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Tumor microenvironment deconvolution 
identifies cell-type-independent aberrant DNA 
methylation and gene expression in prostate 
cancer
Samuel R. Reynolds1*  , Ze Zhang1  , Lucas A. Salas1   and Brock C. Christensen1,2   

Abstract 

Background Among men, prostate cancer (PCa) is the second most common cancer and the second leading cause 
of cancer death. Etiologic factors associated with both prostate carcinogenesis and somatic alterations in tumors are 
incompletely understood. While genetic variants associated with PCa have been identified, epigenetic alterations 
in PCa are relatively understudied. To date, DNA methylation (DNAm) and gene expression (GE) in PCa have been 
investigated; however, these studies did not correct for cell-type proportions of the tumor microenvironment (TME), 
which could confound results.

Methods The data (GSE183040) consisted of DNAm and GE data from both tumor and adjacent non-tumor prostate 
tissue of 56 patients who underwent radical prostatectomies prior to any treatment. This study builds upon previous 
studies that examined methylation patterns and GE in PCa patients by using a novel tumor deconvolution approach 
to identify and correct for cell-type proportions of the TME in its epigenome-wide association study (EWAS) and dif-
ferential expression analysis (DEA).

Results The inclusion of cell-type proportions in EWASs and DEAs reduced the scope of significant alterations 
associated with PCa. We identified 2,093 significantly differentially methylated CpGs (DMC), and 51 genes associated 
with PCa, including PCA3, SPINK1, and AMACR .

Conclusions This work illustrates the importance of correcting for cell types of the TME when performing EWASs 
and DEAs on PCa samples, and establishes a more confounding-adverse methodology. We identified a more tumor-
cell-specific set of altered genes and epigenetic marks that can be further investigated as potential biomarkers of dis-
ease or potential therapeutic targets.

Keywords Prostate cancer, Tumor microenvironment, Deconvolution, Epigenome-wide association study, DNA 
methylation, Differential expression analysis

Background
This study aims to investigate cellular composition in the 
TME of prostate cancer patients to investigate epigenetic 
and gene expression alterations associated with pros-
tate carcinogenesis. The prostate gland is a walnut-sized 
gland below the bladder, surrounding the urethra, and 
it is crucial to reproduction through its role in seminal 
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fluid production and secretion. Prostate cancer is the sec-
ond most common cancer in men behind nonmelanoma 
skin cancer—it is estimated that there will be 288,300 
new cases and 34,700 deaths due to prostate cancer in 
the United States in 2023 [1]. One in every eight men will 
be diagnosed with prostate cancer during their lifetime, 
meaning more than 1.2 million new cases will be diag-
nosed each year worldwide [1]. Also, one in every 41 men 
will die of prostate cancer, making it the second leading 
cause of male cancer death behind lung cancer [2]. Most 
prostate cancer begins in the peripheral zone, or back of 
the prostate, and grows slowly. While the tumor remains 
in the prostate, it does not pose a serious health risk, and 
if detected early, minimally invasive procedures can suc-
cessfully treat the disease. Often, prostate cancer identi-
fied in its early stages is monitored and only treated upon 
exhibiting evidence of metastatic potential. The five-year 
survival rate of patients whose cancer has spread outside 
the prostate is 31%, whereas the five-year survival rate 
of patients whose cancer was localized to the prostate is 
nearly 100% [3]. Prostate cancer is a complex disease, and 
several genetic alterations in prostate tumors have been 
identified. Frequent genetic alterations include fusions 
of TMPRSS2 with ETS family genes, amplification of the 
MYC oncogene, deletion and/or mutation of PTENand 
TP53, and mutation of the androgen receptor gene have 
been identified as contributors to prostate cancer [4].

Epigenetic modifications to DNA methylation are well 
known to occur in cancers, including prostate cancer 
[5]. DNA methylation helps regulate gene expression by 
either recruiting proteins, such as histone modifying or 
chromatin remodeling enzymes, that contribute to gene 
repression or by directly preventing the binding of tran-
scription factors (TF) to DNA. During development and 
cellular differentiation, cell-type-specific methylation 
patterns are established and contribute to regulating 
cell-specific gene and protein expression patterns. DNA 
methylation patterns have been employed to estimate 
tumor purity, and subsequent differential methylation 
analyses have corrected for tumor purity [6]. Addition-
ally, transcriptomic alterations in prostate cancer have 
been studied using differential expression analyses [5, 7, 
8] including those with correction for immune cell types 
of the tumor microenvironment [9].

Epigenetic and transcriptomic alterations in pros-
tate cancer have been studied, but previous analyses 
have solely focused on tumor purity or immune cell-
type proportions. They have not addressed the variation 
in immune, tumor, and angiogenic cell-type propor-
tions within the tumor microenvironment, which could 
be a crucial potential confounding factor across sub-
jects. Determining the TME cell-type proportions can 
be accomplished through cell-type deconvolution, 

separating mixed signals into their individual parts. In a 
tumor sample, beyond tumor cells, there are numerous 
cell types, such as healthy prostate epithelium, blood and 
lymphatic vessels, and immune cell types, each of which 
has distinct epigenetic and gene expression patterns. 
Cell-type-specific epigenetic patterns can differentiate a 
given cell type from the others and calculate its propor-
tion in the sample. Multiple TME deconvolution tools 
have been developed, including CIBERSORT [10] which 
uses RNA-seq data, and MethylCIBERSORT [11], Meth-
ylResolver [12], and Hierarchical Tumor Immune Micro-
environment Epigenetic Deconvolution (HiTIMED) 
[13] which use DNA methylation data. MethylCIBER-
SORT and MethylResolver both trained their models 
on cancer cell lines instead of primary cancer cells and 
can only deconvolve ten and twelve immune cell types, 
respectively. Additionally, MethylResolver uses a univer-
sal standard reference for tumor purity estimation in all 
tumor types instead of using organ-specific epithelial 
cell-type DNA methylation signatures. Lastly, CIBER-
SORT and methylCIBERSORT force the deconvolution of 
every immune cell type, even if they are not present in 
the sample. In comparison, our HiTIMED method offers 
deconvolution of more cell types and has higher accuracy 
than similar methods. HiTIMED uses primary cancer 
cells and tissue-specific methylation signatures to decon-
volve seventeen different tumor, immune, and angiogenic 
cell types more accurately with a hierarchical approach 
and does not force the deconvolution of cell types if they 
are not present. Here we used HiTIMED to investigate 
epigenetic and transcriptomic alterations in prostate can-
cer. We show the importance of adjusting for cell type in 
epigenome-wide association studies (EWAS) and iden-
tify altered DNA methylation and disease-specific gene 
expression.

Results
The prostate cancer data used in this study consisted 
of 56 patients who underwent radical prostatectomies 
prior to any treatment and included tumor, adjacent 
non-tumor prostate tissues (GSE183040). Study subject 
demographics and clinical characteristics are provided in 
Table 1.

Cell-type proportions in the tumor microenviron-
ment (TME) were quantified using genome-scale DNA 
methylation data measured with the Illumina Infinium 
MethylationEPIC platform from the tumor and adja-
cent non-tumor prostate tissue for all subjects using 
the HiTIMED package in R. The prostate TME was 
deconvolved at the second HiTIMED hierarchical layer 
(Fig. 1C). The second layer returns tumor, immune (naïve 
B, memory B, CD4 naïve T, CD4 memory T, regulatory T, 
CD8 naïve T, CD8 memory T, monocyte, dendritic cell, 
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natural killer, basophil, eosinophil, and neutrophil cells), 
and angiogenic (endothelial, epithelial, and stromal cells) 
cell-type proportions. Mean cell-type proportions of the 
second deconvolution layer for tumor and healthy pros-
tate tissues are reported in Fig. 1D.

Univariate comparisons of the three higher-level cell-
type categories (tumor, immune, and angiogenic) from 
HiTIMED hierarchical level two between patients who 
experience remission versus recurrence of their tumor 
are shown in Fig. 1. A higher proportion of tumor cells in 
the TME at the time of radical proctectomy approached 
significance (P = 0.085) for patients who experienced 
recurrence (Fig.  1E). Immune cell-type proportions 
are not significantly associated with the recurrence of a 
tumor (P = 0.82) (Fig. 1F), while decreased proportions of 
angiogenic cells in the TME were associated with recur-
rence (P = 0.018) (Fig. 1G).

Although previous studies have investigated alterations 
in the epigenome of prostate tumors including correction 
for the TME, published work to date has only included 
corrections for tumor purity or immune cell types of the 
TME only, and not a more complete correction using 
tumor, immune, and angiogenic cell types. HiTIMED 
does not force the prediction of TME cell types. There-
fore, there were missing cell-type proportions in the 

hierarchical level 6 (Fig. 1A and B), which is why hierar-
chical level 2 was chosen to correct for the TME, as it did 
not contain missing values. To assess the extent of poten-
tial confounding by cell type, three different epigenome-
wide association study (EWAS) sets of models were fitted 
using paired tumor non-tumor prostate tissue samples 
from 56 patients. For all three EWASs, the Gleason score 
was grouped into those with a primary pattern of three 
and those with a primary pattern of four or five, and 
the pathological stage was grouped into those in stage 
two and those in stage three. In the first EWAS, models 
testing DNA methylation between prostate tumor and 
non-tumor tissue adjusting for age and race resulted in 
363,454 significantly differentially methylated CpG sites 
(FDR Q-value < 0.05, Additional file  1: Fig. S1A). The 
second EWAS adjustment for age, race, Gleason score, 
pathological stage, and preoperative PSA levels resulted 
in 361,330 significantly differentially methylated CpG 
sites (FDR Q-value < 0.05, Additional file 1: Fig. S1B). The 
third EWAS adjusted for variables in the second EWAS 
and immune and angiogenic cell-type proportions from 
HiTIMED, resulting in 2093 significantly differentially 
methylated CpG sites (FDR Q-value < 0.05, Additional 
file 1: Fig. S1C, Fig. 2). Of the 2,093 CpG sites, 285 were 
hypomethylated, and 1808 were hypermethylated in 
tumors relative to normal.

CpGs identified in the models correcting for cell-
type proportions of the TME (n = 2093, Fig.  2) were 
used for downstream analyses. We first tested for 
potential enrichment in genomic context regions of 
CpGs with hypermethylation in prostate tumors and 
observed enrichment for enhancer regions (OR = 1.87, 
P = 5.09 ×  10–8), DNase I hypersensitive sites (DHS) 
(OR = 8.89, P = 2.13 ×  10–226), promoters (OR = 3.56, 
P = 1.47 ×  10–141), and 5’ untranslated regions (OR = 1.62, 
P = 4.15 ×  10–15), and depleted in exons (OR = 0.28, 
P = 2.82 ×  10–23), introns (OR = 0.34, P = 4.05 ×  10–63), 
intergenic regions (OR = 0.67, P = 1.34 ×  10–11), gene 
bodies (OR = 0.66, P = 1.57 ×  10–16), and 3’ untranslated 
regions (OR = 0.65, P = 1.10–2) (Fig.  3A). When hyper-
methylated CpGs associated with prostate cancer were 
assessed for genomic context enrichment relative to 
CpG islands, they were enriched for north and south 
shore regions (OR = 1.57, P = 1.84 ×  10–10 and OR = 1.59, 

Table 1 Study population demographic and disease 
characteristics

Characteristics Cases

Total subjects 56

Total samples 168

Age, mean (range) 63.1 (57.5–68.6)

Type of sample (Tumor, Benign, Buffy Coat) (56, 56, 56)

Race (White, Black, Unknown) (114, 21, 33)

Preoperative PSA Level, mean (range) 7.1 (1.2–13.0)

Pathological stages, n (%)

 Stage 2 (T2a, T2b, T2c) 33 (58.9)

 Stage 3 (T3a, T3b) 23 (41.1)

Gleason scores, n (%)

 Primary pattern of 3 (3 + 3 T4, 3 + 4, 3 + 4 T5) 39 (69.6)

 Primary pattern of 4 and 5 (4 + 3, 4 + 3 T5, 4 + 4, 4 + 5, 
5 + 4, 5 + 5 T4)

17 (30.4)

Fig. 1 Prostate cancer tumor deconvolution and association of cell type with five-year remission and recurrence status. A Monocytes, basophils, 
eosinophils, neutrophils, naïve B, memory B, CD4 naïve T, CD4 memory T, regulatory T, CD8 naïve T, CD8 memory T, dendritic cell, natural killer, 
endothelial, epithelial, stromal, and tumor cell-type proportions of tumor and non-tumor prostate tissue ordered on tumor cell percentage 
of the tumor sample. B Mean cell-type proportions of the prostate tumor samples at HiTIMED hierarchical level six. C Angiogenic (endothelial, 
epithelial, and stromal cells), immune, and tumor cell-type proportions of tumor and non-tumor prostate tissue ordered on tumor cell percentage 
of the tumor sample. D Mean cell-type proportions of the prostate tumor samples at HiTIMED hierarchical level two. Five-year remission 
and recurrence status based on the tumor E, angiogenic F, and immune G cell-type proportions of the TME

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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P = 9.66 ×  10–10, respectively), and depleted in north and 
south shelves (OR = 0.17, P = 1.48 ×  10–16 and OR = 0.28, 
P = 5.82 ×  10–11, respectively) and open sea regions 
(OR = 0.15, P = 2.50 ×  10–270) (Fig.  3B). Next, testing 
for genomic context enrichment analysis among CpGs 
hypomethylated in prostate cancer, we observed enrich-
ment for gene bodies (OR = 1.36, P = 1.13 ×  10–2) and 
introns (OR = 1.48, P = 1.61 ×  10–3), and depletion among 
promoters (OR = 0.74, P = 2.80 ×  10–2, Fig.  3C). When 
hypomethylated CpGs associated with prostate cancer 
were assessed for genomic context enrichment relative 
to CpG islands, they were enriched for open sea regions 
(OR = 1.48, P = 1.84 ×  10–3, Fig.  3D). Of the top twenty 
most significant hypermethylated CpGs, eighteen out 
of twenty tracked to a gene (Additional file 2: Table S1). 
Only fourteen of the twenty most significant hypometh-
ylated CpGs were tracked to a gene (Additional file  3: 
Table S2).

When comparing the methylation levels of the top 
hypermethylated DMCs to the expression levels of the 
genes they mapped to (Fig.  4), a significant decrease in 
gene expression was found with an increase in methyla-
tion of cg01185682 (Gene = HLF, P-value = 9.5 ×  10–5), 
cg01451391 (Gene = HLF, P-value = 1.4 ×  10–4), and 
cg08952506 (Gene = AOX1, P-value = 2.9 ×  10–7). None of 

the hypomethylated DMCs had a significant relationship 
between DNA methylation levels and gene expression 
(Fig. 4).

The 2,093 CpGs with significantly altered methyla-
tion in prostate tumors from the fully adjusted EWAS 
mapped to 717 distinct genes. The top twenty hyper-
methylated genes with the largest number of associated 
CpGs are listed in Additional file 4: Table S3. The top five 
hypermethylated genes are CCDC181 (10 CpGs), CPVL 
(9 CpGs), GPR84-AS1 (9 CpGs), ALK (8 CpGs), and 
LINC01929 (8 CpGs). The top twenty hypomethylated 
genes are listed in Additional file 5: Table S4. The top five 
hypomethylated genes are AGAP1 (3 CpGs), EHMT1 (2 
CpGs), ELK4 (2 CpGs), FAM23OD (2 CpGs), HDAC4 (2 
CpGs). All genes from Additional file 4: Tables S3, Addi-
tional file 5: Table S4 were used to build a functional pro-
tein association network (Fig. 5).

Two differential expression analyses were performed 
using paired tumor-healthy prostate tissue samples from 
56 patients. The first was adjusted for age, race, Gleason 
score, pathological stage, and preoperative PSA levels 
(Additional file 1: Fig. S2A) and resulted in 3367 signifi-
cantly differentially expressed genes (FDR Q-value < 0.05), 
associated with prostate cancer. The second was adjusted 
for age, race, Gleason score, pathological stage, preop-
erative PSA levels, the immune and angiogenic cell-type 
proportions from HiTIMED hierarchical level two (Addi-
tional file 1: Fig. S2B, Fig. 6) and identified 51 significantly 
differentially expressed genes (FDR Q-value < 0.05). Add-
ing immune and angiogenic cell-type proportions identi-
fied a more tumor-specific set of genes when comparing 
the two differential expression analyses. Of the 51 genes 
that were significant after correcting for multiple com-
parisons, only ten had log2 fold changes whose absolute 
values were greater than one, meaning that the expres-
sion of a gene in the tumor tissue is either greater than or 
equal to double that of the healthy tissue or less than or 
equal to half of the control expression (Additional file 7: 
Table S6).

When comparing the genes found to be associated with 
prostate cancer from the epigenome-wide association 
study with those from the differential expression analy-
sis, only two genes were found to be significant in both 
analyses: SHISA3 and LMX1A. Both were slightly under-
expressed compared to healthy prostate tissue and con-
tained two CpG sites. The CpG sites for SHISA3 were 
both hypermethylated, while one for LMX1A was hyper-
methylated, and one was hypomethylated.

The 2,093 DMCs from the fully adjusted EWAS were 
utilized in an ELMER analysis to investigate the regu-
latory element and TF networks of prostate cancer. 
193 hypomethylated promoter motifs were signifi-
cantly associated with prostate cancer (Additional file 8: 

Fig. 2 TME correction in EWAS identifies 2093 tumor-specific CpGs 
when comparing tumor versus non-tumor groups. Epigenome-wide 
association study of prostate cancer and matched non-tumor 
normal prostate tissue adjusted for patient age, race, Gleason 
score, pathological stage, and preoperative PSA levels, immune 
and angiogenic cell-type proportions from HiTIMED hierarchical 
level two, and blocked on patient ID. Each point represents a CpG 
site; in total, 746,980 CpG sites are shown, and those with an FDR 
Q-value < 0.05 are shown in red (2093 CpGs). FDR Q-value < 0.05 
is shown above the blue line, and FDR Q-value < 0.01 is shown 
above the red line
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Fig. 3 Genomic context and relation to CpG islands of hyper and hypomethylated CpGs associated with PCa
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Table  S7) and the top three were FOXA2 (OR = 3.15, 
FDR Q-value = 6.6 ×  10–10), FOXA1 (OR = 2.89, FDR 
Q-value = 9.1 ×  10–9), and FOXA3(OR = 2.89, FDR 
Q-value = 1.2 ×  10–7) (Fig.  7A). 546 hypermethylated 
promoter motifs were significantly associated with 
prostate cancer (Additional file 9: Table S8) and the top 
three were SP2 (OR = 5.52, FDR Q-value = 6.3 ×  10–98), 
SP1 (OR = 4.84, FDR Q-value = 8.6 ×  10–103), and SP3 
(OR = 4.44, FDR Q-value = 1.8 ×  10–102) (Fig. 7B). 8 hypo-
methylated enhancer motifs were associated with pros-
tate cancer (Additional file  10: Table  S9) and the top 
three were FOXA2 (OR = 1.98, FDR Q-value = 7.8 ×  10–3), 

ZBT14 (OR = 1.79, FDR Q-value = 2.6 ×  10–3), and FOXA1 
(OR = 1.81, FDR Q-value = 3.7 ×  10–2) (Fig.  7C). 666 
hypermethylated enhancer motifs were associated with 
prostate cancer (Additional file 11: Table S10) and the top 
three were SP2 (OR = 13.18, FDR Q-value = 5.4 ×  10–286), 
SP1 (OR = 11.72, FDR Q-value = 3.1 ×  10–312), and E2F4 
(OR = 10.45, FDR Q-value < 2.2 ×  10308) (Fig.  7D). Mas-
ter regulator TFs (MRTFs) for the significantly associ-
ated motifs were identified. The top three MRTFs for 
FOXA2, FOXA1, and FOXA3—the top three hypometh-
ylated promoter motifs—were DLX1, SIM2, and FEV 
(Additional file  1: Fig. S3A). The top three MRTFs for 

Fig. 4 DNA methylation v. mRNA expression for the top hypermethylated and hypomethylated CpGs associated with PCa
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SP2, SP1, and SP3—the top three hypermethylated pro-
moter motifs—were GLIS3, BNC2, and L3MBTL4 (Addi-
tional file 1: Fig. S3B). The top three MRTFs for FOXA2, 
ZBT14, and FOXA1—the top three hypermethylated 
enhancer motifs—were DLX1, SIM2, and FEV (Addi-
tional file  1: Fig. S3C). The top three MRTFs for SP2, 
SP1, and E2F4—the top three hypermethylated enhancer 
motifs—were GLIS3, BNC2, and L3MBTL4 (Additional 
file 1: Fig. S3D).

Discussion
This study aimed to identify the key epigenetic and gene 
expression alterations associated with prostate car-
cinogenesis, including adjustment for variation in cell 
types in the TME. To investigate the epigenome, differ-
ential methylation of CpG sites, either hyper or hypo-
methylated, was assessed, including tracking to genes. 
In addition, transcriptome alterations were assessed 
by comparing mRNA counts between the healthy and 

tumorous prostate tissue. Using correction for cell-type 
proportions in the TME in the epigenome-wide associa-
tion study and the differential expression analysis allowed 
the identification of more disease-specific alterations.

Although all cells in an individual contain the same 
genome, different cell types have distinct phenotypes and 
functions. Epigenetic alterations, such as DNA methyla-
tion, regulate gene expression and shape the phenotypes 
and functions of different cell types, and therefore, each 
cell type has a distinct DNA methylation pattern [14]. 
Therefore, without correcting for cell type when iden-
tifying DMCs between cases and controls, variation in 
cell-type proportions among samples can confound asso-
ciations of methylation identified using EWAS.

The top five most significant hypermethylated DMCs 
mapped to HLF, HS3ST1, AOX1, AKR1B1. HLF, hepatic 
leukemia factor, is a TF that has been found to pro-
mote ferroptosis resistance and encourage cell prolif-
eration in triple-negative breast cancer [15]. Although 

Fig. 5 Induced network of the top twenty differentially methylated hyper and hypomethylated genes
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DNA methylation in the gene body has sometimes been 
found to be associated with increased transcription [16] 
and two of the top five hypermethylated DMCs were 

both located in the gene body of HLF, increased meth-
ylation in both of the DMCs in HLF was associated with 
decreased expression of HLF. This inverse association 
might suggest a potential alternative transcriptional reg-
ulation of HLF in prostate cancer instead. HS3ST1 has 
been found to promote tumor non-small-cell lung cancer 
progression by regulating SPOP/FADD/NF-κB pathway 
[17]. The DMC located in the HS3ST1 gene is located in 
the 5’ untranslated region, which could potentially pre-
vent the binding of TFs and alter its regulation. Although 
AKR1B1 has also been found to be less expressed in 
prostate tumors [18], its role in prostate cancer remains 
unknown. It, however, has been found to be associated 
with tumor progression and is overexpressed in colorec-
tal, breast, ovarian, cervical, rectal, pancreatic, and lung 
cancers while being underexpressed in endometrial and 
adrenocortical cancers [19]. AOX1 encodes a protein that 
produces hydrogen peroxide and, under certain condi-
tions, can catalyze the formation of superoxide. Our 
results align with recent studies that have found AOX1 
to be hypermethylated in prostate cancer [20]; how-
ever, the effect of decreased AOX1 expression in pros-
tate cancer has not been studied. In advanced bladder 
cancer, low levels of AOX1 in normal bladder epithelial 
cells lead to the rewiring of the tryptophan-kynurenine 
pathway, resulting in elevated NADP levels, which could 
increase metabolic flux through the pentose phosphate 

Fig. 6 TME correction in DEA identifies 51 tumor-specific genes 
when comparing tumor versus non-tumor groups. The differential 
expression analysis pathological stage and for age, sex, Gleason 
score, preoperative PSA levels, pathological stage, and immune 
and angiogenic cell-type proportions from the second HiTIMED 
hierarchical level. Genes with significant adjusted p-values (FDR 
Q-value < 0.05) are shown in blue, those with log2 fold change 
(log2(tumor expression/control expression)) whose absolute value 
is greater than one in green, and genes that are both are shown 
in red

Fig. 7 Transcription factor (TF) motifs associated with prostate cancer. TF motifs that are hypomethylated and in promoter regions (A), 
hypermethylated and in promoter regions (B), hypomethylated and in enhancer regions (C) and hypermethylated and in enhancer regions (D)
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(PPP) pathway and enable increased nucleotide synthesis, 
therefore promoting cell invasion during advanced blad-
der cancer progression [21]. Further studies would be 
needed to see if AOX1 acts similarly in prostate cancer.

The top five most significant hypomethylated DMCs 
mapped to GOLGA3, COL5A1, and COQ7. Of the hypo-
methylated genes, GOLPH3 promotes cell proliferation 
by enhancing the activity of AKT-mTOR signaling and 
plays a key role in tumor proliferation and cell cycle regu-
lation of prostate cancer [22]. The role of COL5A1, which 
encodes a component of type V collagen, in prostate 
cancer remains unknown. However, its overexpression 
promotes clear cell renal cell carcinoma (CRCC), and 
its knockdown in in  vitro CRCC cell lines induced cell 
apoptosis and inhibited cell migration and invasion [23]. 
COQ7 is involved in ubiquinone biosynthesis, but its role 
in prostate cancer has not been studied yet. Therefore, 
all three of these genes could be potentially good candi-
dates for further study, especially GOLPH3 and COL5A1, 
whose expressions were found to be associated with 
tumor progression in other tumor types.

The list of DMCs was then used to find genetic path-
ways associated with prostate cancer. These were found 
by conducting a gene ontology (GO) term analysis, which 
looks at which classes of genes are overrepresented in a 
large group of genes. The three most significant pathways 
found were system development, multicellular organism 
development, and regulation of cell differentiation (Addi-
tional file 6: Table S5).

While investigating the individual genes found to be 
associated with prostate cancer, the three genes with 
the largest number of hypermethylated DMCs con-
tained in them are CCDC181, CPVL, and GPR84-AS1. 
These genes encode the following proteins: coiled-coil 
domain-containing protein 181, carboxypeptidase vitel-
logenic-like protein, and G-protein coupled receptor 
84 antisense RNA 1, respectively. Coiled-coil domain-
containing protein 181 is a microtubule-binding protein 
involved in spermatogenesis [24]. Its function in prostate 
cancer is unknown, but it has been found to be hyper-
methylated and underexpressed in prostate tumors [25]. 
Carboxypeptidase vitellogenic-like protein is a novel car-
boxypeptidase—which cleaves single amino acids in the 
carboxyl termini of proteins—whose exact function is 
unknown [26]. Increased levels of carboxypeptidase vitel-
logenic-like protein have been found in prostate tumors, 
but their contributions to tumor progression have not 
been identified [27]. GPR84-AS1 is an antisense RNA 
that binds to the G-protein coupled receptor 84, which 
is a part of the G protein-coupled receptor family whose 
activation is involved in the inflammatory response [28] 
and blocks its translation into protein. While found to 
be upregulated in breast cancer [29], the function and 

regulation of GPR84-AS1 in prostate cancer have not 
been studied before.

The three genes with the largest number of hypometh-
ylated DMCs contained in them are AGAP1, EHMT1, 
and ELK4. These genes encode the following proteins: 
ArfGAP with GTPase domain, ankyrin repeat, and PH 
domain 1; euchromatic histone lysine methyltransferase 
1; and ETS transcription factor ELK4, respectively. While 
AGAP1 is found to be downregulated in osteosarcoma 
[30], its expression levels and function in prostate cancer 
have not been investigated. EHMT1’s expression in pros-
tate cancer has not been studied; however, it is overex-
pressed in lung cancer and cells that underwent EHMT1 
knockdown-induced apoptosis and G1 cell cycle arrest 
[31]. ELK4 is involved in cell growth promotion and is 
found to be overexpressed in prostate cancer [32].

A functional protein association network was built 
using the top twenty hyper and hypomethylated genes 
as input to STRING [33], which accesses the BIND, DIP, 
GRID, HPRD, IntAct, MINT, and PID databases for its 
experimental protein–protein interaction data and Bio-
carta, BioCyc, GO, KEGG, and Reactome for its curated 
protein–protein interaction data. The resulting network 
was composed of numerous tumor-related genes cen-
tered on the protooncogene TP53. In the surrounding 
first layer and nodes connected to TP53, there were his-
tone deacetylases (HDAC4, HDAC3), transcription fac-
tors (RARA), DNA repair proteins (MSH2, MSH6, NBN, 
ATM), and cell cycle checkpoint proteins (MDC1).

For our differential expression analysis (DEA), while 
previous studies had investigated the transcriptome of 
prostate cancer, this study included correction for cell-
type proportions in the TME aiming to discern more 
tumor-specific altered gene expression. This was done 
by comparing a DEA that corrected for TME cell-type 
proportions with one that did not. In the DEA that did 
not correct for TME cell-type proportions, a much larger 
scope of differentially expressed genes (DEG) associated 
with prostate cancer was identified, indicating that varia-
tion in cell-type proportions across samples is an impor-
tant potential confounder of differential gene expression 
analysis in prostate cancer. Just as in the EWAS, utilizing 
HiTIMED TME deconvolution to reduce the number 
of genes whose expression was associated with pros-
tate cancer resulted in a more succinct and potentially 
disease-specific list. The top three overexpressed genes 
whose differential expression was associated with pros-
tate cancer are PCA3, SPINK1, and AMACR, which 
encode prostate cancer antigen 3, serine protease inhibi-
tor Kazal-type 1, alpha-methylacyl-CoA racemase. PCA3 
is a well-known overexpressed gene in prostate cancer 
and has been identified as a possible candidate as an early 
detection biomarker. Because elevated PSA levels can be 
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due to several factors other than prostate cancer, PCA3 
would offer more specificity when determining the pres-
ence of a tumor in the prostate [34]. However, little is 
known about the role of PCA3 in prostate cancer, except 
that PCA3 silencing decreases cell growth and survival 
and induces apoptotic cell death [35]. SPINK1 has been 
found to stimulate cell proliferation and contributes to 
prostate cancer cell plasticity through its interaction 
with the epidermal growth factor receptor [36]. AMACR  
is known to be overexpressed in prostate cancer and is 
thought to metabolically support tumor growth through 
β-oxidation of certain fatty acids, as well as damage DNA 
through peroxide production [37].

PATE4 is the only underexpressed gene from the dif-
ferential expression analysis to be significant and have a 
log2 fold change less than negative one. PATE4, which 
encodes prostate and testis expressed 4, has been found 
to be underexpressed in prostate cancer [7]; however, 
how it contributes to prostate cancer remains unknown.

Examining TF regulatory networks, FOXA1 and 
FOXA2 promoter and enhancer regions were hypo-
methylated when compared to non-tumor control tissue. 
FOXA1 and FOXA2 have been found to drive lineage 
plasticity in neuroendocrine prostate cancer, especially in 
response to androgen deprivation treatment [38, 39]. We 
also found SP family and E2F4 enhancer and promoter 
regions to be hypermethylated. The SP family is known 
to be overexpressed in numerous cancers [40], includ-
ing prostate cancer [41], suggesting potential alternative 
methylomic regulation of these promoter and enhancer 
regions. E2F4 is known to repress Bub3 and Pttg1, two 
important mitotic genes, in prostate cancer and play a 
crucial role in  G2 arrest [42]. Therefore, down-regulation 
of E2F4 in prostate cancer could lead to an increase in 
mutations and tumor progression and proliferation.

There are some limitations to our approach. The decon-
volutional tool HiTIMED was trained on tumor data, not 
healthy prostate data. Therefore, the cell-type propor-
tion results will be more accurate for the cancerous sam-
ples. Additionally, as seen in Fig. 1, HiTIMED predicts a 
small percentage of tumor cells in healthy prostate tissue 
samples. This is because, as of right now, the HiTIMED 
model forces some percentage of cells to be classified as 
tumor cells, and in the adjacent histopathological non-
tumor prostate cells, there might be some preneoplas-
tic cells with epigenetic patterns similar to the tumor 
cells that will therefore be classified as tumor cells. An 
improved HiTIMED deconvolution model that allows for 
healthy tissue deconvolution could improve the results; 
however, it is still evident from Additional file  1: Fig. 
S1, and Additional file  1: Fig. S2 that correcting for cell 
types of the TME leads to more tumor-specific results in 
epigenome-wide association and differential expression 

analyses. Further study to validate these results could be 
performed using ESTIMATE [43], an expression-based 
deconvolution model that also predicts tumor, immune, 
and stromal proportions. Additionally, while HiTIMED 
predicts 17 different cell types of the TME, cell-state res-
olution, such as separating cancer-associated fibroblasts 
from the stroma cell-type group (which is a part of the 
angiogenic cell-type category used in our corrections), 
could help better elucidate the biology of prostate cancer. 
DMCs associated with CAFs in prostate cancer could be 
used to expand HiTIMED deconvolution in prostate can-
cer [44].

Conclusions
This study identifies a more disease-specific list of genes 
and epigenetic markers associated with prostate cancer. 
We implemented a novel epigenome-wide association 
study and differential expression approach that identified 
a more tumor-cell-specific set of altered genes and epi-
genetic marks establishing a more confounding-adverse 
methodology and illustrating the benefits of correcting 
for cell types of the TME when performing these studies. 
These genes and epigenetic sites can be further studied 
to identify their individual contributions to PCa tumori-
genesis and tumor progression. Understanding the con-
tributions of the gene regulation networks acting on PCa 
tumors will allow physicians to better treat their patients, 
leading to improved patient outcomes. Additionally, 
these genes and epigenetic sites can be further investi-
gated as potential biomarkers of disease and therapeutic 
targets.

Methods
Study population
The data for this study came from Gene Expression 
Omnibus’s GSE183040 dataset. The data was collected 
from fifty-eight patients with prostate cancer with a 
mean age of 62.8 years. After initial quality control of the 
DNA methylation data, two patients were removed, and 
the final dataset had fifty-six patients with a mean age 
of 63.1  years. Each patient underwent a radical prosta-
tectomy before any treatment, where tumor and healthy 
prostate tissues were collected, creating case–control 
paired samples. In addition to the prostate tissue sam-
ples, data was gathered on patient age, race, preoperative 
PSA levels, pathological stage, and Gleason scores. PSA is 
an enzyme produced by prostate cells, and elevated lev-
els are associated with prostate cancer. Preoperative PSA 
levels ranged from 1.2 to 13.0 ng/ml of blood. The patho-
logical stage measures the tumor’s size and location, and 
samples range from T2a to T3b. Lastly, the Gleason Score 
is used to grade the composition of the tumor and how 
it compares to the healthy prostate tissue. The Gleason 
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Score is composed of two to three scores based on the 
tumor’s primary, secondary, and sometimes tertiary 
patterns. Patterns that resemble normal, healthy pros-
tate tissue receive low scores, while cancerous patterns 
receive higher scores. Samples ranged from 3 + 3 T4 to 
5 + 5 T4. See Table 1 for more information on the study 
population. Covariates such as preoperative PSA levels, 
pathological scores, and Gleason scores were compared 
between patients who experienced a recurrence of their 
tumor versus those who experienced remission.

Data collection
The DNA methylation and RNA-seq data used in this 
study were downloaded from the publicly available data-
set GSE183040 (https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE18 3040) and are available at the 
National Center for Biotechnology’s Gene Expression 
Omnibus repository.

Quality control and data preprocessing
Quality control was performed using ENmix’s [45] qcinfo 
function. Two subjects were identified as having low 
quality samples, and their samples were removed. IDAT 
files were preprocessed using ENmix’s mpreprocess func-
tion. This function performs background correction, dye 
bias correction, inter-array normalization and probe-
type bias correction. Additionally, masked CpGs—CpGs 
that are cross-reactive, SNP-associated, on sex chromo-
somes, or are sites of non-CpG (CpH) methylation – 
were removed.

Tumor microenvironment deconvolution
Estimation of the cell types of the TME was performed 
using the HiTIMED_deconvolution function from the 
HTIMED R package [13]. HiTIMED deconvolution is 
equivalent to InfiniumPurify [6] at hierarchical level one 
and deconvolves the TME at increasing resolution in lay-
ers two through six. The TME was deconvolved at hierar-
chical layer six and two. Layer six estimates monocytes, 
basophils, eosinophils, neutrophils, naïve B, memory B, 
CD4 naïve T, CD4 memory T, regulatory T, CD8 naïve 
T, CD8 memory T, dendritic cell, natural killer, endothe-
lial, epithelial, stromal, and tumor cell-type proportions. 
Layer two estimates tumor, angiogenic (composed of 
endothelial, epithelial, and stromal cells), and immune 
(composed of neutrophil, basophil, eosinophil, monocyte, 
dendritic, natural killer, naïve B, memory B, naïve CD4T, 
memory CD4T, regulatory T, naïve CD8T, and memory 
CD8T cells) cell-type proportions. More information 
regarding the cell types of other layers of HiTIMED can 
be found in Fig. 1 of the Zhang et al. (2022) paper. Tumor, 
angiogenic, and immune cell-type proportions from hier-
archical level two were then compared between patients 

who experienced a recurrence of their tumor versus 
those who experienced remission.

Epigenome‑wide association study
An epigenome-wide association study (EWAS) was used 
to identify differentially methylated CpG sites between 
the healthy prostate and cancerous tissue. M-values, a 
measurement of methylation, were regressed linearly on 
disease state (i.e., tumor v. control) with adjustment for 
certain covariates. There were three EWAS studies per-
formed in this study. The first was adjusted for age and 
race and blocked on patient ID. The second was adjusted 
for age, race, Gleason score, pathological stage, preop-
erative PSA levels, and blocked on patient ID. The third 
was adjusted for age, race, Gleason score, pathological 
stage, preoperative PSA levels, and immune and angio-
genic cell-type proportions (from the HiTIMED second 
hierarchical deconvolution layer) and blocked on patient 
ID. Due to low counts in certain pathological stages and 
Gleason score groups, these covariates were grouped 
for the regression. Gleason score was grouped into pri-
mary tumor patterns of three as one group and four and 
five combined as the other. The pathological stage was 
grouped into stage two and stage three. The EWAS was 
performed using the lmFit function from the R package 
limma [46]. Multiple comparisons were corrected for 
using a false discovery rate of five percent. The EWASs 
were performed on 56 prostate cancer patients, each with 
both a healthy and cancerous prostate tissue sample.

Downstream analyses
Genetic analysis
A genetic analysis of the CpG sites found to be associated 
with prostate cancer from the EWAS was performed to 
map the CpGs to specific genes. The biomaRt R package 
[47] was used to query the Ensembl Homo Sapiens Data-
base and determine the genomic location of each associ-
ated CpG. If the CpG was located on a gene, the HUGO 
Gene Nomenclature Committee (HGNC) symbol of the 
gene and the total number of associated CpGs located on 
each gene was recorded.

Gene ontology (GO) term analysis
A GO term analysis was performed on the CpG sites 
found to be associated with prostate cancer from the 
EWAS using the gometh function from the missMethyl R 
package [48]. This function takes into account the num-
ber of CpG probes per gene in addition to CpGs that map 
to numerous genes to return significant GO terms: a term 
that represents a biological process, molecular function, 
or cellular component that shares a genetic pathway.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183040
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183040
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Genomic context
Genomic-context enrichment analysis was performed on 
the differentially methylated CpG sites using the Illumi-
naHumanMethylationEPICanno.ilm10b4.hg19 annota-
tion file [49]. Odds ratios of the differentially methylated 
CpG compared with total CpG probes measured were 
calculated for the north shelf, north shore, south shelf, 
south shore, and open sea regions surrounding the CpG 
islands and genomic regions such as enhancers, DNase 
I hypersensitive sites (DHS), promoters, 5’ untranslated 
regions (UTR), exons, introns, intergenic regions, gene 
bodies, and 3’ UTRs. Additionally, p-values were cal-
culated using the Fisher’s Exact Test to see if these odds 
ratios were significantly different than one (which would 
signify that the prostate cancer-associated CpG sites are 
equally likely as the non-associated CpG sites to be found 
in that region).

Functional protein association network
STRING (https:// string- db. org/) to create the functional 
protein association network [33]. STRING uses the 
BIND, DIP, GRID, HPRD, IntAct, MINT, and PID data-
bases for its experimental data and Biocarta, BioCyc, GO, 
KEGG, and Reactome for its curated data. The nodes of 
the network represent different proteins and the edges 
represent either known or predicted interactions. The 
top twenty hypermethylated and top twenty hypermeth-
ylated genes from Additional file 4: Tables S3 and Addi-
tional file  5: Table  S4 were used as inputs to create the 
network in Fig. 5.

Differential expression analysis
The differential expression analysis was performed using 
the DESeq2 R package [50]. There were two differential 
expression analyses performed. The first adjusted for age, 
sex, Gleason score, preoperative PSA Level, and patho-
logical stage, while the second adjusted for the covariates 
previously stated in addition to immune and angiogenic 
cell-type proportions (from the HiTIMED second hierar-
chical deconvolution layer). The RNA-seq data were nor-
malized to control for differences in sequencing depth, 
which can differ between samples, and RNA composi-
tion, which can skew differential expression analyses. The 
variance of gene counts was estimated and shrunk for the 
genes with lower counts so that significant changes could 
be detected in genes with low replicate counts. Lastly, the 
lfcShrinkfunction from DESeq2 was used to downweight 
genes with a high log2-fold changes so that the fold 
changes were not due to low counts before contrasting 
the tumor versus normal groups. The package Enhanced-
Volcano was used to create the volcano plots [51].

ELMER (Enhancer linking by methylation/expression 
relationships) analysis
The ELMER analysis was performed using the ELMER R 
package [52]. The get.pair function was used on the 2,093 
DMCs identified from the fully adjusted EWAS to link 
altered methylation of distal probes to target genes with 
altered expression levels in prostate cancer. Next, the get.
enriched.motif function was used to identify motifs from 
the HOCOMOCO (HOmo sapiens COmprehensive 
MOdel COllection) v11 using the HOMER algorithm 
that are either 250  bp up or downstream of the probes 
in these significant probe-gene pairs. Lastly, the get.TFs 
function is utilized to identify master regulator TFs that 
bind to the previously identified motifs.
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Additional file 1. Fig. S1 TME correction in EWAS identifies more 
tumor-specific CpGs when comparing tumor versus non-tumor groups. 
Epigenome-wide association study of prostate cancer and matched 
non-tumor normal prostate tissue adjusted for (A) patient age and 
race, and blocked on patient ID, (B) patient age, race, Gleason score, 
pathological stage, preoperative PSA levels, and blocked on patient ID, 
(C) patient age, race, Gleason score, pathological stage, and preoperative 
PSA levels, immune and angiogenic cell-type proportions from HiTIMED 
hierarchical level two, and blocked on patient ID. Each point represents 
a CpG site; in total, 746,980 CpG sites are shown, and those with an FDR 
Q-value < 0.05 are shown in red (2093 CpGs). FDR Q-value < 0.05 is shown 
above the blue line, and FDR Q-value < 0.01 is shown above the red 
line; Fig. S2 TME correction in DEAs identifies more tumor-specific CpGs 
when comparing tumor versus non-tumor groups. Associated genes of 
prostate cancer were reduced from 3,367 in panel A to 51 in panel B. 
The differential expression analysis in panel A was corrected for age, sex, 
Gleason score, preoperative PSA levels, and pathological stage and for 
age, sex, Gleason score, preoperative PSA levels, pathological stage, and 
immune and angiogenic cell-type proportions from the second HiTIMED 
hierarchical level in panel B. Genes with significant adjusted p-values (FDR 
Q-value<0.05) are shown in blue, those with log2 fold change (log2(tumor 
expression/control expression)) whose absolute value is greater than one 
in green, and genes that are both are shown in red; Fig. S3 Transcription 
factors associated with prostate cancer. TFs associated with the top three 
TF motifs for hypomethylated and in promoter regions (A), hypermeth-
ylated and in promoter regions (B), hypomethylated and in enhancer 
regions (C) and hypermethylated and in enhancer regions (D). In panels 

https://string-db.org/
https://doi.org/10.1186/s13148-023-01609-3
https://doi.org/10.1186/s13148-023-01609-3
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A–D, red denotes the top three most significant TFs, yellow denotes same 
family, and blue denotes same subfamily. P-values were corrected for 
using a false discovery rate of 0.05.

Additional file 2. Table S1 Top twenty most significant hypermethylated 
CpGs associated with prostate cancer.

Additional file 3. Table S2 Top twenty most significant hypomethylated 
CpGs associated with prostate cancer.

Additional file 4. Table S3 Top twenty hypermethylated genes contain-
ing the most differentially methylated CpGs.

Additional file 5. Table S4 Top twenty hypomethylated genes containing 
the most differentially methylated CpGs.

Additional file 6. Table S5 Top twenty most significant GO terms.

Additional file 7. Table S6 Genes associated with prostate cancer whose 
absolute value of their log2 fold change is greater than one.

Additional file 8. Table S7. Hypomethylated Promoter Motifs.

Additional file 9. Table S8. Hypermethylated Promoter Motifs.

Additional file 10. Table S9. Hypomethylated Enhancer Motifs.

Additional file 11. Table S10. Hypermethylated Enhancer Motifs.
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