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Abstract 

Background The study of biological age acceleration may help identify at-risk individuals and reduce the rising 
global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging 
in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities 
and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, 
we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To 
dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, 
as well as stratified our analyses by chronological age and biological sex.

Results We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the ill-
ness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to pos-
sible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated 
in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared 
to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic 
burden with an age acceleration of + 3.82 years (CI 2.02–5.61, P = 1.1E−03). Phenotypic aging and SCZ polygenic risk 
contributed additively to the illness and together explained up to 14.38% of the variance in disease status.

Conclusions Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points 
to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since 
increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific 
and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find 
that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific 
effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors 
can improve predictions of disease outcomes and may help with disease management in schizophrenia.
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Introduction
As the population continues to age, reducing the bur-
den of age-related disability and morbidity is timely 
and important, particularly for mental illnesses [1, 2]. 
Ranked as one of the most disabling illnesses globally [3], 
schizophrenia (SCZ) has significant impact on patients, 
families, and society. SCZ is associated with a two- to 
threefold increased risk of mortality [4–6] and a 15-year 
reduction in life expectancy compared to the general 
population [7, 8]. Despite elevated rates of suicide and 
other unnatural causes of death, most morbidity in SCZ 
is attributed to age-related diseases, such as cardiovas-
cular and respiratory diseases and diabetes mellitus [5, 9, 
10]. Processes of biological aging may therefore be accel-
erated in patients diagnosed with SCZ, either through 
an increased prevalence of age-related conditions or as 
a more integrated part of the illness [11]. Quantification 
of biological aging can help with identification of at-risk 
individuals or even prevention of age-related diseases 
[12, 13]. Various age-related biomarkers have been shown 
to have significantly deviating levels in people diagnosed 
with SCZ compared to controls [14], which may offer 
new opportunities to study the phenomenon of biological 
age in SCZ.

DNAm age predictors, or “epigenetic clocks,” are bio-
markers of aging that generate a highly accurate estimate 
of chronological age, known as DNAm age [15–17]. The 
difference between predicted DNAm and chronological 
age (Δage) is associated with a wide-range of health and 
disease outcomes, including all-cause mortality [18–21], 
socioeconomic adversity and smoking [22], metabolic 
outcomes, such as body mass index (BMI) and obesity 
[23, 24], and brain-related phenotypes, such as Parkin-
son’s disease, posttraumatic stress disorder, insomnia, 
major depressive disorder, and bipolar disorder [25–
29]. As epigenetic signatures can be modifiable [30], 
DNAm-based predictors hold great promise for clinical 
utilization.

While first reports on DNAm age in SCZ found lim-
ited to no evidence for altered biological age in either 
brain or blood in SCZ [31–34], recent larger studies 
reported both DNAm age acceleration in whole blood 
and age deceleration in patients compared to controls 
with evidence of age-specific effects [35, 36]. These 
studies analyzed multiple cohorts, but either ana-
lyzed cohorts separately or did not take into account 
between-cohort sampling variability, which makes it 
difficult to interpret their findings as results may have 

been biased by a single study. Meta-analyses can sta-
tistically combine results across cohorts, weight effect 
sizes by cohort sample size, and evaluate heterogeneity 
between studies, which allows for a more precise quan-
tification and decreases the probability of false negative 
results [37]. Furthermore, as age-related conditions and 
morbidities in the SCZ population differ between older 
and younger individuals, and women and men [5], age- 
and sex-stratified analyses of DNAm aging are war-
ranted as well, as these can provide important insights 
on how biological age is impacted in SCZ that would 
otherwise be missed. Finally, it is unknown how illness 
duration and polygenic risk are associated with DNAm 
age. It may be that adverse effects of the illness com-
pound over time and result in accelerated biological age 
in patients. On the other hand, mechanisms of aging 
may be more intrinsically altered in SCZ.

To investigate DNAm age in SCZ, we used three 
independent DNAm age estimators: the Hannum [16], 
Horvath [15], and Levine clock [17]. These clocks were 
also included in previous studies of DNAm age in 
SCZ. Each predictor is designed using different train-
ing features and captures distinct characteristics of 
aging [38]: (i) the Hannum age predictor was trained 
on whole blood adult samples, (ii) the Horvath predic-
tor was trained across 30 tissues and cell types across 
developmental stages, and (iii) the Levine combines 
DNAm from adult blood samples with clinical blood-
based measures. As the Levine estimator is trained on 
chronological age and nine clinical markers, its output 
is referred to as DNAm PhenoAge or “phenotypic age.” 
The Hannum estimator is said to capture cell extrinsic 
aging in blood, whereas the Horvath clock measures 
more cell intrinsic aging as it was trained across multi-
ple tissues and therefore is less dependent on cell type 
composition. All three clocks, in different but comple-
mentary ways, capture the pace of biological aging that 
is associated with various age-related conditions and 
diseases, including all-cause mortality [19, 38].

Here, we implemented these three DNAm clocks 
across four European case–control cohorts, represent-
ing one of the largest analyses of DNAm age in SCZ so 
far. We performed a meta-analysis across the full sam-
ple to obtain precise effect size estimates for each clock 
and evaluated heterogeneity between cohorts. We also 
stratified analyses by age and sex and integrated DNAm 
age with duration of illness and SCZ polygenic risk in 
a subsample of our cohort to further investigate how 
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DNAm aging is impacted in the illness. DNAm smok-
ing scores and blood cell type proportions were used 
to gain further insights into differential aging patterns. 
This study reports an in-depth investigation of the 
DNAm aging landscape in schizophrenia.

Results
Figure 1 shows a schematic overview of the study design 
and analysis framework used to investigate DNAm aging 
in SCZ. After data preprocessing and quality control, 
1090 SCZ cases and 1206 controls (2296 subjects of 2707 
initial samples) were included in our analysis. The over-
all sample has a mean age of 40.3  years (SD = 14.4) and 
consists of 34.5% women (Additional file 1: Table S1 and 
Additional file 2: Fig. S1).

Across cohorts, all three clocks produce a high cor-
relation with chronological age (Pearson’s r = 0.92–0.94; 

Fig. 2A and Additional file 2: S2). Using duplicates in the 
Dutch cohort, we assessed consistency between pairs of 
technical replicates, i.e., samples for which blood was col-
lected at the same time, but DNA processed at different 
times and DNAm data obtained on different arrays. Com-
paring Δage estimates between these pairs, we find a sig-
nificant correlation for each clock (Additional file 2: Fig. 
S3): Hannum (rho = 0.79, n = 10), Horvath (rho = 0.53, 
n = 118), and Levine (rho = 0.67, n = 118). Δage direction-
ality (i.e., age deceleration or acceleration) is concord-
ant in 90%, 73%, and 86% of pairs for Hannum, Horvath, 
and Levine, respectively, highlighting that the obtained 
estimates of DNAm age are reproduced across all three 
clocks. Comparing Δage estimates between clocks using 
all samples, we find a moderate concordance (Pearson’s 
r = 0.39–0.43; Additional file  2: Fig. S4), demonstrating 
that a significant proportion of the variation in Δage is 

Fig. 1 Overview of study design and analysis framework. DNA methylation (DNAm) data were available for a total of 2735 samples across four 
European cohorts. See Additional file 1: Table S2 for more details on samples. DNAm age estimates were generated using three DNAm clocks, each 
designed to capture different features of aging (box 2). To investigate differences in aging between cases and controls, Δage was computed (box 3) 
and analyzed according to the stepwise framework shown in box 4. SCZ, schizophrenia; NLD, the Netherlands; SCT, Scotland; SWD, Sweden; UK, 
United Kingdom; PRS, polygenic risk scores
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clock-specific. As these three estimators were trained on 
different features of biological aging, investigating them 
in conjunction may thus yield broader insights into dif-
ferential aging.

DNA methylation age is altered in SCZ independent 
from duration of illness
Across the full sample, patients with SCZ are on average 
1.53 years older in phenotypic Δage (Levine clock) com-
pared to controls  (Pmeta = 3.45E−08) (Fig. 2B). The intrin-
sic cellular age (Horvath) predictor revealed an opposite 
pattern, with SCZ cases appearing 0.47  years younger 
compared to controls  (Pmeta = 0.06). No differences were 
observed between cases and controls when applying the 
blood-based Hannum DNAm age predictor (β = − 0.02, 

 Pmeta = 1.00). There was no heterogeneity between the 
four cohorts  (Phet > 0.05, Additional File 3: Table S5). We 
found no association between DNAm aging and duration 
of illness in SCZ patients for any of the three epigenetic 
clocks, nor did we for age of onset (Fig.  2C, Additional 
file 3: Table S6).

Age‑ and sex‑specific effects contribute to DNAm aging
To investigate whether DNAm aging in SCZ differed by 
age and sex, we first quantified the overall contribution 
of the interaction of age and sex with disease status on 
Δage in the combined sample. For the Horvath and Lev-
ine clock, inclusion of an interaction term between age 
and case–control status presented a significantly bet-
ter model fit, with the three-way interaction model (i.e., 

Fig. 2 DNA methylation aging is altered in schizophrenia independent from illness duration. Presented are results visualizing DNAm aging in SCZ 
for each clock: Hannum (left), Horvath (middle), and Levine (right). Cases are shown in blue and controls in black. A Correlation between DNAm 
age and chronological age. The Pearson’s correlation estimates and corresponding p-values are shown in the bottom corner. B Boxplots of Δage 
between cases and controls. β represents the mean change in Δage in cases compared to controls. C Relationship between Δage and illness 
duration with a regression line fitted. Illness duration was adjusted for cohort, age, and sex and the residuals plotted. β represents the change 
in Δage in cases per year of chronological age compared to controls. In (B–C), the meta-analytic coefficients and p-values are shown. All P-values 
are adjusted for multiple testing across clocks (n = 3)
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disease status, age and sex) explaining the most variance 
in Δage (Table  1 and Additional file  1: S7). The three-
way interaction was a significant improvement of model 
fit for Levine Δage (P = 0.02), but not for Horvath Δage 
(P = 0.34), suggesting that sex-specific effects are more 
pronounced for Levine Δage. We found no evidence of 
age- and sex-specific effects for Hannum Δage.

To further investigate age-specific effects, we mod-
eled the interaction effect between disease status and 
chronological age on Δage using linear regression analy-
ses and found a differential rate of aging between cases 
and controls (Additional file 2: Fig. S5). That is, the slope 
of Δage across chronological age is 0.05 and 0.06 years 
steeper in cases compared to controls for the Horvath 
 (Pmeta = 2.3E−03) and Levine clocks  (Pmeta = 7.1E−03), 
respectively, with no evidence of heterogeneity between 
cohorts (Additional file  2: Fig. S6 and Additional file  3: 
Table  S8). As no significant effects were observed for 
the Hannum Δage, we decided to focus our down-
stream analysis on the phenotypic (Levine) age and 
intrinsic cellular (Horvath) age only. Next, we cat-
egorized chronological age into age groups by 10-year 
intervals and estimated differential aging between cases 
and controls within each group. We observe signifi-
cant DNAm age deceleration in early adulthood (18–
30 years) with patients estimated at − 1.23 years younger 
 (Pmeta = 3.9E−03) in intrinsic cellular age with no signifi-
cant difference at later ages (Fig. 3A and Additional file 1: 
S7). In phenotypic age, SCZ patients displayed significant 
DNAm age acceleration from 30 years and older (Fig. 3B), 
with the most pronounced age acceleration between 50 
and 60 years (2.29 years,  Pmeta = 9.0E−03). We again find 
no evidence of heterogeneity within age groups between 

cohorts (Additional file  2: Fig. S8 and Additional file  3: 
Table S9, 10).

To model a possible nonlinear relationship between 
DNAm aging and schizophrenia across the full range of 
chronological age, we implemented generalized additive 
models (GAMs) to estimate the trajectory of Δage and 
tested whether these trajectories were significantly dif-
ferent between cases and controls. We found significant 
nonlinear DNAm aging across chronological age for all 
three clocks (Additional file 2: Fig. S9, Additional file 4: 
Table  S11). We, however, did not observe a significant 
interaction effect of case–control status with chrono-
logical age in the full sample, nor in men and women 
separately (Additional file  4: Table  S12). Δage differ-
ence estimates between cases and controls, based on the 
GAMs, did identify specific age windows that suggest dif-
ferences between men and women (Fig. 3C–H). Specifi-
cally, we found intrinsic age deceleration in men between 
age 18–40 (Fig.  3E) and more pronounced phenotypic 
age acceleration in women after age of 30 (Fig. 3G).

DNAm aging affects SCZ above and beyond smoking 
and blood cell types
To investigate the effect of smoking and blood cell type 
composition, we use DNAm-based smoking and cell 
type estimations (see Methods) as a proxy to evaluate 
their contribution to DNAm aging in SCZ. While DNAm 
clocks, by design, will encapsulate such effects, quantify-
ing the contributions of each factor increases interpret-
ability and helps understand the factors contributing to 
the differential aging findings. We observe that blood cell 
type proportions explain significantly more variance in 
DNAm aging than DNAm smoking scores (Additional 

Table 1 Age- and sex-specific effects significantly contribute to DNAm aging in schizophrenia

Shown are the contributions of interaction effects between disease status and age and sex on Δage. The baseline model corresponds to 
Δage ~ dataset + cohort + platform + age.continuous + sex. For other models, the variable(s) in addition to the baseline variables are shown with the corresponding 
variance explained (R2) in Δage. Interaction terms with chronological age are modeled as a continuous variable (age.cont) or a categorical variable (age.groups). The 
latter uses previously defined decades. Model comparison is performed to assess whether the contribution of an interaction term is significant compared to a model 
without that term. The Chi-square test is used to test two models with corresponding p-value presented. The results of these analysis are shown for both the Horvath 
and Levine clock. P-values are corrected for the number of tests performed (3 clocks × 4 comparisons = 12)

Hannum Δage Horvath Δage Levine Δage

Model variables Comparison R2 (%) P‑value R2 (%) P‑value R2 (%) P‑value

Model 0:
baseline

– 6.9 – 3.6 – 2.1 –

Model 1:
 + status

Model 0 vs. 1 6.9 1.00 4.0 9.8E−03 3.2 6.7E−06

Model 2:
 + status*age.cont

Model 1 vs. 2 7.1 0.34 4.3 0.13 3.7 5.3E−03

Model 3:
 + status*age.groups

Model 1 vs. 3 7.4 0.24 5.5 2.0E−05 4.0 0.02

Model 4:
 + status*age.groups*sex

Model 3 vs. 4 7.7 1.00 5.9 0.34 4.7 0.02
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file 5: Supplementary Results S2.1). Inclusion of DNAm 
smoking score and blood cell proportions as covariates in 
our main models explains part, but not all of the observed 
disease effects (Additional file  1: Table  S13). Using 
a penalized regression framework (Additional file  1: 
Table S14), we show that Levine Δage independently con-
tributes to the variance in disease status in women older 
than 31 above and beyond smoking scores and blood cell 
type proportions (P = 5.5E−03) (Additional file  5: Sup-
plementary Results S2.2 and Additional file 2: Fig. S10). 
A significant proportion of the Horvath Δage effect on 
disease status is reduced by adjusting for smoking (Addi-
tional file 1: Table S13-14). However, smoking is not asso-
ciated with Horvath Δage in controls (Pearson r = 0.01, 
P = 0.95) nor in cases (Pearson r = − 0.08, P = 0.28) (Addi-
tional file 2: Fig. S11). As smoking covaries with SCZ dis-
ease status, it is difficult to distinguish these signals.

Age deceleration by multi‑tissue Horvath clock 
is not present in brain
We investigated DNAm aging in frontal cortex post-
mortem brain samples of 221 SCZ cases and 278 con-
trols. The multi-tissue Horvath clock accurately predicts 
DNAm age in the brain as well (r = 0.94, P < 2.2e−16). 
We, however, find no difference in DNAm aging between 
cases and controls (ß = − 0.29, P = 0.46) and no evidence 
of age-dependent aging. More details are shown in Addi-
tional file 5: Supplementary Results (S2.3).

Phenotypic age acceleration is associated with SCZ 
polygenic risk in women
To further decipher the factors underlying the signal of 
differential aging in SCZ, we examined the role of SCZ 
polygenic risk (Additional file 2: Fig. S12, Fig. 4). Based 
on the identified age windows of differential aging 

Fig. 3 Differential DNAm aging in schizophrenia maps to specific age windows between sexes. A, B Shown are Δage differences between cases 
and controls across age groups for the Horvath (A) and Levine clock (B). For each age group, number of cases and controls, and meta-analytic 
effect size (β) and p-value (P) are presented. P-values are corrected for multiple testing (2 clocks × 5 groups = 10 tests). See Table S5 for more details 
on results and corresponding statistics. C–H Case–control Δage difference curves are visualized based on GAM predictions in the combined 
sample. Age intervals in which the 95% confidence interval of the difference estimate is different from zero are highlighted by dotted vertical lines. 
Identified age intervals for the Horvath and Levine clock are shown in (C–E) and (F–H), respectively. Results are shown for the full sample (left), 
women (middle), and men (right)
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between cases and controls, we performed polygenic 
risk association analyses with Horvath intrinsic cellu-
lar aging in individuals below the age of 40 and Levine 
phenotypic aging in individuals after the age of 31, and 
stratified our analyses by sex. As expected, PRS1 was 
significantly higher in cases compared to controls (odds 
ratio = 2.55, P = 1.9 ×  10106) and explained almost 20% 
of the variance in disease status in the full sample (see 
Additional file 5: Supplementary Methods S1.6). We did 
not observe a significant association between intrinsic 
cellular aging and SCZ polygenic risk terciles or con-
tinuous PRS1 (Fig.  4A). We did find increased pheno-
typic age acceleration in cases with high SCZ genetic 
risk (Fig. 4B). Female cases in the highest PRS1 tercile 
are predicted to be + 3.82 years older in phenotypic 
age compared to matched controls (P = 1.1E−03), while 
women with SCZ with mid or low PRS did not show 
significantly different aging (Fig.  4B). By permutation 
of PRS1 terciles, we find that the effect in the highest 
PRS1 tercile is unlikely to occur by chance (P = 0.025). 
We do not observe such an association in men.

Finally, we assessed how Levine Δage and SCZ PRS1 
compare in predicting SCZ disease status in our sample. 
In the subsample with both polygenic risk and Levine 
DNAm age information available, PRS1 and Levine Δage 
explain 11.5% and 1.7% of the variance in disease status, 
respectively. Together, they explain 13.0%. In women in 
later adulthood, SCZ PRS1 and Levine Δage explain 9.4% 
and 4.5% independently and 14.4% jointly (Fig. 5).

Discussion
We performed a large study of biological aging in schizo-
phrenia using multiple epigenetic clocks based on whole 
blood DNA methylation data. Our study has several 
novelties. First, we performed a meta-analysis across 
four European cohorts as opposed to individual analy-
ses per cohort, which, combined with multiple testing 
correction, is robust to cohort-specific artifacts in the 
data. Second, we performed detailed phenotypic analy-
ses including explicit modeling of age- and sex-specific 
effects. We observe significant nonlinear patterns of age-
specific DNAm aging in SCZ, a finding consistent across 

Fig. 4 Phenotypic age acceleration associates with schizophrenia in women with high PRS. Forest plots showing associations statistics of Horvath 
Δage (A) and Levine Δage (B) with SCZ PRS stratified by sex. The analyses of Horvath Δage and Levine Δage were subsetted to individuals younger 
than 40 and older than 31 years, respectively. Analyses were furthermore stratified by sex. Case–control analyses were performed without PRS1 
stratification (PRS-all), with cases in the first PRS tercile (PRS-low), cases in the second tercile (PRS-mid), cases in the third tercile (PRS-high), and using 
PRS1 as continuous variable in cases only. For each analysis, the number of controls and cases included, the regression coefficient, and the P-value 
are shown. P-values were adjusted for multiple testing (number of tests = 30). The red asterisk highlights analyses that are also significant 
after permutation (P < 0.05)
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four European cohorts, that seems to have sex specific-
ity as well. The most significant differential aging pat-
tern that we observe is in cases ages 30 years and older, 
particularly in women, in which we detect advanced 
phenotypic age acceleration, as measured by the Levine 
clock. We also observe intrinsic cellular age deceleration, 
particularly in men, in SCZ during early adulthood in 
ages 40 and younger, as measured by the Horvath clock. 
Third, we integrated DNAm age with duration of illness 
and SCZ polygenic risk. We did not find an association 
between DNAm aging and duration of illness in patients. 
We did observe, however, that phenotypic age accelera-
tion in women with a SCZ diagnosis is associated with a 
higher burden of SCZ polygenic risk. This high SCZ risk 
group has accelerated aging of + 3.82  years compared 
to age- and sex-matched controls. Phenotypic age and 
SCZ PRS furthermore contribute additively to SCZ and 
explain up to 14.4% of the variance in disease status. The 
latter suggests that combining genetic and epigenetic 
predictors can augment downstream prediction of out-
comes in SCZ, similarly to what was recently shown for 
BMI [39].

Our results of significant phenotypic age acceleration 
in SCZ replicate a previous report on analysis of the Lev-
ine clock that was performed in a smaller but overlapping 
SCZ sample [35]. Similar to our finding of 1.53 years of 
phenotypic age acceleration in SCZ, they report a 1.4- to 
1.9-year increase in Δage in SCZ cases compared to con-
trols. Our meta-analysis showed that this effect is robust 
across four cohorts and has age and sex specificity, and 
associates with SCZ polygenic risk in women in later 
adulthood. The Levine estimator was constructed by pre-
dicting a surrogate measure of phenotypic age, which is a 
weighted average of 10 clinical markers, including chron-
ological age, albumin, creatinine, glucose and C-reactive 
protein levels, alkaline phosphatase, and various blood 

cell-related measures [17]. By design, the Levine estima-
tor is a composite biomarker that strongly predicts mor-
tality, in particular that of age-related diseases, such as 
cardiovascular-related phenotypes. A 1-year increase in 
phenotypic age is associated with a 9% increased risk of 
all-cause mortality and a 10% and 20% increase of cardio-
vascular disease and diabetes mortality risk, respectively 
[17, 40]. The multiple year increase in phenotypic age in 
SCZ could thus imply an increased mortality in patients 
that is linked to cardiovascular disease, a previously well-
established epidemiological observation [4–6]. A recent 
study, however, found that DNAm age acceleration only 
predicts mortality in SCZ cases without preexisting can-
cer using the Hannum clock [41]. They did not find such 
evidence using the Levine clock. The smaller sample size 
and predominantly male cohort, particularly given our 
finding of more pronounced age acceleration in women, 
may have reduced the predictive power of the study. The 
findings of this study, however, align with the observation 
that patients with SCZ, particularly women in later adult-
hood, are reported to be at increased mortality risk due 
to cardiovascular disease and diabetes [5, 42, 43]. Thus, 
changes in phenotypic age we observe in this group of 
SCZ patients may reflect a molecular signature related 
to this epidemiological observation. A more focused and 
larger study of DNAm aging in women with SCZ in later 
adulthood, preferably stratified by SCZ genetic risk, is, 
however, warranted to further understand the molecu-
lar mechanisms as well as the clinical utility of measured 
accelerated phenotypic age. Assuming that cardiovascu-
lar risk is modifiable in SCZ [44], phenotypic age could 
serve as a potential biomarker to identify at-risk individ-
uals and in this way help with disease management and 
improvement of life expectancy.

In contrast to age acceleration in phenotypic age, we 
observe age deceleration in intrinsic cellular age (i.e., the 
Horvath DNAm age), which replicates results of previous 
studies [35, 36]. We show that men with SCZ in younger 
adulthood are particularly impacted and show the most 
significant deceleration, which was a robust finding 
across the four cohorts. Unlike the association findings 
in women, we did not observe clear patterns with genetic 
and phenotypic variables that could help to further deci-
pher the signal. Unlike Wu et al. [36], we did not observe 
age deceleration in postmortem brain samples of the 
human cortex, indicating that the observed aging signal 
in SCZ may be blood-specific. However, our analysis in 
brain tissue was performed on a smaller sample but over-
lapping sample. Horvath DNAm aging has been shown to 
be associated with molecular processes of development 
and cell differentiation [15, 38], including blood-based 
DNAm aging in human (neuro)developmental pheno-
types [45, 46]. One possible explanation is that patients 

Fig. 5 DNAm aging and polygenic risk contribute additively 
to schizophrenia. The variance explained in schizophrenia disease 
status (y-axis) by SCZ PRS1 and Levine Δage shown for all samples 
(left) and for women older than 31 years (right). The estimates 
shown are derived on top of the effect of technical variation, cohort, 
platform, and chronological age
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diagnosed with SCZ in this age group show evidence of 
delayed or deficient development and that this is detect-
able in blood through the multi-tissue Horvath clock. 
Another explanation is that medication effects underlie 
biological age deceleration in SCZ, as clozapine use has 
been associated with Horvath intrinsic age deceleration 
in men [35]. More study is therefore needed to further 
dissect how blood-based Horvath age deceleration is 
associated with SCZ.

While we did observe aging effects with the Horvath 
and Levine clock, we did not find the same with the Han-
num clock. The Hannum clock is less predictive of age 
acceleration effects on mortality risk than the Levine 
clock [17], which could explain the lack of findings in our 
analyses. The Hannum estimator furthermore cannot be 
used on first generation 27  K DNA methylation arrays 
which reduced the sample size of this study with 30% and 
may have impacted the statistical power of these specific 
analyses. This highlights the benefits of designing meth-
ods that are inclusive to all platforms, so all data, both old 
and new, can be leveraged.

A systematic review of aging biomarkers in SCZ found 
that only about a quarter of studies explored an interac-
tion effect or statistically compared the regression slope 
between cases and controls [14]. Our findings of age- and 
sex-specific DNAm aging support their recommenda-
tions to specifically examine interaction effects with age 
and sex in aging studies but also more general in epige-
netic studies of SCZ, such as epigenome-wide association 
studies. Results from our GAM analyses furthermore 
suggest that future research should aim to integrate non-
linear models to fully capture the complex relationship 
between DNAm aging and clinically relevant variables 
across the lifespan of patients. These models could help 
validate and further refine the most relevant age intervals 
in larger cohorts.

We did not observe an association between duration 
of illness and changes in DNAm age in SCZ. This lack of 
association is consistent across cohorts and suggests that 
the cumulative consequences of disease do not contribute 
to the observed acceleration in DNAm age. This is a sur-
prising finding, as we hypothesized that disease-related 
effects could compound over time in individuals with a 
diagnosis of SCZ, thereby accelerating their biological 
age. However, it should be noted that illness duration 
and chronological age are highly correlated (rho = 0.84 in 
the full sample). As we adjusted for chronological age in 
our statistical models, we removed a significant propor-
tion of the variation in duration of illness, which likely 
reduced statistical power to detect associations. This is a 
limitation of the cross-sectional design of the study and 
warrants further investigation using a longitudinal study 
design.

Another limitation of the cross-sectional design of the 
study is that dissecting cause-and-effect relationships 
between DNAm aging and SCZ remains challenging. As 
the published studies on SCZ DNAm aging that have so 
far been published in literature have been conducted on 
similar datasets, there is also a need for further replica-
tion and mechanistic investigation in new cohorts. Ide-
ally, future studies should preferably use longitudinal 
prospective cohorts with genomic data and information 
on symptom recurrence and severity, comorbidities, and 
other phenotype-related variables. Such an approach 
can assess the clinical relevance of DNAm aging in SCZ 
above and beyond other known health risk factors and 
disease biomarkers, such as medication use and smok-
ing. Our study, for example, did not include GrimAge, a 
recently trained DNAm mortality clock [47]. Unlike phe-
notypic age acceleration, GrimAge acceleration is largely 
driven by smoking effects. Thus, studies that investi-
gate GrimAge in the context of SCZ should incorporate 
detailed information on smoking behavior. As this study 
consists of only European cohorts of primarily White 
study participants, future studies in other populations 
and racial–ethnic groups are needed to determine how 
generalizable our findings are. An urgent open question 
remains whether DNAm age signatures are modifiable 
with regard to clinical and lifestyle factors associated 
with SCZ. Improvement of existing methodology and/
or development of new DNAm age biomarkers [48, 49] 
may in addition help to better study differential aging 
in SCZ and related disorders with increased mortality. 
Combining blood-based DNAm age with that of other 
aging profiles, such as MRI-based brain age [50], may 
further advance our understanding of aging and SCZ dis-
ease progression, including the increased mortality [51]. 
Finally, our findings support an integrative strategy with 
polygenic disease risk to improve clinical utilization.

Schizophrenia, like other mental illnesses, are asso-
ciated with a wide-range of subsequent chronic physi-
cal conditions, including many age-related diseases 
[52]. While health and life expectancy of the general 
population continue to improve, the mortality dispar-
ity between patients with schizophrenia and those 
unaffected continues to increase [9, 10, 42, 53]. As the 
burden of age-related diseases continues to rise, early 
detection and subsequent opportunities for interven-
tions before disabilities and comorbidities become 
established will be important [1, 2]. Molecular bio-
markers of aging, such as DNAm clocks, are now 
emerging as candidate tools for screening and interven-
tion. Taken together, this study strengthens the need 
for more research on DNA methylation aging in schizo-
phrenia, a population vulnerable to age-related diseases 
and excess mortality.
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Material and methods
Cohort and sample description
Details of samples included in this study can be found 
in Additional file  5: Supplementary Information. 
Briefly, unrelated patients with a diagnosis of SCZ 
and ancestry-matched non-psychiatric controls from 
four European cohorts were included: the Netherlands 
(N = 1116), Scotland (N = 847), Sweden (N = 96), and 
the UK (UK, N = 675). The Dutch DNAm cohort is a 
case–control sample with inpatients and outpatients 
recruited from different psychiatric hospitals and insti-
tutions across the Netherlands [54, 55]. All patients 
and controls were of Dutch descent, with at least three 
out of four grandparents of Dutch European ancestry. 
The controls were volunteers and free of any psychi-
atric history. The UK cohort is a case–control sample 
recruited from London and South England [56–58]. All 
subjects were included if both parents were of English, 
Irish, Welsh, or Scottish descent, with at least three out 
of four grandparents having the same origins. The Scot-
tish cohort is a case–control sample of individuals that 
have self-identified as born in the British Isles (95% in 
Scotland) [56–58]. The Swedish cohort is a case–con-
trol sample of older study participants, i.e., 50–70 years. 
Cases were selected on the basis of a clinical diagnosis 
of SCZ using the Diagnostic and Statistical Manual for 
Mental Disorders (DSM-IV), Research Diagnostic Cri-
teria (RDC), or the International Classification of Dis-
eases 10 (ICD10). Controls were unaffected subjects 
without a history of any major psychiatric disorder. 
Whole blood DNAm data were available for a total of 
2707 samples (1399 cases and 1308 controls; Additional 
file 1: Table S1).

Genome‑wide DNA methylation profiling and data 
processing
To quantify DNA methylation, DNA was extracted 
from whole blood and bisulfite converted for hybridi-
zation to the Illumina Infinium Human Methylation 
Beadchip. Samples were assayed with either the 27  K 
or 450  K beadchip, which contain 27,578 and 485,512 
probes that interrogate CpG sites across the genome, 
respectively. For each platform, data processing pipe-
lines were implemented, which includes background 
correction, color channel and probe-type correction, 
and normalization of the data, to minimize the effect 
of technical variation on the final beta values, as previ-
ously shown [59]. Samples with more than 5% of probes 
detected at P > 0.05 were excluded from further analy-
ses (n = 13). Full details are described in Additional 
file 5: supplementary methods.

DNAm‑based estimation of biological age
To compute blood-based DNAm age estimates, pro-
cessed beta values were used as input to the Hannum 
[16], Horvath [15], and Levine [17] DNAm clock. 
These DNAm age estimators use a set of CpGs that are 
selected via an optimization algorithm to collectively 
minimize the error associated with estimating chrono-
logical age (Additional file  5: Supplementary Informa-
tion). Horvath DNAm age estimates were calculated 
using R scripts from the Horvath DNA Methylation 
Calculator (https:// dnama ge. genet ics. ucla. edu). Han-
num and Levine estimates were obtained by using the 
reported set of probes with corresponding regression 
weights. We define Δage by subtracting chronological 
age at the time of the blood draw from the predicted 
DNAm age.

Statistical analyses
To investigate epigenetic aging differences in SCZ, we 
first removed samples with discrepant phenotypic sex/
gender and predicted (biological) binary sex based on 
DNAm data (n = 9), as well as samples with missing 
chronological age data (n = 237), bipolar disorder diag-
nosis (n = 26), and duplicate samples (n = 126). For each 
epigenetic clock, we regressed Δage on technical princi-
pal components (PCs), using the first components that 
cumulatively explain > 90% of variation in intensity values 
of control probes, and added the residuals to mean(Δage) 
to generate a measure in the same units as Δage that is 
adjusted for technical variation (Δage-adjusted). We used 
the adjusted value for subsequent analyses and referred 
to it as Δage.

As association analyses of DNAm age between groups 
are sensitive to the distribution of chronological age, 
particularly at older ages, any case older than the oldest 
control was excluded from each cohort (n = 5 for NLD, 
16 for SCT, 4 for SWD, and 1 for UK). Chronological age 
was furthermore included as a covariate in all analyses, 
as recommended [60]. To minimize the effect of outly-
ing samples, we excluded samples > 3SD from mean Δage 
across cohorts (ranging from n = 13–16 for the three 
clocks). These are samples for which DNAm age diverged 
substantially from chronological age, which are likely 
artifacts.

For each clock and each cohort, we implemented a 
multivariable regression model predicting Δage as a func-
tion of schizophrenia status, sex, and age. For the Dutch 
cohort, batch and array platform were also included as 
covariates, as this cohort consists of multiple datasets 
from both the 27 K and 450 K platform. For each clock, 
regression coefficients with corresponding standard 
errors for each of the four cohorts were then supplied to 

https://dnamage.genetics.ucla.edu
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the rma() function of the metafor package [61] in R to fit 
a meta-analytic fixed-effect model with inverse variance 
weights and obtain an overall effect size and test statistic.

To quantify the significance of age- and sex-specific 
effects, we determined the contribution of interaction 
effects on top of the main disease effect. We first com-
bined all cohorts to maintain necessary sample sizes 
across age and sex groups. Age groups were defined 
by grouping samples by decades with ages 18 and 19 
included in the first decade (18–30, 31–40, etc.). To 
quantify the gain in variance explained in Δage, models 
with the interaction term were compared to a baseline 
model without the interaction term. For each analysis, 
statistical significance was determined using Bonferroni 
correction, i.e., P < 0.05/number of tests.

GAMs were used to investigate nonlinear associations 
between DNAm aging and SCZ across chronological 
age. GAMs can identify trajectories in both longitudinal 
[62] and cross-sectional data [63] and identify difference 
between groups [64, 65]. We modeled Δage of each clock 
as a (potentially) nonlinear function of chronological age 
and tested for significant interaction effects of chrono-
logical age with case–control status. Difference plots 
were used to visualize differential aging between cases 
and controls within specific chronological age windows. 
Analyses were performed in the combined sample, and 
in men and women separately, using R_v4.0.1 using the 
packages mgcv_1.8.33 [64] and itsadug_2.4 [66].

SCZ polygenic risk quantification
Polygenic risk scores (PRS) were obtained from analyses 
of the SCZ GWAS conducted by Psychiatric Genomics 
Consortium (PGC) [67]. Using a leave-one-out approach, 
weights were generated in a training dataset based on all 
samples minus the target cohort in which the PRS were 
calculated. For each individual, weighted single-nucle-
otide polymorphisms (SNPs) were summed to a genetic 
risk score that represents a quantitative and normally 
distributed measure of SNP-based SCZ genetic risk. To 
reduce between-cohort variation and maximize statis-
tical power, we used a previously developed analytical 
strategy that uses principal component analysis (PCA) 
to concentrate disease risk across PRSs of ten GWAS 
p-value thresholds into the first principal component 
(PRS1) [68] (Additional file  5: Supplementary Informa-
tion). PRS1 explains 70.7% of the variance in risk scores 
and 19.9% of the variance in SCZ status, which is more 
than any of the original p-value thresholds (4.9–17.4%). 
The other PCs had no explanatory value in disease sta-
tus (mean R2 = 0.0%), which means that PRS1 captures 
the majority of SNP-based SCZ polygenic risk. PRS1 
was generated for 1933 individuals, 853 cases and 1080 

controls, and modeled as both a quantitative and cat-
egorical variable to predict Δage.

Defining age at onset and illness duration
Age at onset is defined as the earliest reported age of psy-
chotic symptoms or by the Operational Criteria Check-
list (OPCRIT), depending on the cohort. These data are 
available for a subset of cases (N = 710) across the Dutch, 
Scottish, and UK cohorts. Illness duration is defined as 
the time between age at onset and blood collection. A 
more detailed description of each cohort’s definition is 
available in Additional file 5: Supplementary Information.

DNA methylation‑based smoking scores and blood cell 
type proportions
For samples assayed on the 450  K platform, smoking 
scores and blood cell type proportions were estimated 
from the data (see Additional file  5: Supplementary 
Methods) and used as a proxy to further decompose and 
understand differential aging effects in a subsample of the 
combined sample.

DNAm age in postmortem brain case–control samples
DNAm age estimates were generated for case–control 
postmortem brain frontal cortex samples (N = 499) using 
publicly available data across four datasets (Additional 
file  1: Table  S3 and Additional file  5: Supplementary 
Results S2.3).

Estimating the contribution of differential aging 
in schizophrenia
Using a multivariable logistic regression model for dis-
ease status, we fitted batch, cohort, DNAm smoking 
score, DNAm blood cell type proportions, and Δage 
as explanatory variables. We first performed a variable 
reduction step to select the most contributing variables 
to disease status by use of a regularized logistic regres-
sion using the glmnet() function in R (“glmnet” package, 
v2.13) [69]. Alpha was set to “1” (Lasso) and the lambda 
parameter estimated at the optimal value that mini-
mizes the cross-validation prediction error rate using 
the cv.glmnet() function. For each selected variable, we 
then report the variance explained in SCZ status (glm, 
family = “binomial”) for both the individual variable and 
adjusted for all other selected variables using the Nagel-
kerkeR2() function in the “fmsb” package (v 0.6.3). The 
significance of each variable to their contribution was 
computed by comparing the model with and without the 
variable of interest using the likelihood ratio test of the 
anova() function.
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