it can induce oxidative DNA damage and
generate intracellular and mitochondrial ROS in lung
cancer cells [198]. EGCG treatment triggered GADD153
gene expression in combination with celecoxib, via
MAPK signaling [199]. Although GADD153 activity is
known to be modulated by HDACs [80,200], it is not
clear whether HDAC inhibition played a role on
GADDI153 gene activation by EGCG. In this regard, it is
worth mentioning that LBH589, a well known HDAC
inhibitor, activates GADD genes by augmenting histone
acetylation at the corresponding gene promoters [201].
More studies need to be carried out to determine if the
effects of EGCG on HDACs contribute to its DNA
damage effects. Another aspect of EGCG in this path-
way is inhibition of CK2 [202], which is an important
enzyme in the DNA damage response [55]. In addition,
tea catechins are reported to exert DNA demethylating
effects in vitro [203,204], and trigger oxidative degrada-
tion of cellular DNA in the presence of copper Cu(II)
ions [205].

Curcumin

Curcuminoid polyphenols in Indian spices have antioxi-
dant, anti-inflammatory, and cancer chemoprotective
properties [206-209]. There is growing interest in these
compounds and their potential to modulate epigenetic
endpoints [210-212]. Curcumin, for example, inhibited
HAT activity by inducing proteasome-dependent degra-
dation of p300 [213] in multiple cancers at a concentra-
tion of 20 uM or higher [214-216]. Curcumin also was
shown to inhibit HDACI and to upregulate p21 mRNA
and protein in a dose- and time-dependent manner in
HepG2 hepatoma cells [217]. Another study showed
that curcumin inhibited the expression levels of p300,
HDAC1, HDAC3, and HDACS proteins, repressed
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NFxB and Notchl, and decreased cell proliferation in
Raji lymphoma cells [218]. A more recent report on cur-
cumin also supported its HDAC inhibitory effects [219].
However, curcumin also was found to stabilize HDAC2
protein expression and increase HDAC activity in lung,
a beneficial outcome in the context of chronic oxidative
stress [220].

Rowe et al. [221] reported that curcumin caused DNA
damage in cancer cells, associated with phosphorylation,
increased expression, and cytoplasmic retention of the
BRCAL1 protein. These effects were not seen in normal
mammary epithelial cells [221]. Further, the induction
of YH2AX and DNA damage by curcumin required
ATM/Chk1 signaling [222]. Curcumin induced expres-
sion of GADD153 and increased ROS-mediated apopto-
sis induction in lung cancer cells. Treatment with
GADD45- and GADD153-siRNAs inhibited apoptotic
induction in these cells [223,224]. As noted earlier,
GADD genes are known to be modified through HAT/
HDAC balance [201], as well as ATM kinase activity
[186,225].

Curcumin also inhibits DNA repair pathways in can-
cer cells, like the fanconi anemia/BRCA (FA/BRCA)
pathway [226], or downregulates DNA repair proteins
MGMT (O°-methylguanine-DNA methyltransferase),
DNAPK, Ku70, Ku80, and ERCC-1 [227]. Other studies
have shown that curcumin induces damage to both
mitochondrial and nuclear DNA [228], triggers ROS
generation [229] and glutathione (GSH) depletion [230],
resulting in apoptosis induction in cancer cells.
Resveratrol
Resveratrol, a stilbene found in grapes and wine, has
been implicated in anti-aging and cancer prevention
mechanisms [231]. Resveratrol was linked with activa-
tion of SIRT1 and the acetyl transferase, p300
[94,232,233]. There is a debate as to whether these
mechanisms are directly or indirectly involved in the
protective effects of resveratrol in vitro and in vivo
[234,235]. A recent study concluded that tumor suppres-
sive effects of resveratrol in Apc™™ mice were depen-
dent on SIRT expression [236]. Resveratrol can delay
cell cycle progression and induce apoptosis in several
cancer cell lines; some of these effects have been attrib-
uted to the activity of SIRT1.

Several proteins that have a role in the DNA damage
response, such as p53, FoxO, and Ku70, are deacetylated
and inactivated by SIRT1. Consistent with this role of
SIRT1, recent evidence indicates that resveratrol inhibits
DNA repair in cancer cells [83,94,237-239]. Studies by
Wang et al. [94] using SIRT1 mutant mice showed that
impaired SIRT1 function resulted in tumor formation in
a p53-null background, and that activation of SIRT1 by
resveratrol reduced tumorigenesis. Further, SIRT1 acti-
vation by resveratrol negatively regulated survivin
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expression by histone deacetylation in the promoter of
the survivin gene [237]. Resveratrol enhanced p53 acety-
lation and induced apoptosis in prostate cancer cells by
inhibiting MTA1/NuRD, an integral component of the
nucleosome remodeling and deacetylase complex [238].
Furthermore, resveratrol inhibited both HR and NHE]
via ATM-p53 and ATM/ATR-Nbs1-dependent path-
ways, respectively [239]. On the contrary, activation of
SIRT1 by resveratrol was reported to promote APE1
activity and binding to X-ray cross-complementing-1
(XRCC1) protein, facilitating the BER DNA repair path-
way [83].

Several studies support resveratrol inducing a sus-
tained DNA damage response via BRCA1 and activation
of the ATM/ATR-Chk1/2-Cdc25C pathway in cancer
cells [240-242]. Notably, Tyagi et al [242] observed only
marginal effects of resveratrol in normal human foreskin
fibroblasts. In addition, a recent study demonstrated
that resveratrol caused telomere instability in osteosar-
coma cells [241], which resulted in genetic instability,
activation of DNA damage response, and cell
senescence.

There is increasing evidence that resveratrol exhibits
“pro-oxidant” activity in some circumstances [231].
Resveratrol catalyzed oxidative DNA degradation in the
presence of transition metal ions, such as copper [243],
generated ROS [244,245], and triggered GSH efflux
associated with Bax translocation to the mitochondria
[246].

Isoflavones

Soy isoflavones have been implicated in reducing the
overall incidence of breast and prostate cancers in Asian
countries. Genistein (4’,5,7-trihydroxyisoflavone) is the
major isoflavone present in soybeans. Genistein is
known to inhibit human cancer cell growth, mediated
via genes controlling cell cycle progression and apopto-
sis [247]. One mechanism that has recently received
considerable attention is the epigenetic modulation of
DNA methylation and/or chromatin marks [248]. Genis-
tein possesses high histone modifying activity compared
with other isoflavones, such as biochanin A and dia-
dzein. Genistein impacted histone acetylation and
demethylation, leading to activation of tumor suppres-
sors such as p21, p16, FoxO3a, and phosphatase and
tensin homolog (PTEN) [249]. Genistein also caused
androgen receptor (AR) downregulation through inhibi-
tion of HDAC6-Hsp90 co-chaperone functions in pros-
tate cancer cells [250].

Genistein activated stress signaling pathways that
phosphorylated p53 and ATM, leading to p21 induction
and YH2AX formation [251,252]. Further, genistein
modulated cyclin-dependent kinase Cdc2 activity
through the protein phosphatase Cdc25C, thereby acti-
vating ATM and causing G,/M arrest in hepatoma cells
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[253]. Other recent studies confirmed similar effects in
lung and prostate cancer cells [254-256]. An in vivo
metabolite of genistein, 5,7,3’,4’-tetrahydroxyisoflavone,
was shown to act via ATR kinase signaling to cause
DNA breaks and induce cell cycle arrest [257]. Genistein
induced GADD45, p53, and p38 in embryonic cancer
cells [258], and enhanced expression of BRCA1 [259]
and MDCI1 in neuroblastoma cells [260].

Other reported mechanisms for genistein in cancer
cells include oxidative DNA damage by ROS generation
in the presence of copper [261], and inhibition of topoi-
somerase II in an ATM-dependant manner [262]. Inter-
estingly, in the non-cancerous MCF-10A breast cell line,
genistein protected against polycyclic aromatic hydrocar-
bon (PAH)-induced oxidative DNA damage [263].
Quercetin
Quercetin is a flavonoid found in foods such as citrus
fruit, buckwheat, and onions. Recently, quercetin was
shown to increase histone H3 acetylation by both HAT
activation and HDAC inhibition in leukemia HL60 cells.
The result was FasL-dependent apoptosis, and activation
of the extracellular signal-regulated kinase (ERK) and
jun N-terminus kinase (JNK) signaling pathways [264].
Quercetin also induced the phosphorylation of ATM
and H2AX [251]. Despite its anti-inflammatory and
anti-oxidant properties, low concentrations of quercetin
induced extensive DNA damage by reacting with Cu(II)
in cancer cells [265]. This was confirmed recently, with
evidence that a quercetin-copper(II) complex promoted
cleavage of plasmid DNA, producing single and double
DNA strand breaks in lung cancer A549 cancer cells
[266]. In addition, quercetin inhibited DNA repair via
competitive inhibition of DNAPK, a repair protein
involved in NHE] [267].

Dietary compounds as chemo- and radio-
sensitizers for cancer therapy

In addition to the aspects discussed above, histone
modifiers exert synergistic actions when combined with
ionizing irradiation (IR) or DNA-damaging drugs
[268-270]. HDAC inhibitors can stabilize and enhance
YH2AX and interfere with the DNA repair machinery in
cancer cells [271]. From the evidence provided above,
many dietary compounds can influence the DNA
damage response and inhibit specific repair mechanisms.
Importantly, histone modifications augment DNA
damage in a manner that goes essentially unrepaired in
many cancer cells, but is repaired effectively in normal
cells. Some illustrative examples from the recent litera-
ture are provided below.

ITCs, HDAC inhibitor drugs, and radiotherapies
Radiosensitivity of HeLa cells was reportedly enhanced
by SEN pretreatment. Pre-treatment with SFN was
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found to inhibit DSB repair in irradiated cells leading to
apoptosis. This was associated with decreased expression
of repair proteins, Rad51 and DNAPK [272]. The
authors showed that the combination was also effective
in vivo [272]. In PC3 prostate cancer cells, the lipid per-
oxidation end-product 4-hydroxynonenal resulting from
SEN treatment potentiated the anti-tumor effects of the
HDAC inhibitor LBH589. Combined SFN+LBH589
treatment induced dephosphorylation of Cdc2 and sus-
tained expression of YH2AX [273]. BITC and other ITCs
sensitized pancreatic cancer cells to y-irradiation. Speci-
fically, BxPC-3 pancreatic cancer cells pretreated with
2.5 uM BITC for 24 h followed by exposure to 5 Gy y-
irradiation had reduced survival and enhanced G,/M
arrest as compared to cells exposed to y-irradiation
alone. Cell cycle arrest was associated with DNA
damage, phosphorylation of ATR, Chk2, Cdc25C, and
Cdk-1, and induction of p21 [274]. Similarly, PEITC sig-
nificantly enhanced cytotoxicity in a vorinostat-resistant
leukemia cell line, HL60/LR, by inhibiting the cytopro-
tective antioxidant response involving depleted cellular
GSH [275].

Anacardic acid enhances radiosensitivity

HAT inhibitors in the anacardic acid family (see above)
exert antiproliferative and cytotoxic effects on pituitary
adenoma cells associated with an increase in PARP, sub-
G arrest, and apoptosis. These compounds radiosensi-
tized pituitary adenoma cells by reducing the expression
of survivin and X-linked inhibitor of apoptosis protein
(XIAP), which are known to be associated with cell sur-
vival and radioresistance [276].

Curcumin synergizes with chemo- and radiotherapy

Curcumin has been shown to enhance the toxicity of
cyclophosphamide (CTX) in a drug-resistant human
lymphoma cell line HT/CTX, via inhibition of the FA/
BRCA pathway. The combination of curcumin and CTX
produced synergistic effects and reversed multiple drug
resistance. Blockade of cell cycle progression and down-
regulation of fanconi anemia group D2 (FANCD?2) were
implicated in the anti-tumor mechanism of curcumin
[277]. Similarly, curcumin reversed multidrug resistance
in multiple myeloma cell line MOLP-2/R through inhi-
bition of FA/BRCA, suggesting beneficial outcomes
when used with low-dose DNA cross-linking agents
[278]. In a variety of human cancer cells, synergistic
inhibition of cell proliferation also was seen for curcu-
min combined with cisplatin, 5-fluorouracil (5-FU), or
celecoxib, via inhibition of DNA repair pathways
[226,279-281]. Curcumin sensitized glioma cells to clini-
cally used chemotherapeutic agents or radiation, which
correlated with reduced Bcl-2 and inhibitor of apoptosis
(IAP) family members as well as DNA repair enzymes
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MGMT, DNAPK, Ku70, Ku80, and the excision repair
cross-complementary-1 (ERCC-1) [227]. Recently, Lin et
al [282] have shown that curcumin downregulates the
expression levels of thymidine phosphorylase (TP), an
enzyme of the pyrimidine salvage pathway and ERCCI,
a protein involved in the process of nucleotide excision
repair which helps in overcoming platinum resistance in
cancer cells. Interestingly, curcumin also synergized with
HDAC inhibitors vorinostat and LBH589, via persistent
depletion of Hsp90 client proteins EGFR, Raf-1, Akt,
and survivin [283].

Resveratrol and purine analogs

In chronic lymphocytic leukemia (CLL) cells from
patients, clinically-used purine analogs fludarabine or
cladribine caused a higher rate of apoptosis when com-
bined with resveratrol. Apoptosis was related to the pre-
sence of cytogenetic abnormalities and increased DNA
damage markers YH2AX and ATM. The authors sug-
gested that resveratrol might provide a new therapeutic
approach for CLL due to acceptable safety, lowering the
dose of purine analogs, resulting in activation of DNA
damage specifically in cancer cells and not in normal
cells [284].

Catechins and COX-2 inhibitors

EGCG, in combination with COX-2 inhibitors enhanced
apoptosis by increasing the expression of DNA damage-
inducible GADD153, GADD45A, and CDKNI1A (p21/
WAF1/CIP1) genes. Synergistic enhancements of apop-
tosis and GADD153 gene expression in human non-
small cell lung cancer cells by the combination of
EGCG and celecoxib were mediated through the activa-
tion of the MAPK signaling pathway [199].

In vivo studies and clinical translation: Future
perspectives

In vivo studies that demonstrate the functional relevance
of epigenetic mechanisms for anti-tumor efficacy are
still relatively scarce. At present, the best evidence to
demonstrate that nutrition modulates epigenetic status
and health outcomes in mammals comes from studies
with mice carrying the agouti (Avy) gene [285]. Dietary
methyl deficiency (folate, choline, and methionine) in
animal models alters hepatic DNA methylation patterns
and induces liver cancer in the absence of a carcinogen
[286]. Similarly, selenium-deficient diets have been
shown to hypomethylate DNA in liver and colon, as
compared to rats fed either selenite or selenomethionine
[287]. In a very interesting study, high levels of groom-
ing and nursing by rat mothers modified the levels of
DNA methylation at a glucocorticoid receptor (GR)
gene promoter in the hippocampus of the offspring,
leading to altered histone acetylation and binding of a
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transcription factor (NGFI-A) to the GR promoter [288].
Further, it was observed that a proportion of these
changes could be modified by treatment with an HDAC
inhibitor or a methyl donor [289].

Dietary HDAC inhibition also is an emerging field,
with some evidence for epigenetic modulation in vivo.
For example, polyphenon B, a tea polyphenol prepara-
tion, decreased HDACI1 levels and modulated the
expression of markers of invasion and angiogenesis in
dimethylaminoazobenzene-induced liver cancer in rats
[290]. Theophylline, also present in tea, was associated
with downregulation of the inflammatory response
through increased HDAC activity in epithelial cells and
macrophages in smokers and chronic obstructive pul-
monary disease (COPD) patients, a situation associated
with diminished HDAC activity [291-294]. It is note-
worthy that the mechanism occurred at therapeutic con-
centrations [294]. Another polyphenol, quercetin,
inhibited HDAC1 and DNA methyl transferase 1
(DNMT1) in carcinogen-treated hamsters and reduced
tumor incidence and burden [295].

In the ApcMin/+ mouse model, SEN-containing diet
(300 and 600 ppm for 3 weeks) was optimal for achiev-
ing SEN tissue concentrations in the 3-30 uM range
[296]. In the same animal model, we reported that SEN-
containing diet suppressed tumor development via
increased global H3/H4 histone acetylation, with a con-
comitant upregulation of p2I and Bax gene expression
[297]. In another study, Myzak et al. [298] demonstrated
that oral administration of 7.5 uM SEFN per animal per
day for 21 days significantly reduced growth of prostate
cancer (PC-3) tumor xenografts and decreased HDAC
activity in the xenografts, prostates, and mononuclear
blood cells. There was a trend towards increased global
histone acetylation in these tissues. The study was also
extended to human volunteers wherein consumption of
68 g broccoli sprouts resulted in a significant inhibition
of HDAC activity in peripheral blood mononuclear cells
3 h following intake [298]. Recently, it was demon-
strated that SEN is highly metabolized in mice, achiev-
ing micromolar concentrations in plasma, with tissue
concentrations in the range 0.003 - 0.35 nmole/mg.
Thus, SEN metabolites may play an important role in
HDAC and tumor inhibition [299]. In vivo data with
BITC, another ITC, clearly indicate that oral administra-
tion of 12 pumol BITC significantly suppressed the
growth of pancreatic (BxPC-3) tumor xenografts, and
that tumor suppression was associated with the reduced
NF-kB, cyclin D1, HDAC1, and HDAC3, complement-
ing observations made in vitro. The authors suggested
inhibition of HDAC1/HDAC3 by BITC as a plausible
mechanism of NF-xB inactivation [124]. Other studies
have shown that ITCs can achieve therapeutic serum
concentrations both iz vivo [300] and in humans [301].
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In rats, treatment with AM and/or DADS increased
acetylation of histones and caused up-regulation of p21
expression in normal liver and hepatoma cells and in rat
colonocytes [163,302,303]. However, there is concern
about the high concentration of allyl-derivatives used in
these studies, which may be associated with toxicity in
various tissues.

Li et al. [150] provided direct in vivo evidence on the
role of dietary HDAC inhibition and DNA damage for
the anti-cancer effects of DIM, an I3C metabolite. Pre-
vious reports by Bhatnagar et al. [149] showed DIM sig-
nificantly inhibited expression of HDAC1, HDAC2 and
HDACS3 in colon cancer cells and in APCmin/+ mice. Li
et al. [150] demonstrated using colon cancer (HT29)
xenografts that DIM downregulates HDAC1 and
HDAC2 and this was associated with induction of
yH2AX and p21 expression in the xenografts. Impor-
tantly, these effects were seen at non-toxic DIM concen-
trations. An oral dose of 250 mg/kg of DIM produced a
plasma concentration of 18 pg/ml in mice, equivalent to
~77 uM. The authors suggested DNA damage as a pos-
sible mechanism of cancer cell death induced by DIM
[150].

In vivo studies with dietary polyphenols have shown
encouraging results on DNA damage and tumor inhibi-
tion. Tyagi et al [304] showed that resveratrol (50 mg/
kg bw) treatment inhibited head and neck squamous
cell carcinoma (FaDu) tumor growth in nude mice, and
YH2AX and cleaved caspase-3 were strongly increased
in xenografts from resveratrol-treated mice compared to
controls. Vanhees et al. [305] have shown that prenatal
exposure to both genistein and quercetin supplements
in mice induced DSBs and DNA rearrangements in the
mixed-lineage leukemia (MLL) gene, especially in the
presence of compromised DNA repair. Toyoizumi et al.
[306] reported that co-administration of isoflavones and
NaNO, caused DNA damage in mouse stomach via the
formation of radicals. Amin et al. [307] observed that
EGCQG, in combination with luteolin, increased apoptosis
in head and neck and lung cancer xenografted tumors in
nude mice, possibly by ATM-dependent Ser(15) phos-
phorylation of p53 resulting from DNA damage.

Pharmacological HDAC inhibitors also have shown
promise when acting in vivo, alone or in combination
with radiotherapy/chemotherapy. Vorinostat, as a single
agent, was shown to induce DSBs associated with the
downregulation of DNA repair gene Rad52, thus pre-
venting brain metastasis of triple-negative breast cancer
[115]. In a murine metastatic neuroblastoma model, vor-
inostat was found effective possibly by modulating DNA
repair enzyme Ku-86 [308]. Treatment with LBH589,
another HDAC inhibitor, led to a dramatic reduction of
tumor growth in a colon (HCT116) cancer model. Ana-
lysis of the residual tumor revealed that HDAC inhibitor
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treatment increased histone acetylation, YH2AX accu-
mulation, and apoptosis. The treatment had no obvious
detrimental effects on the mice, only acting on the
xenografts [309]. In addition, various HDAC inhibitors
appear to sensitize tumors to IR in vivo, as demon-
strated by vorinostat [308,310], MS-275 [311], valproic
acid [312], LBH589 [313], LAQ824 [314], AN-9 [315]
and PCI-24781 [316]. Treatment with these HDAC inhi-
bitors led to greater delay in tumor growth by enhan-
cing IR-induced YH2AX in xenografts, suggesting that
HDAC inhibitors interfere with DSB repair and/or ren-
der DNA more susceptible to IR-induced damage. How-
ever, there is evidence that radiosensitization is not
limited to cancer cells, but also occurs in healthy normal
cells. Vorinostat, MS-275, sodium-butyrate and valproic
acid treatments have been shown to increase radiosensi-
tivity and reduce DSB repair capacity in normal cells
too, leading to potential genotoxic effects of HDAC
inhibitor treatment [317].

In addition to the growing list of studies in vivo, there
are over 300 human clinical trials of HDAC inhibitors,
tested either alone or in combination with radiation, che-
motherapy, and/or molecular therapy. In particular, some
of the human trials with vorinostat and valproic acid in
combination with radiation are evaluating the effects on
DNA damage and repair factors http://clinicaltrials.gov/.
While in vitro models have contributed enormously to
our mechanistic understanding of the epigenetic network
and its regulation, there remains a paucity of preclinical
and clinical data for the majority of dietary compounds.
Until this situation is rectified, one must exercise caution
when interpreting and extrapolating the significance of
current evidence in the literature. Ongoing clinical trials
are moving in the right direction, as for example in the
evaluation of broccoli sprouts and broccoli sprout extract
for modulating epigenetic marks in breast and prostate
cancer. In addition to testing for epigenetic biomarkers
in blood and tumor biopsies, DNA damage markers (e.g.
YH2AX) could be analyzed in tumor samples and adja-
cent normal tissue to provide insights on the DNA
damage response. Monitoring YH2AX levels in a patient’s
circulating tumor cells [318], PBMCs, or hair samples
might prove useful in the clinical setting [319,320]. Stu-
dies in (normal) human volunteers could certainly benefit
from such non-invasive techniques. However, it will be
important to note that tumor cells also have genetic
alterations that impact responses to DNA damage, which
differ from normal replicating cells. Notably, normal cells
typically respond in a facile manner to “correct’ DNA
damage responses once the test agent has been removed.

Conclusions
Genomic instability provides a means for selective tar-
geting of cancer cells over normal cells, via epigenetic
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players with important roles in DNA repair. The active
recruitment and de-recruitment of HAT and HDAC
enzymes and their binding partners at sites of DNA
damage produces localized sites of open chromatin,
increasing the genotoxic effectiveness of agents such as
UV, IR, and chemotherapeutic agents. The literature
supports the role of multiple HDACs in genome surveil-
lance, and HDAC inhibitors appear to facilitate cancer
cell death by enhancing the DNA damage response and
inhibiting DNA repair. Among the various cancer che-
mopreventive agents reviewed herein, many cause
changes in chromatin conformation, disrupt the intra-
cellular redox balance, and deregulate DNA repair pro-
teins. Thus, these compounds might activate the DNA
damage response with particular effectiveness in cancer
cells as compared to normal cells as depicted in Figure
3. In vivo therapeutic efficacy of these compounds, as
reviewed here and elsewhere [29], suggests that effective
concentrations are achievable and modulate DNA
damage and repair responses in tumors. Dietary com-
pounds with pleiotropic effects in cancer cells also likely
impact DNA damage and repair via other epigenetic
mechanisms, such as through DNA methylation and
microRNAs. Improved understanding of these various
epigenetic mechanisms will, it is hoped, provide a more
rational basis for combining specific dietary compounds

HDAC
inhibition

Histone/protein acetylation l ROS generation

DNA break

Activation of checkpoint, Defects in check-point
antioxidant and repair kinases and repair genes
pathways

| Survival |

\l/ No Repair

| Death |

Figure 3 The differential effect of DNA damaging agents in
cancer and normal cells. HDAC inhibitors are known to cause
DSBs through chromatin remodeling and oxidative damage due to
ROS generation. Normal cells counteract this by check point
activation leading to cell cycle arrest; anti-oxidant mechanisms and
effective DNA repair whereas cancer cells known to be defective in
some of these mechanisms, for e.g. check point kinases and repair

genes, fail to repair the DNA damage leading to cell death.
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and standard radiation or chemotherapy approaches,
thereby enhancing efficacy in the clinical setting.
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