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Abstract 

Background In 1990, David Barker proposed that prenatal nutrition is directly linked to adult cardiovascular disease. 
Since then, the relationship between adult cardiovascular risk, metabolic syndrome and birth weight has been widely 
documented. Here, we used the TruSeq Methyl Capture EPIC platform to compare the methylation patterns in cord 
blood from large for gestational age (LGA) vs adequate for gestational age (AGA) newborns from the LARGAN cohort.

Results We found 1672 differentially methylated CpGs (DMCs) with a nominal p < 0.05 and 48 differentially meth‑
ylated regions (DMRs) with a corrected p < 0.05 between the LGA and AGA groups. A systems biology approach 
identified several biological processes significantly enriched with genes in association with DMCs with FDR < 0.05, 
including regulation of transcription, regulation of epinephrine secretion, norepinephrine biosynthesis, receptor 
transactivation, forebrain regionalization and several terms related to kidney and cardiovascular development. Gene 
ontology analysis of the genes in association with the 48 DMRs identified several significantly enriched biological pro‑
cesses related to kidney development, including mesonephric duct development and nephron tubule development. 
Furthermore, our dataset identified several DNA methylation markers enriched in gene networks involved in biologi‑
cal pathways and rare diseases of the cardiovascular system, kidneys, and metabolism.

Conclusions Our study identified several DMCs/DMRs in association with fetal overgrowth. The use of cord blood 
as a material for the identification of DNA methylation biomarkers gives us the possibility to perform follow‑up stud‑
ies on the same patients as they grow. These studies will not only help us understand how the methylome responds 
to continuum postnatal growth but also link early alterations of the DNA methylome with later clinical markers 
of growth and metabolic fitness.
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Introduction
The term large for gestational age (LGA) newborn is 
defined as a newborn with a gestational age- and gender-
specific weight and/or length higher than + 2 SDS [1]. 
The identified factors related to LGA newborn etiology 
could be grouped into fetal, maternal and uteroplacental 
factors [2]. Among maternal factors, it is worth noting 
the relevance of the association between maternal gesta-
tional diabetes and overgrowth due to continuous stimu-
lus of high glucose levels that leads to endogenous fetal 
overproduction of insulin-like growth factor-1 (IGF-1) 
and insulin, which, as a result, induces macrosomia [3]. 
Notably, fetal growth is closely related to maternal body 
size and maternal health [1]. However, in some cases, it is 
not possible to determine the exact mechanism causing 
fetal growth disturbances.

In 1990, David Barker proposed that prenatal nutri-
tion is directly linked to adult cardiovascular disease, in 
what is now known as the fetal origin of adult disease 
hypothesis [4, 5]. Since then, the relationship between 
birth weight, adult cardiovascular risk, metabolic syn-
drome, and type 2 diabetes has been widely documented 
[6–8]. This association is not only described with high 
birth weight but also with low birth weight, establishing 
a U-shaped cardiometabolic risk link [1]. Nevertheless, 
today, we cannot explain this association after a nota-
bly long period of latency [9]. Recently, researchers have 
focused on epigenetic modifications as a possible mecha-
nism involved in how alterations during the fetal period 
affect overall adult health and disease risk [10].

Epigenetics is the study of reversible and heritable 
changes in gene expression without changes in DNA 
sequence [11]. This puts epigenetic mechanisms at 
the center of environmental–gene interactions, where 
changes in the environment influence the epigenetic 
landscape at gene regulatory regions, which could ulti-
mately contribute to variations in gene expression, 
alterations in fetal growth [12] and/or cardiometabolic 
function [13]. To date, there are different ways to evaluate 
DNA methylation [14]. Whole-genome bisulfite sequenc-
ing (WGBS) offers the best genomic coverage for DNA 
methylation evaluation, assuming a very elevated budget 
and a large amount of data that makes its interpretation 
extremely hard. For these reasons, new platforms such 
as the Methylation EPIC Beadchip Microarray (EPIC-
array) and TruSeq Methyl Capture EPIC (TruSeq EPIC) 
have emerged [15, 16]. TruSeq EPIC includes new epige-
netic areas of interest compared to EPIC-array and uses 
next generation sequencing to pull off targeted bisulfite 
sequencing covering 3.34 million CpG sites.

In recent years, several studies have demonstrated 
a relationship between newborn body size and DNA 
methylation patterns in genes related to fetal growth, 

metabolism and cardiometabolic health [17–21]. Most 
of these studies used Illumina the 27 K, 450 K or Infin-
ium 1.0 Bead Array (850  K CpGs) to study methylation 
changes in placental tissue and are focused on the effect 
of intrauterine growth restriction. Previous studies used 
cord blood or placental tissue to identify methylation 
markers correlated with birth weight in candidate genes 
or using Infinium Arrays. This was excellently shown in 
a recent meta-analysis of epigenome-wide association 
studies (EWAS) using birthweight as a continuous vari-
able of 8,825 newborns from 24 different cohorts [22].

For the present study, we opted for the TruSeq Methyl 
Capture EPIC platform because it utilizes target-specific 
bait sequences covering 3.34 million CpG sites that tar-
get regulatory regions such as CpG islands, CpG shores, 
CpG shelves, TSS200, and promoter regions. This 
approach presents an attractive cost-effective alterna-
tive to uncover novel disease-associated genomic loci in 
EWAS and overcomes the limitations of lower genome 
coverage (Infinium 450/800 K) arrays, high cost and pro-
cessing time (WGBS), while avoiding overrepresentation 
of repeated (RRBS) and methylated regions (MeDIP-Seq).

Another relevant issue is to select the most appropriate 
tissue to evaluate DNA methylation that reflects the met-
abolic milieu of the fetus. In this regard, attending to the 
main objectives of our study, we had to choose among 
placenta, umbilical cord tissue and umbilical cord blood. 
Most studies aimed at identifying epigenetic markers of 
overgrowth used placental tissue with standardized oper-
ating procedures to minimize sampling of the maternal 
side [20, 23, 24]. On the other hand, in umbilical cord 
tissue and umbilical cord blood, we can obtain only fetal 
cells [25]. We decided to perform methylation profiling 
from umbilical cord blood because its cell type propor-
tion is only dependent on gestational age [25].

In this pilot study, we used the TruSeq Methyl Cap-
ture EPIC platform to identify differential methylation 
patterns in cord blood from a small cohort of LGA and 
adequate for gestational age (AGA) newborns.

Materials and methods
Type of study
Our pilot study was conducted between March 2019 
and December 2022 in the Pediatric Department of Fun-
dación Jiménez Díaz Hospital, located in Madrid, Spain.

We used a small sample size of 25 individuals divided 
into thirteen large for gestational newborns (LGA) and 
twelve adequate for gestational age newborns (AGA: con-
trol group) matched by sex and mode of delivery. These 
newborns will be followed up until at least pubertal age, 
establishing the LARGAN (Large for Gestational Age 
Newborns) cohort.
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Subjects
We included LGA and AGA patients who were born at 
our institution.

Inclusion criteria
LGA newborns were ≥ 34  weeks of gestational age, 
whose weight and/or length were >+ 2 SDS (Z-score) 
according to sex-specific birth weight and birth length 
gestational age reference charts [26]. AGA newborns 
were ≥ 34  weeks of gestational age, whose weight and 
length were between −  2 and + 2SDS according to sex-
specific birth weight and birth length gestational age ref-
erence charts [26].

Exclusion criteria
Prenatal and/or postnatal suspicion of any syndrome; 
any major structural malformation; postnatal suspi-
cion of mild or severe encephalopathy due to infection, 
hypoxia-ischemia, or metabolic etiology; impossibility 
of measuring weight/length in the first 24 h of life due to 
the patient’s clinical severity and refusal of parents to be 
included in the study.

Ethics approval and consent to participate
The study protocol was approved by the institutional 
review board of the University Hospital Fundación Jimé-
nez Díaz (code: PIC003-19, approval date: 1/29/2019). 
Parents signed a written informed consent form after the 
nature of all procedures had been fully explained at the 
time of enrollment. The collection of samples belongs to 
the Biobank of the University Hospital Fundación Jimé-
nez Díaz. This investigation was carried out in adherence 
to the principles of the Declaration of Helsinki and sub-
sequent reviews, as well as Spanish legislation in force on 
clinical research in human subjects.

Data collection
These data were collected from both questionnaires com-
pleted by families and from medical records.

Family data
Mother’s race (attending to our reference population, 
we have included the following groups: White, Hispanic, 
Black, Asian and North African). Maternal age at deliv-
ery. Mother’s weight, height, and body mass index [BMI: 
weight (kg)/height2 (m)] at the beginning of pregnancy 
and at delivery.

Obstetric history
Pregestational comorbidities (chronic hypertension, dia-
betes), maternal tobacco consumption, results of prenatal 
ultrasounds, weight gain during pregnancy, appearance 
of comorbidities during gestation such as hypertension 

and glucose metabolic disturbances (diabetes or impaired 
glucose tolerance).

Newborn data
Gestational age (this variable was determined from the 
date of the last menstrual period and was confirmed 
by early ultrasound), type of delivery, Apgar score, 
gender, weight [grams, SDS 26], length [cm, SDS 26], 
head circumference [cm, SDS 27], and ponderal index 
[PI = 100 × weight (grams)/length (cm)3]. Weight, length, 
and head circumference were determined within the first 
6  h of life. Weight was measured with a newborn elec-
tronic scale; length was determined by an infantometer, 
and head circumference was determined by a nonelastic 
tape.

Sample processing
DNA extraction
Umbilical cord blood UCB was collected by trained staff 
at the time of delivery. Genomic DNA was immediately 
extracted from whole umbilical cord blood using an auto-
mated DNA extractor (BioRobot EZ1, QIAGEN, Hilden, 
Germany).

Library construction and sequencing
A genome-wide bisulfite sequencing  approach was per-
formed to specifically study DNA methylation using 
the  Illumina TruSeq Methyl Capture EPIC kit (Illu-
mina, Cambridge, UK), which targets over 3.3 million 
CpGs. Libraries were prepared following the manufac-
turer’s protocol. Briefly, DNA samples were quantified 
using a fluorometric method (Qubit  3.0  Fluorometer, 
Life Technologies), diluted to 500  ng of total starting 
material at 10 ng/µl, and fragmented on an S2 sonicator 
(Covaris, Woburn, MA, USA), followed by end repair. 
After adapter ligation, hybridization and capture, librar-
ies were pooled into 4 samples at a time and subjected 
to bisulfite conversion, PCR amplification and clean-up. 
Finally, before sending the libraries to the sequencing 
core, they were checked for integrity and size distribution 
using a Bioanalyzer High Sensitivity Kit (Agilent, Santa 
Clara, CA). Finally, pooled libraries were loaded into a 
NextSeq500 flow cell and sequenced using the Next-
Seq500 High Output Reagents Kit (Illumina, Cambridge, 
UK) to obtain 300-bp paired-end reads (with an average 
40 × coverage and > 90% of target bases covered at ≥ 10 ×).

Statistical and bioinformatic analysis
The quality of the bisulfite-converted sequencing reads 
was assessed with FastQC. Reads were trimmed and 
aligned to the human reference genome (GRCh38/
hg38), and then the bisulfite conversion rates were evalu-
ated, ensuring all libraries were > 98% converted, and 
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CpG methylation was evaluated using Bismark [28]. The 
methylation rates were calculated as the ratio of methyl-
ated reads over the total number of reads. Methylation 
rates for CpGs with fewer than 5 reads were excluded 
from further analysis. The RnBeads filtering module 
was set for SNP filtering, removal of sex chromosome, 
and removal of high coverage outliers [29]. Filtering for 
missing quantile values was set to 0.05, and a filtering 
deviation threshold of 0.005, with no imputation method 
employed.

Surrogate variable analysis and differential DNA meth-
ylation analysis were carried out using the R package 
RnBeads version 2.0 [29]. To adjust for potential hidden 
confounders, including cell proportion variability, sur-
rogate variable analysis (SVA) was applied to the AGA-
LGA group comparison. The surrogate variables (SVs) 
that accounted for the unexplained variance not corre-
lated with the variable of interest (“group”) were collected 
and applied as covariates in the differential methylation 
analysis. Differential methylation between groups was 
analyzed using the empirical Bayesian  generalized lin-
ear model built-in the limma package [30], implemented 
in the  RnBeads package. We included “group” as dif-
ferential comparison columns and “gest_age,” “gender,” 
“type_of_delivery” as well as all quantified maternal 
anthropometric, demographic and comorbidity factors 
(see Table 2) as covariates in the linear model. We applied 
correction for multiple comparisons to identify DMCs at 
FDR < 0.05, identifying only two DMCs with significant 
FDR; for that, all Gene Enrichment studies were per-
formed with DMCs at nominal (uncorrected) p values. 
In parallel, the DMCs at nominal p values from the lin-
ear regression analysis were used as input for Comb-p 
[31] analysis to identify differentially methylated regions 
(DMRs). Comb-p uses a sliding window correction 
where each Wilcoxon P value is adjusted by applying the 
Stouffer–Liptak–Kechris (slk) method  of neighboring  P 
values as weighted according to the observed autocor-
relation (ACF) at the appropriate lag [32]. In summary, 
comb-p first calculates the ACF at varying distance lags, 
and then, the ACF is used to perform the slk correction 
where each  P value is adjusted to adjacent  P values as 
weighted according to the ACF. Any given P value will be 
pulled lower if its neighbors also have low P values and 
likely remain insignificant if the neighboring P values are 
also high. This is followed by a q-value score based on the 
Benjamini–Hochberg false discovery rate (FDR) correc-
tion. A peak-finding algorithm was used to find enrich-
ment regions, and a P value for each region was assigned 
using the Stouffer–Liptak correction. The FDR  q-value 
is used to define the extent of the region, whereas the 
slk-corrected  P value and a one-step Sidak multiple-
testing correction are used to define the significance 

of the region [33]. The parameters for Comb-p were 
DIST = 300, STEP = 60 and THRESHOLD = 0.05 [34]. 
We used GREAT to annotate DMCs/DMRs at a 50  kb 
proximity of the gene TSS [35]. The EnrichR package [36] 
was used to study the functional enrichment of biological 
processes of the genes associated with DMCs (at nominal 
p < 0.05) and DMRs (corrected p < 0.05). EnrichR uses the 
Fisher exact test and a correction test that is the z-score 
of the deviation from the expected rank by the Fisher 
exact test [36]. Gene network interactions were deter-
mined with GeneMANIA [37] and represented in the 
Cytoscape [38] platform.

Anthropometric data statistical analysis was per-
formed using SPSS version 25.0 (SPSS Chicago, Illinois). 
Data are expressed as the mean and 95% confidence 
intervals (95% CI).

The Shapiro–Wilk test was used to determine whether 
the variables under study were normally distributed. To 
compare quantitative variables among the two groups 
included in the study, we used a T test for normally dis-
tributed variables. The relationships between categorical 
variables were evaluated by the X2 test. If the expected 
frequency of numbers less than 5 exceeded 20% of the 
calls, we used Fisher’s exact test. p < 0.05 was considered 
statistically significant.

Results
Anthropometric data
A total of 25 newborns were included in the study: 13 LGA 
and 12 AGA. There were no significant group differences 
in terms of sex, type of delivery or gestational age (Table 1). 
There were significant differences in all anthropometric 
variables analyzed. At birth, LGA newborns were signifi-
cantly heavier (4.32 vs. 3.24 kg, P < 0.001), longer (53.04 vs. 
49.29 cm, P < 0.001) and had a larger head circumference 
(36.39 vs. 34.63 cm) than AGA newborns (Table 1).

Due to the reduced sample size, we grouped mater-
nal race into White and not White. In the AGA group, 4 
newborns were not White (3 Hispanic and 1 Asian). In the 
LGA group, 6 newborns were not White (4 Hispanic and 2 
Asians). No significant difference in maternal age at deliv-
ery or maternal race among the LGA and AGA groups was 
identified. We also did not observe differences between the 
two groups in the prevalence of maternal pregestational 
hypertension and diabetes, tobacco consumption during 
pregnancy or maternal glucose metabolism disturbances 
during pregnancy (Table 2). BMI at the beginning of preg-
nancy was not significantly different. However, the BMI 
increase during pregnancy was significantly higher in the 
LGA group (6.14 vs 4.27, P < 0.05) than in the AGA group. 
In addition, we observed nearly significant differences in 
maternal weight gain during pregnancy (Table 2).
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DNA methylation data
Differentially methylated CpGs
After adjusting for covariables (gestational age and 
maternal weight gain during gestation), our analysis 
identified 1672 differentially methylated CpGs (DMCs) 
between the LGA and AGA groups with a nominal 
p < 0.05 (only two CpGs showed FDR < 0.05, see Addi-
tional file 6: Table 1). The distribution of these DMCs was 
11 at 5 K promoter regions, 23 at the 3’ UTR regions, 15 
at CpG islands, 141 at CpG shelves, 77 at CpG shores, 

and 703 at gene bodies with 48 at exons and 655 introns, 
while the remaining 969 CpGs were located in intergenic 
regions (Additional file  6: Table  1). Next, we identified 
639 hypermethylated and 195 hypomethylated DMCs 
at 10  kb or less of any transcriptional start site (TSS) 
(Fig.  1A). Most of the DMCs were found in proximity 
to the gene’s TSS. Gene ontology (GO) analysis of these 
gene IDs identified several significantly enriched biologi-
cal processes (BP) (adjusted p < 0.05) in the group of 639 
hypermethylated DMCs (Fig. 1B), including regulation of 

Table 1 Anthropometric and demographic data of newborns

χ2: Chi‑square test * < 0.05; *** < 0.001; NS: not statistically significant

AGA (n = 12) LGA (n = 13) p value

Gender: female/male (%/n) 50% (6)/50% (6) 46.2% (6)/53.8% (7) χ2 NS

Type of delivery: vaginal/cesarean (%/n) 50% (6)/50% (6) 53.8% (7)/46.2% (6) Fisher NS

Gestational age (weeks) 39.21 (38.49–39.93) 39.48 (38.72–40.25) t Student NS

Birth weight (kg) 3.2 (2.9–3.5) 4.3 (4.2–4.5) t Student***

Birth weight (SDS or Z‑score) 0.03 (‑0.46–0.53) 2.68 (2.24–3.12) t Student***

Birth length (cm) 49.2 (48.3–50.2) 53.0 (52.1–53.9) t Student***

Birth length (SDS) ‑0.23 (‑0.65–0.19) 1.92 (1.30–2.55) t Student***

Birth ponderal index 2.7 (2.52–2.88) 2.9 (2.75–3.05) t Student NS

Head circumference (cm) 34.6 (33.8–35.3) 36.3 (35.7–37.0) t Student*

Head circumference (SDS) 0.04 (‑0.42–0.51) 1.24 (0.84–1.63) t Student***

Table 2 Maternal anthropometric, demographic and comorbidity data

χ2 = Chi‑square test. * < 0.05; NS: not statistically significant

AGA 
(n = 12)

LGA
(n = 13)

p value

Maternal age at the delivery (yr) 31.67
(27.55–35.78)

32.85
(28.91–36.78)

t Student
NS

Maternal Race: white/not white (%/n) 66.7% (8)/33.3% (4) 53.8 (7)/46.2 (6) χ2

NS

Maternal pregestational hypertension (%) 0 0 Fisher
NS

Maternal pregestational diabetes (%/n) 0 15.38% (2) Fisher
NS

Maternal hypertension during pregnancy (%/n) 8.33% (1) 15.38% (2) Fisher
NS

Maternal glucose metabolism disturbances during pregnancy 
(%/n)

8.33% (1) 15.38% (2) Fisher
NS

Maternal glucose metabolism disturbances previous or dur‑
ing pregnancy (%/n)

8.3% (1) 30.8% (4) Fisher
NS

Smoking during pregnancy: yes/no (%) 0 0 Fisher
NS

Maternal BMI at the start of pregnancy (kg/m2) 23.66
(21.20–26.10)

25.97
(23.58–28.35)

t Student
NS

BMI increase during pregnancy 4.27
(3.40–5.14)

6.14
(4.74–7.55)

t Student
*

% of maternal weight gain during pregnancy 18.6
(14.1–23.3)

24.4
(17.5–31.7)

t Student
NS
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transcription (GO:0006355), regulation of epinephrine 
secretion (GO:0014060), norepinephrine biosynthesis 
(GO:0042421), receptor transactivation (GO:0035624), 
forebrain regionalization (GO:0021871) and several 
terms related to kidney (GO:0060675, GO:0001658, 
GO:0001655, GO:0072182, GO:0001822, etc.) and car-
diovascular development (GO:0001569, GO:0007507, 
GO:0060039, GO:0072359). No significant enrichment 
in gene ontology groups was found in the 195 gene IDs 
associated with hypomethylated DMCs.

The most significantly enriched GO group was Regu-
lation of Transcription, with 114 hits out of 2244 (odds 
ratio = 1.33, adjusted p = 8.3E-5). Cytoscape repre-
sentation of GeneMANIA gene networks for biologi-
cal processes such as norepinephrine function, kidney 
development and cardiovascular development shows 
highly interconnected genes with hypermethylated 
DMCs in the LGA group (Fig. 1C). The Gene Ontology 
term Regulation of epinephrine secretion (GO:0014060) 
(odds ratio = 63.3, adjusted p = 0.0044) shows a cluster 
of 3 adrenergic receptors (ADRA2A, B and C) hyper-
methylated in the LGA group. Moreover, this cluster 
of adrenergic receptor genes is associated with two 
transcription factors, heart-and neural crest derivative-
expressed 2 (HAND2) and GATA-binding protein 3 
(GATA3). Hypermethylated DMCs were also enriched 
in a group of genes involved in kidney development, 
including several gene ontology terms, such as branch-
ing morphogenesis of an epithelial tube (GO:0048754) 
(odds ratio = 133, adjusted p = 6.88 ×  10–7), ureteric 
bud morphogenesis (GO:0060675) (odds ratio = 18.5, 
adjusted p = 9.27 ×  10–7), branching involved in ureteric 
bud morphogenesis (GO:0001658) (odds ratio = 161, 
adjusted p = 0.005), and urogenital system development 
(GO:0001655) (odds ratio = 247, adjusted p = 0.005). 
(Fig.  1B, Additional file  7: Table  2). Hypermethyl-
ated DMCs are associated with the Sonic Hedgehog 
(SHH) gene, which is involved in the establishment 
of cell fates during embryonic development [39]. Fur-
thermore, a series of transcription factors involved in 
kidney development were also found to be associated 
with hypermethylated DMCs in LGA, including WT1 
Transcription Factor (WT1), Odd-Skipped-Related 

Transcription Factor 1 (OSR1), Lim Homeobox Gene 1 
(LHX1) and MYC Protooncogene (MYC).

Finally, a series of hypermethylated DMCs were found 
to be associated with genes involved in cardiovascular 
development (Fig.  1C), including several gene ontology 
terms, such as heart development (GO:0007507) (odds 
ratio = 34.9, adjusted p = 0.008), pericardium develop-
ment (GO:0060039) (odds ratio = 233, adjusted p = 0.01), 
and circulatory system development (GO:0072359) (odds 
ratio = 32.6, adjusted p = 0.01) (Additional file 7 Table 2). 
Hypermethylated DMCs were associated with Delta-Like 
Canonical Notch Ligand 4 (DLL4) and Notch Receptor 
4 (NOTCH4), two genes involved in embryonic vascu-
lar development, vasculogenesis and angiogenesis, arte-
rial and venous identities and the regulation of vessel 
branching [40]. The family of T-Box transcription factors 
(TBX1, TBX2 and TBX5) and Myosin-Binding Protein C 
(MYBPC3) are involved in the development of the phar-
yngeal arch arteries [41], formation of the chambers of 
the myocardium and cardiomyocyte development [42].

To further validate our GO results, we used two addi-
tional systems biology approaches: analysis of canoni-
cal pathways using WikiPathways [36, 43–45] and the 
enrichment of genes associated with rare diseases [46]. 
This approach serves to further support our GO results 
by comparing our dataset with curated knowledge-based 
platforms that inform proteomic and metabolomic path-
ways [43] as well as pathological processes linked to 
single gene mutations [46]. This approach is especially 
helpful when working with small groups where signifi-
cance by multiple testing correction is not met. Finding 
commonalities between outputs from different databases 
supports the overall findings of our study. Some of the top 
pathways (WikiPathways) enriched in hypermethylated 
DMCs were involved in heart development (WP1591: 
odds ratio 7.01; adjusted p = 0.015), development of the 
ureteric collection system (WP5053: odds ratio 6.52; 
adjusted p = 0.015) and lncRNA involved in canonical 
WNT signaling and colorectal cancer (WP4258: odds 
ratio 4.22; adjusted p = 0.018) (Table 3).

Moreover, hypermethylated DMCs were found to 
be significantly associated with several rare diseases 
[46], most of which can be clustered into 4 groups: 

(See figure on next page.)
Fig. 1 Identification of DMCs in LGA newborns. (A) Distribution of DMCs represented as the distance to the closest TSS, shown in 500 bp bins. 
Red bars denote the number of hypermethylated DMCs per bin, and blue bars denote hypomethylated DMCs per bin. (B) Enrichment analysis 
of the Gene Ontology (GO) category Biological Process (BP) of all hypermethylated DMCs with nominal p < 0.05. Only BPs with corrected p < 0.05 
are shown. (C) Gene networks of selected BPs: Norepinephrine, Kidney Development and Cardiovascular Development. The methylation difference 
between LGA and AGA is shown as a graded color scale, where white is no change and red is hypermethylation. Genes (nodes) are shown 
either as circles or diamonds, where circles are those showing transcriptional activity according to GO regulation of transcription, DNA‑templated 
(GO:0006355). Edges (connections/lines between nodes) represent co‑expression, pathways, colocalization, shared protein domains or physical 
interactions between the two genes/proteins in the network according to GeneMANIA



Page 7 of 16Carrizosa‑Molina et al. Clinical Epigenetics          (2023) 15:191  

Fig. 1 (See legend on previous page.)
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1—skeletal defects (brachial arch defects, ulnar-mam-
mary syndrome, dominant cleft palate, symphalangism 
distal, split hand and foot distal, Gordon syndrome, 
cleft lip and/or palate with mucous cysts of lower and 
Talipes equinovarus); 2—renal defects (renal agenesis, 
Mayer-Rokitansky–Kuster–Hauser syndrome); 3—car-
diovascular (aortic arch defect); and 4—cancer (malig-
nant cylindroma, urethral cancer, glass cell carcinoma 
of the cervix, testicular cancer). Most of these diseases 
are characterized by cardiac, renal, reproductive, and 
skeletal malformations (Table 4) and are associated with 
alterations in growth trajectories. This systems biology 
approach is used to identify genes affected by DMCs in 
LGA newborns that are enriched in disease-related path-
ways, giving further confidence in DMC identification, 
especially when using a small number of samples and an 
uncorrected analysis.

Differentially methylated regions (DMRs)
A total of 48 DMRs were identified between the LGA 
and AGA groups. The distribution of these DMRs was 
as follows: 9 at 5  K promoter regions, 4 at the 3’ UTR 
regions, 29 at CpG islands, 18 at CpG shelves, 10 at CpG 
shores, 38 at gene bodies with 20 at exons and 19 introns, 
while the remaining 10 CpGs were in intergenic regions 
(Additional file 8: Table 3). Gene ontology analysis of the 
genes in association with the 48 DMRs identified sev-
eral significantly enriched biological processes related 
to kidney development, including Mesonephric duct 
development (GO:0072177) (odds ratio = 174, adjusted 
p = 0.03), Nephron tubule development (GO:0072080) 
(odds ratio = 131, adjusted p = 0.03), Hindlimb mor-
phogenesis (GO:0035137) (odds ratio = 104, adjusted 

p = 0.03), and Negative regulation of interferon-beta 
production (GO:0032688) (odds ratio = 65.5, adjusted 
p = 0.05) (Fig.  2A and Additional file  9: Table  4). DMRs 
associated with kidney development included a DMR 
hypermethylated in LGA patients (Fig. 2B), composed of 
7 CpGs located in the intron 1 region of the OSR1 gene 
(Additional file  8: Table  3 and Additional file  1: Fig.  1), 
and 3 DMRs hypomethylated in LGA patients (Fig. 2B), 
composed of 3 CpGs located in the intron 1 region of 
the Polycystin 1 (PKD1) gene, 15 CpGs located in a CpG 
island in proximity of the SRY-Box 8 (SOX8) gene and 10 
CpGs located in promoter region of the Collagen Type-
20 Alpha-1 (COL20A1) gene (Additional file 8: Table 3).

A series of DMRs were found to be associated with 
genes linked to different diabetic pathologies. A DMR 
hypermethylated in LGA patients (Fig. 2C and Additional 
file 8: Table 3) was composed of 15 CpGs located in the 
promoter region of the cleavage and polyadenylation 
specific factor 1 (CPSF1) gene. Two DMRs were hypo-
methylated in LGA patients, one composed of 11 CpGs 
located in intron 1 of the coiled-coil domain containing 
102A (CCDC102A) gene and the other composed of 7 
CpGs located in the promoter region of the Nudix hydro-
lase (NUDT3) gene (Fig. 2C, Additional file 8: Table 3 and 
Additional file 2: Fig. 2).

Two DMRs were found in proximity of two genes 
involved in metabolism and control of appetite. One 
DMR, hypermethylated in LGA patients, is composed 
of 5 CpGs located in the intron 1—exon 2 boundary of 
the Urocortin (UCN) gene (Fig.  2D, Additional file  8: 
Table  3 and Additional file  3: Fig.  3). (DMR methyla-
tion rate: AGA = 19.2% vs LGA = 34.4%; p = 0.0001) 
(Additional file  8: Table  3). CpGs 2 and 3, located in 

Table 3 Pathways significantly enriched in hypermethylated DMCs in the LGA group according to WikiPathways [36]

Only pathways with corrected p < 0.05 are shown

Term Overlap P value Adjusted P value Odds ratio Combined score Genes

Heart Development WP1591 8/44 5.15E‑05 0.015 7.071 69.826 TBX1;FOXC1;SHH;BMP2;HAND2;FOXH1
;TBX5;TBX2

Development of ureteric collection 
system WP5053

8/47 8.42E‑05 0.015 6.526 61.233 FOXC1;SHH;WT1;SIX2;LHX1;GATA3;FAT
4;HOXD11

LncRNA involvement in canonical 
Wnt signaling and colorectal cancer 
WP4258

11/94 1.47E‑04 0.018 4.228 37.300 APC2;TFAP2A;WNT10A;WNT2B;MYC;FZD
7;TCF7;DVL1;FZD10;NOTUM;NKD1

Breast cancer pathway WP4262 14/154 3.00E‑04 0.022 3.196 25.934 APC2;WNT10A;CDKN1A;WNT2B;NOTCH
4;FZD7;TCF7;FZD10;FGF17;DLL4;MYC;DV
L1;ERBB2;PGR

ncRNAs involved in Wnt signaling 
in hepatocellular carcinoma WP4336

10/86 3.08E‑04 0.022 4.192 33.893 WNT10A;WNT2B;MYC;FZD7;TCF7;DVL1;F
ZD10;NOTUM;KLF4;NKD1

Somatic sex determination WP4814 4/14 6.97E‑04 0.043 12.662 92.038 NR5A1;WT1;AMH;PTGDS

Melatonin metabolism and effects 
WP3298

6/37 8.58E‑04 0.045 6.140 43.356 ACHE;MTNR1A;AANAT;CYP1B1;APOE;F
OXO1
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the 5’ region of exon 2, are the most variable of the 
group (CpG2: AGA = 13.1% vs LGA = 29.7.4%; CpG3: 
AGA = 5.6% vs LGA = 40.5%).

The other DMR, hypomethylated in LGA patients, is 
composed of 4 CpGs and is in the promoter region of 

the Membrane-Bound O-Acetyltransferase Domain-
Containing Protein 4 (MBOAT4) gene a.k.a. GOAT (for 
Ghrelin-O-Acyltransferase) (Fig.  2D, Additional file  8: 
Table  3 and Additional file  4: Fig.  4). The DMR at the 
MBOAT4 locus is located at the promoter region (− 1473 

Table 4 Rare diseases significantly enriched in hypermethylated DMCs in the LGA group according to Enrichr [36]

Only pathways with corrected p < 0.05 are shown

Term Overlap P value Adjusted P value Odds ratio Combined score Genes

Branchial arch defects 17/142 1.83E‑06 0.004 4.372 57.765 GCM2;TFAP2A;TBX1;FOXC1;TWIST2;GATA
3;KY;TBX2;SHH;CYP26B1;CXCL12;SIX2;HA
ND2;PAX9;MSX1;PITX1;NKX2-3

Ulnar‑mammary syndrome 11/63 3.11E‑06 0.004 6.759 85.712 TFAP2A;TBX1;FGF17;TBX15;CDKN1A;SHH;
BMP2;MYC;TBX5;JUNB;TBX2

Dominant cleft palate 23/267 9.61E‑06 0.009 3.042 35.149 TFAP2A;TBX1;CDKN1A;KCNK9;WNK4;TW
IST2;HOXC13;KLF4;KY;CKAP4;SKI;SHH;BM
P2;TERT;PTER;ESRP2;MYC;PAX9;KRT14;DV
L1;COL9A3;MSX1;PITX1

Renal agenesis bilateral 11/77 2.29E‑05 0.016 5.321 56.867 CDKN1A;PTER;PAX8;WT1;SIX2;LHX1;GATA
3;NOTUM;AQP2;ACTB;MNX1

Malignant cylindroma 22/282 6.75E‑05 0.032 2.724 26.160 FOXA1;CDKN1A;FOXC1;DYSF;GATA3;KLK
8;KLK10;CKAP4;PURA;GJA1;CXCL12;TERT
;PAX8;WT1;ALPP;MYC;ERBB2;CD9;COL9A
3;PGR;CSK;ADA

Mayer‑Rokitansky‑Kuster‑Hauser 
syndrome

12/103 7.78E‑05 0.032 4.212 39.852 NR5A1;IL32;MUC1;SRD5A2;PTER;WT1;LH
X1;WNT9B;PGR;AMH;TBX5;KY

Urethral cancer 12/103 7.78E‑05 0.032 4.212 39.852 SHH;TERT;PAX8;ALPP;WT1;MYC;ERBB2;GA
TA3;AMH;KY;CKAP4;ADRA2A

Symphalangism distal 11/94 1.47E‑04 0.035 4.228 37.300 SHH;HBM;BMP2;PTER;MYC;PRRX2;SP6;H
OXC13;MSX1;GDF5;CKAP4

Glassy cell carcinoma of the cervix 4/10 1.61E‑04 0.035 21.108 184.317 MUC1;ERBB2;KY;CKAP4

Split hand foot malformation 14/146 1.72E‑04 0.035 3.391 29.406 WNT10A;AMN;LBX1;CKAP4;GJA1;SHH;
PTER;MYC;LHX1;HAND2;PAX9;SP6;MSX
1;ADA

Testicular cancer 12/115 2.25E‑04 0.035 3.719 31.244 TFAP2A;CDKN1A;TERT;SRD5A2;PAX8;ALP
P;WT1;MYC;ERBB2;CD9;AMH;KY

22q11.2 deletion syndrome 12/116 2.44E‑04 0.035 3.683 30.642 GCM2;SLC25A1;TBX1;SHH;CYP26B1;PT
ER;HAND2;GATA3;PRODH;TBX5;MED1
5;TBX2

Gordon syndrome 15/171 2.73E‑04 0.035 3.076 25.246 TBX1;IL11;OSR1;WNK4;STK39;AQP5;OX
SR1;KY;SHH;PTER;PAX8;MYC;SCNN1B;W
NK2;APOE

Leydig cells hypoplasia 15/171 2.73E‑04 0.035 3.076 25.246 UCN;CDKN1A;EGR3;SRD5A2;OSR1;HSPA
2;NR5A1;GJA1;BMP2;SHH;WT1;SIX2;ERBB
2;PTGDS;AMH

Meleda disease 11/101 2.80E‑04 0.035 3.897 31.891 UCN;GJA1;WNT10A;JUP;MYC;KRT14;AQP
5;EVPL;KY;KRT6A;KRT9

Palmoplantar keratoderma 11/101 2.80E‑04 0.035 3.897 31.891 UCN;GJA1;WNT10A;JUP;MYC;KRT14;AQP
5;EVPL;KY;KRT6A;KRT9

Cleft lip and/or palate with mucous 
cysts of lower

12/118 2.86E‑04 0.035 3.613 29.483 TFAP2A;TBX1;BMP2;SHH;TERT;PTER;BHM
T2;PAX9;WNT9B;MSX1;KY;CKAP4

Cleft lip palate‑tetraphocomelia 12/118 2.86E‑04 0.035 3.613 29.483 TFAP2A;TBX1;BMP2;SHH;TERT;PTER;BHM
T2;PAX9;WNT9B;MSX1;KY;CKAP4

Aortic arches defect 5/20 2.88E‑04 0.035 10.566 86.152 TBX1;BMP2;HAND2;FOXH1;GATA3

Talipes equinovarus 21/292 3.01E‑04 0.035 2.489 20.180 CDKN1A;OSR1;WNK4;STK39;HOXC13;HO
XC12;HOXD11;GDF5;HOXD10;CELSR3;KY;
TBX2;COL1A1;SKI;PURA;TERT;PTER;CYP1B
1;HYLS1;MSX1;PITX1
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to −  1515  bp from the TSS) (DMR methylation rate: 
AGA = 98.5% vs LGA = 94%; p = 4.6 ×  10–6) (Additional 
file 8: Table 3). CpGs 2 and 3 were the most variable of 
the group (CpG2: AGA = 98.8% vs LGA = 91.7.4%; CpG3: 
AGA = 99.4% vs LGA = 93%) (Additional file 4: Fig. 4).

It is worth noting that the DMR with the highest meth-
ylation differences and hypermethylated in LGA patients 

is composed of 4 CpGs and located in intron 3 of the Cell 
Division Cycle 25B (CDC25B) gene (Fig.  2E and Addi-
tional file  8: Table  3). This gene regulates progression 
through the cell division cycle. Female Cdc25b-deficient 
mice are sterile due to permanent meiotic arrest of the 
oocyte [47].

Fig. 2 Identification of DMRs in LGA newborns. (A) Enrichment analysis of Gene Ontology (GO) category Biological Process (BP) of all DMRs 
with corrected p < 0.05 are shown. Percent methylation of DMRs associated with genes involved in kidney development (B), diabetic pathologies 
(C), metabolism and appetite (D) and cell division (E)

Fig. 3 Identification of common Gene IDs identified by our DMC and DMR analysis in comparison with that of Küpers et al. [22], who used body 
weight at birth as a continuous variable. The Venn diagram shows the overlap between datasets with the numbers of Gene IDs in each. The table 
shows the intersection of gene IDs identified by our DMR and DMC analysis as well as DMR and genes from the Küpers et al. paper
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To determine if our study showed overlap with pre-
viously published epigenome wide association studies 
(EWAS), we compared the Gene IDs identified by our 
DMCs (Additional file 6: Table 1) and DMRs (Additional 
file  8: Table  3) analysis with those identified by a meta-
analysis of birthweight and DNA methylation at birth 
of 8,825 neonates by Küpers et  al. [22]. The 48 DMRs 
identified here are near 62 genes, 32 out of 62 (approx. 
52%) overlapped with either DMCs found by us (13 of 
62: ADGRF4, ALPP, CDC25B, CPSF1, FYTTD1, GRI-
FIN, IFNL1, LRFN1, OSR1, PKD1, RGPD8, TCEA1, 
UNC), by Küpers et al. (15 of 62: ABHD17A, ARFGAP1, 
CCDC102A, CORO2B, HNRNPLL, IRF2BP1, KDM4B, 
MYOM2, MYPOP, NEU4, OPN5, SLC39A4, SOAT1, 
TSC2, ZC3H18) or both (4 of 62: ANKRD9, ATG16L2, 
CHST12, EPHB1) (Fig. 3).

Discussion
Main findings
The premise of our work was that there is an associa-
tion between birthweight and DNA methylation in cord 
blood at birth. Thus, we sought to identify genome-wide 
methylation changes in normally occurring divergent 
growth trajectories by comparing methylation patterns 
from cord blood of LGA and AGA newborns. While 
LGA babies have a 1.5-fold increased risk of adult obesity 
[48], LGA babies are also associated with a higher risk of 
adult type 1 diabetes [49, 50] and a small but significant 
association with type 2 diabetes [51]. Our small cohort 
of 25 mother–infant pairs was extensively characterized 
to ensure that no major defects, malformations or syn-
dromes were detected in the newborns and that no sig-
nificant metabolic or cardiovascular deficiencies were 
identified in the mothers. We found 1672 DMCs and 48 
differentially DMRs between the LGA and AGA groups. 
Due to the small sample size, we used nominal p values 
for DMC analysis, while we used multiple testing correc-
tion in DMRs and posterior system biology approaches. 
DMCs were significantly enriched with genes associated 
with the regulation of transcription, regulation of epi-
nephrine secretion, norepinephrine biosynthesis, recep-
tor transactivation, forebrain regionalization and several 
terms related to kidney and cardiovascular development. 
Furthermore, our dataset identified several DNA meth-
ylation markers enriched in gene networks involved in 
biological pathways and rare diseases of the cardiovascu-
lar system, kidneys, and metabolism. DMRs were found 
to be significantly enriched in processes related to kidney 
development, including mesonephric duct development 
and nephron tubule development. Approximately half of 
our DMR-associated genes overlapped with DMCs iden-
tified by us or by a previous epigenetic meta-analysis of 
body weight and DNA methylation at birth [22].

Differential methylation in cardiovascular networks
The association between cardiovascular disease and 
birth weight is less well defined, while LGA is associ-
ated with increased risk hypertension during childhood 
and adolescence [52]; this relationship seems to be lost 
or even reversed in later life [51]. Some of these cardio-
vascular outcomes seem to be age- and/or sex-specific. 
LGA men but not women have a higher risk of poor 
cardiac autonomic function [53], while independent 
of gender, LGA adults were found to have an increased 
thickness of the radial artery and carotid artery intima 
[53, 54]. Overall, our DMC and DMR discovery pin-
points several heavily enriched biological processes 
involved in cardiovascular development and canonical 
pathways enriched with genes associated with a rare 
disease of the aortic arches [36, 43]. Hypermethylated 
DMCs were associated with DLL4 and NOTCH4, two 
genes involved in embryonic vascular development, 
vasculogenesis and angiogenesis, arterial and venous 
identities and the regulation of vessel branching [40]. 
Additionally, several transcription factors involved in 
cardiovascular development and function were targeted 
by hypermethylated DMCs, such as HAND2, which 
plays a role in cardiac and aortic morphogenesis [55], 
GATA3, which is involved in endothelial cell biology 
and renal dysplasia when mutated [56], and T-Box tran-
scription factors (TBX1, TBX2 and TBX5) and myosin-
binding protein C (MYBPC3), which are involved in 
the development of the pharyngeal arch arteries [41], 
formation of the chambers of the myocardium and car-
diomyocyte development [42]. Our analysis also iden-
tified a cluster of DMCs hypermethylated in proximity 
to alpha-2-adrenergic receptors (ADRA2) (A, B and C). 
These receptors regulate cardiovascular function when 
activated in the heart, blood vessels and kidney [57]. 
ADRA2A and ADRA2C are essential for the presyn-
aptic control of neurotransmitter release, impacting 
plasmatic noradrenaline levels and ventricular contrac-
tility [58]. On the other hand, single nucleotide poly-
morphisms at the ADRA2B locus are associated with 
variations in the basal metabolic rate in obese popula-
tions [59] and adult metabolic disorders [60]. Today, 
our methylation data are the only association between 
LGA and ADRA2 function. These results may reveal an 
intimate relationship between alterations in prenatal 
growth trajectories and gene networks that control the 
development of the cardiovascular system.

Differential methylation in renal networks
The present study identified several DMCs and DMRs 
enriched in loci involved in kidney development, mor-
phogenesis and function. Gene ontology analysis identi-
fied several functions related to kidney development and 
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function at the level of DMCs and DMRs. Hypermethyl-
ated DMCs were associated with the SHH gene involved 
in the establishment of cell fates during embryonic devel-
opment [39]. A series of transcription factors (WT1, 
OSR1, LHX1, MYC and SOX8) involved in kidney devel-
opment were also found to be associated with hypermeth-
ylated DMCs in LGA newborns. WT1 is required for the 
normal formation of the genitourinary system [61]. Dele-
tions of the WT1 locus result in the formation of Wilms 
tumors, the most common renal tumor in children [62]. 
OSR1 and LHX1 are key transcription factors involved in 
the regulation of nephron progenitor cells [63]. MYC is a 
master regulator of several genes involved in cell growth 
and cell cycle progression [64]. Deregulated MYC expres-
sion results in a variety of oncogenic processes as well as 
polycystic kidney disease [65]. SOX8 is a transcription 
factor involved in the regulation of cell fate determination 
during embryonic development [66]. This transcriptional 
hub controls the normal development of the genitouri-
nary system [61] by means of regulation of cell growth 
and cell cycle progression [64] as well as regulation of the 
nephron progenitor cell [63] population. Furthermore, 
hypomethylated DMRs were found at the PKD1 and 
COL20A1 loci of LGA newborns. While PKD1 is involved 
in the maintenance of renal epithelial differentiation and 
organization [67], single nucleotide polymorphisms in 
the COL20A1 locus are associated with diabetic kidney 
disease [68]. Inactivating mutations of the PKD1 gene are 
responsible for different forms of autosomal dominant 
polycystic kidney disease [67]. Genome Wide Association 
Studies (GWAS) identified a series of single nucleotide 
polymorphisms in COL20A1 in association with diabetic 
kidney disease [68].

This was further validated by the enrichment of fami-
lies of genes involved in rare diseases of the kidney, 
such as renal agenesis and Mayer-Rokitansky–Kuster–
Hauser syndrome. Although there are numerous stud-
ies linking low birth weight with kidney mass, nephron 
number and early onset chronic kidney failure [69–72], 
there are currently no studies linking adult renal dys-
function in individuals born large for gestational age. 
Our study identified several pathways involved in kid-
ney development that are targeted by differential meth-
ylation in patients with divergent growth trajectories. The 
association between some overgrowth syndromes and 
a predisposition to cancer is well known, such as Beck-
with-Wiedemann syndrome (BWS), Simpson–Golabi–
Behmel and segmental overgrowth PTEN hamartoma 
syndrome, among other syndromes [73]. In children with 
overgrowth disorders, such as BWS, birth weight cor-
relates with the size, number, and proliferative potential 
of muscle stem cells [74]. BWS patients have a higher 
incidence of malignancies, including hepatoblastoma, 

neuroblastoma, rhabdomyosarcoma, adrenal carcinoma 
and, above all, Wilms tumors [75, 76]. Our DMR analy-
sis combined with a systems biology approach identified 
an enrichment of differential DNA methylation patterns 
in gene networks involved in several malignant pro-
cesses, including malignant cylindroma, urethral cancer, 
glioblastoma cell carcinoma of the cervix and testicular 
cancer. Most of these rare diseases are characterized by 
cardiac, renal, reproductive, and skeletal malformations. 
Moreover, we identified hypermethylated DMCs at the 
WT1 locus, which are required for the normal formation 
of the genitourinary system [61] and responsible for the 
formation of Wilms tumors, a renal tumor in children 
[62]. Our dataset GO enrichment analysis shows and 
overlaps with partial phenotypes of specific overgrowth 
syndromes caused by single gene mutations, further-
ing a link between the prenatal environment, epigenetic 
alterations, and postnatal health outcomes. The use of a 
systems biology approach comparing our dataset with 
pathways and disease outcomes is intended to enhance 
the validity of our results, especially when there are some 
similarities in the pathophysiology of adult LGA and dis-
eases with clear genetic/pathway alterations.

Differential methylation in metabolic networks
A series of DMRs were found to be associated with genes 
linked to different diabetic pathologies, metabolism, 
and control of appetite. A DMR hypermethylated in the 
CPSF1 gene is a mediator of retinal vascular dysfunction 
in diabetes mellitus [77]. Two DMRs hypomethylated in 
the CCDC102A and NUDT3 genes. While genomic vari-
ations in the CCDC102A locus were found to be associ-
ated with diabetic cataract [78], polymorphisms at the 
NUDT3 locus were associated with body mass index 
(BMI), adiposity and pediatric onset type 2 diabetes 
[79]. Moreover, we also identified two DMRs in genes 
involved in metabolism and the control of appetite. One 
DMR close to the UCN gene was hypermethylated in 
LGA patients. This gene is involved in the suppression 
of appetite under stress conditions and acts as a CRF-
like factor in producing anxiety-like effects [80]. Lasting 
hypermethylation of this region could induce downregu-
lation of UCN expression and a blunted response to its 
appetite suppressive activity, leading to sustained over-
feeding, long-term body weight gain and obesity. On 
the other hand, LGA newborns had a hypomethylated 
DMR in the MBOAT4 gene regulatory region. MBOAT4 
is responsible for acylation of ghrelin at serine 3, mak-
ing it physiologically active and stimulating appetite and 
hunger in the feeding centers of the brain through acti-
vation of its cognate receptor growth hormone secreta-
gogue receptor type 1 (GHSR1A). MBOAT4 is regulated 
by nutrient availability, linking dietary lipids to energy 
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expenditure [81]. Long-term overexpression of MBOAT4 
could induce a blunted response to a lipid-rich diet [82].

Several gene IDs targeted by DMRs also overlapped 
with DMCs outside the DMR region, including those of 
UCN, PKD OSR1 and CDC25B. More importantly, 19 
out of 63 Gene IDs targeted by DMRs were also identi-
fied by a meta-analysis of 24 EWAS in newborn blood 
in association with birthweight. It is not uncommon to 
see a small overlap between EWAS, especially when the 
study population, methods and bioinformatic approaches 
differ.

Limitations
The pathophysiology of LGA is a complex and multi-
factorial phenomenon influenced by a combination of 
genetic, maternal–fetal environmental, and epigenetic 
factors. The relative contribution of these factors can 
vary from case to case, making it essential to consider all 
three factors in understanding macrosomia. Variations 
in genes related to insulin sensitivity, glucose metabo-
lism, and growth hormone can influence fetal growth. 
In some cases, familial patterns of macrosomia can be 
observed, suggesting a strong genetic component. On 
the other hand, maternal nutrition, maternal obesity, 
gestational diabetes, and other metabolic conditions 
are strongly associated with macrosomia. To iden-
tify the influence of DNA methylation in two distinct 
growth trajectories from our LARGAN cohort, we tried 
to minimize the contribution of genetic and maternal–
fetal environment by recruiting patients with no his-
tory of macrosomia and with normal maternal glycemia 
and body weight gain during pregnancy to diminish the 
possible contribution of maternal diabetes. Despite the 
many studies examining the genetic, environmental, 
and epigenetic mechanisms linking early life growth 
with adult disease, very few common targets have been 
identified, a testament to the multifactorial nature of 
the growth process. Here, we hypothesize that divergent 
intrauterine growth trajectories impact DNA methyla-
tion sites on those gene networks associated with adult 
health outcomes, especially cardiometabolic health. Our 
study cannot discriminate between methylation changes 
that respond to differential growth trajectories from 
methylation changes that induce differential growth 
trajectories. Whatever the case, our data show that dif-
ferential early growth trajectories impact DNA methyla-
tion patterns other than by chance, affecting pathways 
enriched in genes involved in cardiometabolic and kid-
ney development. Previous studies identified very few 
DNA methylation patterns at birth that persisted into 
childhood or adulthood. This exposes the tantalizing 
possibility that transient changes in DNA methylation 
patterns during early life could have profound impacts in 

organ development and function [22]. Follow-up stud-
ies comparing anthropometric and physiological data at 
different ages are warranted to identify correlations with 
methylation levels at birth.

One of the biggest limitations of our study is the small 
sample size, preventing us from detecting small varia-
tions in DNA methylation and identifying DMCs with 
significant corrected p values. A larger study including a 
larger number of patients per group and with increased 
sequencing depth would not only permit the corrobora-
tion of the current findings but also identify other loci 
not identified under the current conditions.

While the goal of EWAS is to identify epigenetic 
regions associated with specific phenotypes, it is tempt-
ing to try to interpret the dataset and speculate on the 
potential impact of the DMCs/DMRs in gene expres-
sion/gene network function in the target tissue. We 
recognize that the use of surrogate tissue (blood cells) 
to identify changes in DNA methylation of inaccessi-
ble target tissues in living patients is a drawback but is 
the only means of study we have to identify epigenomic 
biomarkers of growth. Recent studies identified sub-
sets of DMCs that correlate between blood and brain 
[83] and blood and liver [84], but further studies need 
to be done to generate a map of those sites informative 
of a wider range of tissues and cell types. Although the 
population studied was composed of diverse ethnici-
ties, they were largely of white European origin. Future 
studies including ethnicity as a variable of study will be 
needed to understand how conserved these epigenetic 
associations are.

Conclusions
Our study identified several epigenetic regions differen-
tially methylated in association with fetal overgrowth. 
The use of cord blood as a material in combination with 
the TruSeq EPIC enrichment platform for the identifica-
tion of epigenetic biomarkers gives us the possibility to 
perform follow-up studies on the same patients as they 
enter childhood and puberty. These studies will not only 
help us understand how the epigenome responds to con-
tinuum postnatal growth but also link early alterations 
of the DNA methylome with later clinical markers of 
growth and metabolic fitness.
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