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Abstract 

Background The unknown tissue of origin in head and neck cancer of unknown primary (hnCUP) leads to invasive 
diagnostic procedures and unspecific and potentially inefficient treatment options for patients. The most common 
histologic subtype, squamous cell carcinoma, can stem from various tumor primary sites, including the oral cavity, 
oropharynx, larynx, head and neck skin, lungs, and esophagus. DNA methylation profiles are highly tissue-specific 
and have been successfully used to classify tissue origin. We therefore developed a support vector machine (SVM) 
classifier trained with publicly available DNA methylation profiles of commonly cervically metastasizing squamous 
cell carcinomas (n = 1103) in order to identify the primary tissue of origin of our own cohort of squamous cell 
hnCUP patient’s samples (n = 28). Methylation analysis was performed with Infinium MethylationEPIC v1.0 BeadChip 
by Illumina.

Results The SVM algorithm achieved the highest overall accuracy of tested classifiers, with 87%. Squamous cell 
hnCUP samples on DNA methylation level resembled squamous cell carcinomas commonly metastasizing into cer-
vical lymph nodes. The most frequently predicted cancer localization was the oral cavity in 11 cases (39%), fol-
lowed by the oropharynx and larynx (both 7, 25%), skin (2, 7%), and esophagus (1, 4%). These frequencies concord 
with the expected distribution of lymph node metastases in epidemiological studies.

Conclusions On DNA methylation level, hnCUP is comparable to primary tumor tissue cancer types that commonly 
metastasize to cervical lymph nodes. Our SVM-based classifier can accurately predict these cancers’ tissues of origin 
and could significantly reduce the invasiveness of hnCUP diagnostics and enable a more precise therapy after clinical 
validation.
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Introduction
Head and neck cancer of unknown primary
Head and neck cancer is a group of malignant tumors 
originating from the oral cavity, pharynx, larynx, sali-
vary glands, sinuses, nose, or head and neck skin. Head 
and neck squamous cell carcinoma (HNSCC) is the 
most common subtype and accounts for approximately 
90% of head and neck cancer cases [1]. Head and neck 
cancer of unknown primary (hnCUP) is defined as 
lymph node metastasis in the head and neck region 
without a corresponding primary tumor [2]. In about 
50% of initial hnCUP cases, the primary tumor can 
be found through a multi-step diagnostic workup [3]. 
Unresolved hnCUP cases amount to 1.5–3% of head 
and neck cancer patients and have a 5-year survival rate 
of 30–40% [2]. The most common histologic subtype 
(around two-thirds) is the squamous cell carcinoma 
(SCC) [4–7].

Although there is, by definition, no way to validate 
the primary sites of hnCUP, it is conceivable that they 
show a distribution similar to that of typically cervi-
cally metastasizing cancers. CUP can also possibly be 
an entirely unique entity [8]. However, the most likely 
explanation for most CUP cases suggests the exist-
ence of a distinct but small primary tumor, which may 
be detected by a thorough diagnostic workup [8]. This 
hypothesis is partly supported by the metachronous 
identification of the primary tumor in 57% of patients 
who did not receive adjuvant radiotherapy to potential 
primary sites in one study [2]. In these cases, a small 
primary tumor grows without treatment until it is 
detected in clinical examination or imaging.

To evaluate CUP as a possible separate entity, lim-
ited investigations of the mutational landscape have 
been performed [9, 10]. Gottschlich et al., for example, 
showed a significant reduction in TP53 mutations in 23 
hnCUP samples compared to the expected frequency in 
SCC of the head and neck [9]. However, other studies 
could not find any significant differences in mutation 
and protein expression analyses between CUP cases 
and cases with known primary tumor [10]. CUP itself 
has been shown to have a very heterogeneous muta-
tional landscape [11], like metastatic and late-stage 
tumors.

Considering the ambivalent data from rather small 
study cohorts supporting CUP being a unique cancer 
type [12], it is most commonly assumed to be a meta-
static disease stemming from a broad variety of differ-
ent cancer entities [10, 13]. This hypothesis is further 
supported by successful approaches to demarcate the 
primary tumor sites based on DNA methylation analy-
sis of CUP, as will be discussed below [14, 15].

DNA methylation profiles for the classification of tumor 
tissue
DNA methylation has been successfully used for the clas-
sification of tumor tissue samples [16–19]. The tissue 
specificity of DNA methylation also enabled the identifi-
cation of the origin of tissue. Relevant examples are:

Moran et  al. implemented a methylation-based clas-
sifier that correctly predicts the different unknown pri-
mary sites of CUP tumors. Freely available methylation 
data of various tumor entities provided by The Cancer 
Genome Atlas (TCGA) were used to train the prediction 
model. This classifier could distinguish between 38 can-
cer types accurately [11].

The distinction between pulmonary metastases and 
head and neck cancer (HNSCC) has been demonstrated 
by Jurmeister et al. using DNA methylation analyses [20]. 
In another work, Leitheiser et  al. were able to predict 
the tissue origin of lymph node metastasis samples of 
HNSCC [14].

Origin of cervical lymph node metastasis
Despite promising molecular techniques, the diagnosis 
of an SCC lymph node metastasis without a correspond-
ing primary still poses a diagnostic dilemma as the entity 
cannot be distinguished with routine pathological exami-
nation [20]. In most cases, HNSCC are responsible for 
cervical lymph node metastases. However, esophageal 
SCC (ESCC), lung SCC (LUSCC), and cutaneous squa-
mous cell carcinoma (CSCC) do contribute to cervical 
lymph node metastases as further possible tumor entities 
(Fig.  1). Epidemiological data of these entities allow us 
to estimate how likely they are to metastasize cervically 
[21–26].

This study aimed to analyze whether methylation pro-
files obtained from lymph node tissue of hnCUP patients 
resemble or differ from those of tumors that can metas-
tasize into head and neck lymph nodes, not only focus-
ing on HNSCC but also on head and neck skin, lung, and 
esophagus SCC. Another objective was to explore poten-
tial variations in the frequency distribution between 
hnCUP and lymph node metastases with confirmed pri-
mary tumors.

Materials and methods
Study cohort
We retrospectively selected 28 patients (median age 64; 
4 females, 24 males) with hnCUP from a preexisting 
cohort at the Department of Otorhinolaryngology, Head 
and Neck Surgery, Technical University of Munich, Ger-
many, who underwent treatment between 2002 and 2013. 
The primary tumor site of the metastases was not found 
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despite an exhaustive diagnostic workup consisting of a 
thorough clinical examination, panendoscopy of the oral 
cavity, pharynx, and larynx, as well as multimodal imag-
ing comprising PET-CT, CT, and MRI scans. All sam-
ples were seen by a pathologist and confirmed as SCC 
histologically. Table 1 provides an overview of the study 
cohort’s demographic and clinical characteristics, while 
(see Additional file: 2) offer additional clinical features.

For each patient, lymph node tissue was obtained by 
lymph node extirpation. Tissue was then formalin-fixed 
and paraffin-embedded (FFPE). Patients received no 
therapy prior to tissue sampling. The study has received 
approval from the local ethics committee (Technical Uni-
versity of Munich, 285/20 S-KH).

Reference cohort from publicly available data
For classifier development, we used publicly available 
as well as our data obtained through DNA methylation 
profiling of primary tumors and lymph node metastases 
(Table  2). Sources included the TCGA by the National 
Institutes of Health (NIH), the German Cancer Research 

Center (Deutsches Krebsforschungszentrum, DKFZ) in 
Heidelberg, and the Charité Medical School in Berlin.

The primary tumor sites of cancers typically caus-
ing cervical lymph node metastases were considered. 
HNSCC, ESCC, CSCC, and LUSCC histologically 
match SCCs, whereas the diffuse large B-cell lym-
phoma (DCBL) samples were chosen for compari-
son. While being a potential primary site for hnCUP, 
the hypopharynx was excluded as a primary site since 
only ten samples were available from TCGA. Primary 
tumor tissue samples were used in most of the data sets 
despite the study cohort containing lymph node tissue 
samples. We made this decision because there is signifi-
cantly more publicly available data from primary tumor 
samples than lymph node samples.

The data sets from our reference cohort are shown in 
Table 3.

For further analyses, the available data sets were 
randomly distributed into a training cohort and a test 
cohort. These consist of two-thirds and one-third of the 

Fig. 1 Anatomy of head and neck cancer and cervical lymph node metastasis. A Anatomical sites of head and neck cancers. B Primary organs 
of cervical lymph node metastasis

Table 1 Clinical characteristics of hnCUP patients (study cohort)

Characteristic Total n = 28

Age, median (IQR) 64 (56–71)

Sex Male = 24 Female = 4

Nicotine consumption Never = 6 Smoker = 16 Ex-smoker = 3 Unknown = 3

p16 positivity > 70% Pos = 8 Neg = 20

N status N1 = 2 N2 = 24 N3 = 2

M status M0 = 23 M1 = 2 Mx = 3

Grading G1 = 1 G2 = 10 G3 = 17
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patients, respectively, and share the same proportions 
of primary tumor sites.

Sample processing of study cohort
From FFPE tissue samples, areas containing at least 50% 
tumor cells were identified and marked by a patholo-
gist. After macrodissecting these marked areas, DNA 
was extracted using the Maxwell RSC Blood DNA Kit 
with the Maxwell RSC 48 instrument (Promega). For 
DNA quality control, fragmentation and integrity were 
evaluated using the 4200 TapeStation system (Agilent), 
and DNA levels were quantified with the Qubit 4 Fluo-
rometer (Thermo Fischer Scientific).

Subsequently, DNA methylation profiles were gener-
ated in collaboration with the DKFZ in Heidelberg. The 
Microarray Unit of the Genomics and Proteomics Core 
Facility at the DKFZ has established a DNA methyla-
tion analysis workflow using FFPE tissue which was uti-
lized in previous projects with high quality [16]. Using 
bisulfite treatment, the non-methylated cytosine bases 
of the DNA are converted to uracil and can thus be 
distinguished from methylated cytosine bases, which 

are not converted. The Human MethylationEPIC v1.0 
BeadChip by Illumina was used to generate the profiles. 
A separate slot on the BeadChips, holding up to 8 sam-
ples, was used for each.

Methylation data processing
The Illumina MethylationEPIC BeadChip, which cov-
ers about 850,000 CpG sites, was used for samples from 
hnCUP, CSCC, and Leitheiser et  al.’s HNSCC cohort. 
All other samples were processed using the Illumina 
450 k chip.

DNA methylation analysis was performed using the 
programming language R and the minfi package [30] to 
combine data sets of Illumina MethylationEPIC (850 k) 
and Illumina 450  k methylation arrays. We used the 
IDAT files generated by the Illumina microarrays as 
input data. IDAT (intensity data) files are generated by 
microarray-based gene expression profiling technolo-
gies and contain the raw fluorescence intensity data 
for each probe on the microarray, which can be used to 
quantify gene expression levels. As suggested by For-
tin et  al. [31], we performed the single-sample Noob 
(ssNoob) method to preprocess samples for optimal 
cross-array normalization. The combined arrays con-
tain beta values of 452,453 CpG sites for all 1131 sam-
ples. Normalization was performed for the training, 
test, and study cohorts, respectively. Additional file: 6 
contains the R script used for preprocessing.

For further analyses, we selected the CpG sites with 
the highest standard deviation of their beta values across 
all samples. We aimed to choose as few sites as possi-
ble while still maintaining a high prediction accuracy of 
the machine learning classifiers. After exploring CpG 
amounts ranging from 10 to 15,000, we decided on a final 
set of 3,000 CpG sites, found in the tables (Additional file: 
3). Higher amounts of CpG sites used as input did not 
result in better performance of the methods used.

Table 2 Data sets used for visualization and classifier development

Source Samples References Chip type (k) Tumor entity Tissue type Tissue origin

TCGA-HNSC 518 NIH [27] 450 HNSCC Fresh frozen Primary tumor

TCGA-ESCA 95 NIH [27] 450 ESCC Fresh frozen Primary tumor

TCGA-LUSC 405 NIH [27] 450 LUSCC Fresh frozen Primary tumor

TCGA-DLBC 48 NIH [27] 450 DLBC Fresh frozen Primary tumor

DKFZ Heidelberg 18 Paredes et al. [28] EPIC (850) CSCC FFPE Primary tumor

DKFZ Heidelberg 19 Koelsche et al. [29] EPIC (850) CSCC FFPE Primary tumor

Charité Berlin 49 Leitheiser et al. [14] EPIC (850) HNSCC FFPE (lymph node) Lymph node metastasis

Klinikum rechts der 
Isar Munich

28 This study EPIC (850) hnCUP FFPE (lymph node) Lymph node metastasis

Table 3 Distribution of primary tumor sites in the reference 
cohort

Primary tumor site Number 
of 
samples

Esophagus 95

Larynx 117

Lung 405

Lymphoma 48

Oral cavity 320

Oropharynx 81

Skin 37

Overall 1103
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UMAP plots and clustering
To visualize the DNA methylation profiles of both the 
study cohort and the publicly available data sets, uni-
form manifold approximation and projection (UMAP) 
was employed. Clusters of SCC DNA methylation 
profiles obtained from samples can be visualized by 
reducing the high-dimensional methylation array data 
to two dimensions. All samples were annotated with 
clinical data from the corresponding data set (Table 2). 
The umap package was used to compute the reference 
cohort’s data to be plotted. The R package pheatmap 
was used to generate heatmaps of the methylation pro-
files. The R script used to generate the plots in the man-
uscript can be found in Additional file: 7.

Various dimensionality reduction techniques were con-
sidered, including principal component analysis (PCA), 
t-distributed stochastic neighbor embedding (t-SNE), 
and UMAP. After careful evaluation, we adopted UMAP, 
as it consistently produced plots with distinct and quickly 
computable clusters.

Classifier development
We evaluated support vector machines (SVMs) and 
random forest classifiers to determine which algorithm 
would be better suited for class prediction. The random 
forest classifier used node sizes of 1, 2, 3, 10, and 50. To 
measure the performance of the resulting classifiers, 
we used overall balanced accuracy defined as (sensitiv-
ity + specificity) / 2. For binary classification methods 
such as SVMs, we combined multiple one-vs-rest clas-
sifiers into a metaclassifier for multiple class predic-
tion using the R package caret (see Additional file: 8 for 
the R script). The training was performed on the train-
ing cohort (two-thirds split of the reference cohort). 
The classification models were then tested with the test 
cohort (one-third split of the reference cohort).

Results
The origin distribution of cervical lymph node 
metastases can be calculated using tumor incidences 
from the literature
Since the aim of this study was to analyze whether  meth-
ylation profiles obtained from lymph node tissue of the 
neck region can identify the tissue of origin for hnCUP 
patients, we started by estimating the relative contribu-
tions to lymph node metastases of different primary 
tumor sites. Metastatic disease of the head and neck 
region that histologically matches SCC has a variety of 
possible underlying primary tumor sites. HNSCC is the 
most common cause, but other causes include ESCC, 
LUSCC, and CSCC. To get a better understanding of 
the epidemiology of cervical lymph node metastases, we 
queried PubMed using each tumor entity combined with 
the keywords “lymph node,” “metastasis,” and “epidemiol-
ogy.” We used the overall worldwide incidences and rates 
of cervical metastases of selected cancer entities to esti-
mate the composition of potential origins (Table 4). For 
non-melanoma skin cancer, only cases concerning the 
head and neck area (55%) were considered [32]. While, as 
expected, head and neck tumors account for the major-
ity of metastatic lymph node cases, esophageal cancer 
(ESCC) accounts for around one-fifth of the cases.

DNA methylation‑based clustering of tumor samples 
reveals tissue of origin
For clustering, DNA methylation profiles (n = 1103) of 
cervically metastasizing SCC were obtained from pub-
licly available sources (reference cohort, see Table 2). We 
employed uniform manifold approximation and projec-
tion (UMAP) analysis of all reference cohort samples, 
resulting in several distinct clusters forming (Fig. 2). Plots 
of PCA and t-SNE analyses are deposited in Additional 
file: 1 for comparison. As a control, we added lymphoma 

Table 4 Incidences of different tumor entities that metastasize to lymph nodes in the head and neck region

Incidence numbers were taken from the Global Cancer Observatory [19]. The proportion of cervical metastasis was approximated based on relevant literature, as 
noted in the reference column

Tumor entity Incidence 
(worldwide 
2020)

SCC proportion Incidence SCC Proportion 
of cervical 
metastasis

Incidence 
of cervical 
metastasis

Proportion 
of all cervical 
metastases

References

Lung cancer 2,206,771 27.5% 606,862 1.5% 9,103 2% [21]

ESCC 604,000 100% 604,000 18.1% 109,324 22% [22, 23]

HNSCC—oral cavity 377,713 100% 377,713 60% 226,628 45% [24]

HNSCC—larynx 184,615 100% 184,615 50% 92,308 18% [25]

HNSCC—oropharynx 98,412 100% 98,412 60% 59,047 12% [24]

Non-melanoma skin 
cancer

1,198,073 13.8% 1,198,073 4% 6,589 1% [26]

Total 502,999 100%
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samples, which, being from lymphoid origin, formed 
a separate distinct cluster, indicating a clear difference 
to the squamous cell carcinomas on a level of DNA 

methylation. Notably, most oropharynx samples form 
one cluster. Another distinguishable group consists of the 
CSCC samples (Fig. 2, depicted in red). Next, we added 

Fig. 2 UMAP clustering of DNA methylation profiles of all samples of the reference cohort (n = 1103). All of these entities typically metastasize 
to cervical lymph nodes

Fig. 3 UMAP clustering of the reference and study cohort. In addition to the samples in Fig. 2, 28 hnCUP DNA methylation profiles from the study 
cohort are included. hnCUP samples are marked with their sample IDs. The hnCUP samples have been assigned to the oropharynx cluster (red), 
skin cluster (blue), or denoted as atypical samples (green) based on their relative spatial proximity in the UMAP clustering on visual inspection 
and further confirmed by hierarchical clustering (Fig. 4)
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squamous cell hnCUP samples (n = 28, study cohort) 
and clustered these in comparison in Fig. 3. Some of our 
hnCUP samples also fall into these two groups. Samples 
from the remaining primary sites form a large cluster and 
can graphically be distinguished to some extent. Plots 
of just the training set showing the samples’ true entity 
of origin and the test set with predicted primary sites 
are shown in Additional file: 1. These indicate a similar 
distribution.

Based on DNA methylation, CUP forms no separate 
cluster but rather co-clusters with cancers of the head 
and neck, skin, lung, and esophagus. The hnCUP samples 
of the study cohort were graphically divided into three 
groups: oropharynx-like, skin-like, and atypical, based on 
their spatial proximity to the clusters mentioned above.

The hierarchical clustering of the hnCUP samples’ 
DNA methylation profiles was visualized with a dendro-
gram and heatmap in Fig. 4. The similarity of most oro-
pharynx-like and skin-like samples can be clearly seen. 
Some of the skin-like samples’ methylation profiles show 
a hypomethylation across the 3000 selected CpG sites 
indicated by the blue color.

There was a significant difference between skin-like, 
oropharynx-like, and atypical samples in the distribution 
of the HPV status (Fisher’s exact test, p < 0.01) and nico-
tine consumption (Fisher’s exact test, p < 0.02). In con-
trast, no significant differences regarding other clinical 
variables like age and sex could be detected. Additional 

files 5 and 9 show the results in a table and the R script 
used to generate them, respectively.

A classifier can predict tissue of origin based on DNA 
methylation with reasonable accuracy
We used the training cohort to implement a classifier 
that can predict the tumor primary site of the test cohort 
by using its DNA methylation profiles. We compared an 
SVM with a random forest classifier. The SVM achieved 
a higher accuracy of up to 87%, compared to up to 75% 
for the random forest classifier, depending on the node 
size used (Additional file: 4). The SVM classifier was 
implemented using different amounts of CpG sites (10 to 
15,000), yielding different overall accuracies (Fig. 5). For 
the final classifier, we used 3,000 CpG sites, as a larger 
set did not amount to a higher accuracy of the SVM as 
graphically depicted in Fig. 5.

The balanced accuracy defined as (sensitivity + speci-
ficity) / 2 was calculated to assess the performance 
of single-class prediction. As depicted in the confu-
sion matrix (Table  5), the SVM classifier has a high 
balanced accuracy for the primary tumor sites: lung, 
skin, and lymphoma (92–100%). The entities forming 
the large cluster in Fig.  2 were predicted with a lower 
accuracy (86–90%). All lymphoma samples were clas-
sified correctly, and no non-lymphoma samples were 
misclassified as lymphoma. This demonstrates that 
methylation-based classification can be highly accurate 

Fig. 4 Hierarchical clustering of the hnCUP samples’ DNA methylation profiles. CUP subtypes and corresponding colors are matching those 
in Fig. 2. The 3,000 CpG sites (see Additional file: 3) are displayed per sample with their color-coded beta values
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even when applied to tissues of different origins, such 
as lymphatic versus squamous cell tissue.

The classifier predicts the primary site of hnCUP samples
The SVM classifier predicts the primary site of hnCUP 
samples used, as displayed in Table  6. Compared 
with the expected distribution (Table  4), no signifi-
cant difference could be detected (p = 0.2, Pearson’s 
Chi-squared test). Samples whose primary site was 
predicted as oropharynx and skin all match the graphi-
cally determined oropharynx-like and skin-like samples 
(Fig. 3).

Fig. 5 Accuracy of the SVM classifier at different numbers of CpG sites used for training

Table 5 Confusion matrix for predicting the SVM classifier for the test set (n = 383)

The true entity of the cohorts’ samples is displayed, and correct predictions are marked in bold. The balanced accuracy is shown as a performance parameter in single-
class prediction

Prediction True entity

Esophagus Larynx Lung Lymphoma Oral cavity Oropharynx Skin Balanced 
Accuracy

Sensitivity Specificity

Esophagus 24 1 1 0 1 1 0 0.87 0.75 0.99

Larynx 3 31 2 0 5 2 1 0.86 0.76 0.96

Lung 1 3 132 0 3 0 0 0.97 0.98 0.97

Lymphoma 0 0 0 16 0 0 0 1.00 1.00 1.00

Oral cavity 3 5 0 0 97 5 0 0.90 0.85 0.95

Oropharynx 1 1 0 0 7 25 1 0.86 0.76 0.97

Skin 0 0 0 0 1 0 10 0.92 0.83 1.00

Table 6 Prediction of hnCUP samples by SVM classifier

Primary tumor site Number 
of 
samples

Esophagus 1

Larynx 7

Lung 0

Lymphoma 0

Oral Cavity 11

Oropharynx 7

Skin 2

Overall 28
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Discussion
This study showed that DNA methylation profiles of 
hnCUP tissue are comparable to those of various SCCs 
known to metastasize to cervical lymph nodes. Based on 
tissue DNA methylation, we developed an SVM classi-
fier that can distinguish these most commonly cervically 
metastasizing cancers. It is reasonably accurate (87%) 
and applicable to hnCUP samples. The distribution of 
predicted primary sites of hnCUP samples did not dif-
fer from the expected values based on published epide-
miological data. Prior to our work, very few studies have 
been published on methylation data in hnCUP [14]—the 
examination of the samples in this study is a novelty in 
this field.

Despite state-of-the-art extensive diagnostic algo-
rithms in the hospital, not in every hnCUP patient the 
underlying cancer entity can be specified after a thorough 
diagnostic workup [33].

It cannot be entirely ruled out that hnCUP is an entity 
of its own. However, our own data as well as other stud-
ies [2, 10, 13] strongly suggest that hnCUP is basically 
not a separate cancer entity but rather a metastatic dis-
ease. Our finding that the methylation levels of hnCUP 
samples are comparable to those of different SCCs that 
metastasize to cervical lymph nodes underscores the rel-
evance of such methylation data.

The high specificity of the single-class predictors (see 
Table 5) is clinically relevant. The low rate of falsely pre-
dicted tumor sites would make invasive diagnostics and 
therapy at the wrong anatomical site unlikely. The speci-
ficity of over 90% achieved across all examined primary 
tumor sites would suffice to use a classifier reliably in a 
clinical setting.

Our research indicates that DNA methylation pro-
files of CSCC showed similarities to our hnCUP samples 
(Fig. 3). Therefore, CSCC might be an overlooked entity 
when searching for primary sites of hnCUP. Despite rou-
tine skin examinations in the diagnostic process, small 
primary tumors or ones affecting the haired scalp are 
easily left unnoticed [34].

On the other hand, the classifier predicted only one 
hnCUP sample to be originating from the esophagus. 
Based on our analysis of the occurrence of cervical lymph 
node metastasis, we would have statistically expected to 
locate six primaries in the esophagus. Possibly, even small 
esophageal carcinomas are more easily diagnosed in the 
smoothly surfaced mucosa with modern techniques [35] 
compared to, e.g., the poorly visible crypts in the tonsils 
or tongue base [36]. Lymph node metastasis in ESCC is 
associated with advanced-stage tumors [37], which could 
also contribute to this observation.

To calculate the expected proportion of origins for head 
and neck SCC lymph node metastasis, the worldwide 

incidence rates and rates of cervical metastasis were used 
since no data on the proportion are available [21–26]. 
However, it must be noted that metastasis with loss of 
the primary tumor site, as is presumed to be the case in 
a proportion of hnCUP cases, may be subject to different 
epidemiology. In addition, the calculated incidence rates 
in Table 4 are only a rough estimate. They would be more 
accurately described based on the anatomic localization 
of the metastasis since lymph nodes from ESCC are more 
commonly found in neck level 4 [38]. In contrast, oro-
pharyngeal carcinoma metastasizes in early stages, pri-
marily in neck levels 2 and 3 [39].

The hnCUP, CSCC, and HNSCC samples from Leithe-
iser et  al. [14] were analyzed using the Illumina EPIC 
chip. While appropriate methods have been used for 
cross-normalization with probes from the Illumina 450 k 
chip [31], the similarity between these entities on meth-
ylation level could partly be explained by the different 
chip used. In contrast, other studies have suggested that 
the impact is likely negligible when the analysis does not 
solely focus on individual methylation sites [40, 41].

Another limitation might be non-tumor cells interfer-
ing with the methylation data. Our plots and classifier 
reveal notable differences in methylation between enti-
ties within the selected CpG sites, as has been demon-
strated in other studies as well [14, 17, 19]. Achieving 
significantly higher percentages of tumor proportion may 
require the application of single-cell methods [42].

The classifier predicted the localization of the pri-
mary with 87% accuracy. With the current best diag-
nostic method, FDG-PET-CT, only 29% of additional 
primaries were found after extensive diagnostic workup 
with panendoscopy and CT/MRI scans in a prospective 
study [43], underlining the relevance of our algorithm. 
In patients with a p16/HPV-positive hnCUP, the litera-
ture shows a strong association with a primary in the 
oropharynx and a better clinical outcome [44, 45]. The 
clinically challenging cases are p16/HPV-negative cases 
with a poorer prognosis. Therefore, narrowing down the 
localization would be especially relevant in these HPV-
negative cases. Using a classifier could assist in finding 
the primary and avoid unnecessary procedures in cases 
with a suspected primary in the skin or esophagus. How-
ever, the classifier was based on methylation data from 
primary tumors, not lymph node metastasis. A further 
validation study examining primary tumor and lymph 
node metastasis tissue would be needed, which could 
even increase the accuracy of the classifier. The classifier 
could also be tested in a prospective study in cases with 
initial suspicion of hnCUP.

In the context of training a machine learning-based 
classifier, using a limited sample size in the training set 
can potentially lead to challenges in achieving accurate 
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classification [46]. Only n = 25, CSCC samples were 
available for training. However, higher case numbers 
could seriously improve our SVM classifier’s capac-
ity to decipher the epigenetic variations within their 
DNA methylation profiles. The differences between 
CSCC samples at the level of DNA methylation might 
demand a more expansive data set to enable the SVM 
model to fully capture the breadth of this entity. This 
scarcity in sample size underscores the critical need 
for a more extensive training data set containing more 
DNA methylation profiles of CSCC. This would be 
very valuable for enhancing the precision and robust-
ness of the classification model in accurately categoriz-
ing hnCUP samples based on their DNA methylation 
profiles.

Some skin-like hnCUP samples showed hypometh-
ylation across the 3,000 CpG sites used for our analy-
ses (Fig.  4). Global hypomethylation is a phenomenon 
commonly observed in human tumors and, while gen-
erally poorly understood, appears to occur parallel to 
the de novo methylation of tumor suppressors, a known 
driver of tumorigenesis [47]. This hypomethylation 
could help to stratify hnCUP into subgroups and might 
be another pillar in differentiating squamous cell carci-
nomas of various origins.

Conclusion
Tumor tissue samples of hnCUP patients are compara-
ble to other cancer entities that commonly metastasize 
to cervical lymph nodes on DNA methylation level. An 
SVM-based classifier can accurately distinguish these 
cancers. Our approach could significantly reduce the 
invasiveness and side effects of diagnostic and thera-
peutic procedures in hnCUP. A prospective study is 
the next step in translating our classifier into clinical 
practice.
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