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Abstract 

Background Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia char-
acterized by a continental subarctic climate with severe winters, with the regular January average temperature 
in the regional capital city of Yakutsk dipping below − 40 °C. The epigenetic mechanisms of adaptation to such ecolo-
gies and environments and, in particular, epigenetic age acceleration in the local population have not been studied 
before.

Results This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation 
data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, 
among others, geographic region-specific differentially methylated regions associated with adaptation to climatic 
conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), 
and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demon-
strated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central 
Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, 
whereas no significant sex differences were found between the regions.

Conclusions We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention 
to region-specific features, aging processes, age acceleration, and sex specificity.
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specificity

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Clinical Epigenetics

†Alena Kalyakulina, Igor Yusipov, Elena Kondakova: Co-first authors.

*Correspondence:
Alena Kalyakulina
kalyakulina.alena@gmail.com
1 Institute of Information Technologies, Mathematics and Mechanics, 
Lobachevsky State University, Nizhny Novgorod 603022, Russia
2 Institute of Biogerontology, Lobachevsky State University, Nizhny 
Novgorod 603022, Russia
3 Institute of Biology and Biomedicine, Lobachevsky State University, 
Nizhny Novgorod 603022, Russia
4 ISNB Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
5 Laboratory of Molecular Anthropology and Centre for Genome Biology, 
Department of Biological, Geological and Environmental Sciences, 
University of Bologna, 40126 Bologna, Italy
6 Research Center of the Medical Institute of the North-Eastern Federal 
University M.K. Ammosova, Yakutsk 677013, Russia

7 State Budgetary Institution of the Republic of Sakha (Yakutia) 
Republican Center for Public Health and Medical Prevention, 
Yakutsk 677001, Russia
8 Institute of Biochemistry and Genetics, Ufa Federal Research Centre 
of the Russian Academy of Sciences, Ufa, Russia 450054

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-023-01600-y&domain=pdf


Page 2 of 19Kalyakulina et al. Clinical Epigenetics          (2023) 15:189 

Background
The Yakuts (Sakha) are people living in the subarctic and 
arctic territories of eastern Siberia. Anatomically modern 
humans inhabited the region of the modern Republic of 
Sakha about 30,000 years ago [1], moving from the west, 
where Sakha connects to the inner Eurasian steppe belt 
through southern Siberia [2, 3]. The northeastern part of 
Yakutia is located on one of the main migration routes 
from the southern regions of the Yenisei, Amur and Bai-
kal coasts to the Arctic coast and to America [4]. Thus, 
the native inhabitants of Siberia, including Yakuts, are 
also viewed with regard to American colonization [5, 6]. 
There is evidence bringing Yakuts closer to Amerindians 
in terms of genetic variability, which may indicate a com-
mon ancestry of Siberians and Native Americans [7]. The 
most recent wave of migration to the territory of modern 
Yakutia involved the Tungus of Transbaikalia and Turkic-
speaking Yakuts of the Western Baikal region and took 
place about 2000 years ago [8].

Eastern Siberia is one of the permanently inhabited 
regions with an extremely cold climate. From the evo-
lutionary perspective, populations surviving in such an 
extreme climate for many years should have accumulated 
genetic changes adapting them to the cold and to other 
local factors such as seasonal extremes in daylight, food 
availability, etc. [9]. Indeed, low serum lipid levels were 
identified and related to the increased energy metabolism 
[10], and higher blood pressure was also observed [11, 
12]. A large study of Siberian populations identified can-
didate genes for adaptation to the cold, associated with 
energy and metabolic regulation, as well as contraction 
of vascular smooth muscle [9]. Besides, leptin and irisin, 
which play an important role in the processes of adapta-
tion to the cold, become the focus of several other studies 
of the Yakutian cohort [13–15]. However, genetic studies 
for Siberian populations are often limited to mitochon-
drial DNA, Y chromosome or single-nucleotide polymor-
phisms [8, 9, 16, 17], while epigenome-wide studies have 
not been performed.

Epigenome-wide association studies (EWAS) usually 
analyze DNA methylation and focus on differentially 
methylated CpG sites (differentially methylated positions 
or DMPs), similar to single-nucleotide polymorphisms in 
genome-wide association studies (GWAS) [18]. EWAS 
detects epigenetic differences between human cohorts by 
quantitatively comparing methylation levels of thousands 
of CpG sites [19]. Individual studies have shown that 
significant ethnic differences in DNA methylation are 
reflected in cell composition and risk of some non-com-
municable diseases [20] and are associated with blood 
lipid levels [19], body mass index [21], liver function [22], 
and blood pressure [23]. There are also studies show-
ing environmental [24, 25] and socioeconomic [26–28] 

influence on DNA methylation. The influence of race/
ethnicity has been also studied in the context of health 
status, mortality, and susceptibility to diseases [29, 30], 
as well as epigenetic aging speed [31, 32]. Different fre-
quencies of certain genetic variants can lead to epigenetic 
differences between ethnicities [33–35] and contribute to 
specific patterns of epigenetic aging.

One of the best-known mechanisms for tracking 
changes in DNA methylation with age are epigenetic 
clocks that are models aggregating information about a 
limited set of CpG sites and used to construct estimates 
of epigenetic age and mortality risk. The most common 
clocks are Hannum DNAmAge [36], Horvath DNAmAge 
[37], GrimAge [38], DNAmPhenoAge [39]; the metric of 
accelerated epigenetic aging as a deviation of chronologi-
cal age from that is predicted by the clock is also often 
considered.

Another interesting aspect would be addressing sex-
specific differences in DNA methylation for the cohorts 
of different ethnicities that live in different climates. 
EWAS reported differences in DNA methylation associ-
ated with sex differences in genes on the autosomes [40, 
41]. Moreover, regions of different methylation in males 
and females are not limited to the sex chromosomes but 
are genome-wide and can be tracked in various tissues, 
e.g., brain, pancreas, blood [42–44]. Epigenetic profiles 
undergo profound changes during aging, with differences 
between males and females either remaining [45, 46] or 
changing in different regions of the genome [40, 47]. It 
can be hypothesized that such sex-specific DNA meth-
ylation trajectories may contribute to sex differences in 
survival [48].

This work is the first epigenetic study focused on the 
Yakutian population. Since the distinctive feature of this 
ethnic group is living in severe climatic conditions, it can 
shed light on the epigenetic features of the adaptation 
mechanisms to the cold. Further, since severe climate can 
affect both health and aging, it is interesting to assess age 
acceleration and aging rate for the Yakutian population. 
Another aspect of the study is the sex-specific methyla-
tion patterns in the Yakutian cohort.

The whole-blood DNA methylation data of the resi-
dents of Yakutia and Central Russia collected in this 
work allow us to perform a comparison between these 
two cohorts living in very different environmental and 
climatic conditions. The wide age range and the bal-
anced number of representatives of both regions allow 
us to compare them and identify region-specific fea-
tures of DNA methylation. Region-specific CpG sites 
can be detected by searching for differentially methyl-
ated positions (DMPs), and EWAS can analyze them 
in terms of the corresponding biological processes and 
pathways. Epigenetic clocks allow us to determine the 
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age acceleration in the considered regions and com-
pare the aging rate between them. Also, specialized 
approaches for blood cell deconvolution by whole-
blood methylation allow us to compare the estima-
tions of blood cell counts between the regions. Similar 
age and quantitative distributions of males and females 
from Yakutia and Central regions in our data enable 
even deeper analysis and investigation of sex specificity 
between the regions. Following the same pipelines as 
for the region specificity analysis, DMPs between males 
and females in both regions can be found and analyzed 
using EWAS; epigenetic ages, age acceleration, blood 
cell composition can also be investigated for males and 
females. This could reveal whether there are sex differ-
ences specific to particular regions.

Results
Participants and study design
This study involved whole-blood DNA methyla-
tion data from 245 healthy participants collected in 
2020–2022 in the Central region of Russia (Nizhny 
Novgorod, Vladimir, and Moscow regions, high-
lighted yellow in Fig.  1A) and Yakutia (Republic of 
Sakha, highlighted gray in Fig.  1A). All participants 
from Yakutia are indigenous people, born and living in 
Yakutsk or in the nearby uluses (villages). The Central 
region includes 131 samples (78 females and 53 males), 
and the Yakutia region includes 114 samples (63 
females and 51 males). Information about participants 
is presented in Additional file  1: Table  S1. Figure  1B 
shows the age distributions in the two regions. In the 

Fig. 1 Participants and study design. A The globe with the highlighted spots where participants were recruited for the study. Central region 
is highlighted in yellow; Yakutia is highlighted in gray. B Histogram of the age distribution in the two regions. C The scheme of EWAS experiments 
in this study: first, epigenetic differences between regions are studied, then sex-specific differences in both regions are sought and compared 
between the regions. D The basic workflow that the EWAS experiments follow. It involves searching for DMPs—CpGs that are statistically different 
between the phenotypes in question—which are used for Gene Set Enrichment Analysis (GSEA) and comparison with lists of CpGs and genes 
from other works. In addition, the analysis of various biomarkers obtained from DNAm data (epigenetic ages, their derivatives, and blood cell count 
measures)
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Central region, the age of participants ranged from 15 
to 101 years, in the Yakutia region from 11 to 99 years.

The compared Central region of Russia and Yakutia 
differ significantly in their climatic conditions. The aver-
age winter temperature in Nizhny Novgorod is − 13  °C 
(most participants from the Central Russia live in Nizhny 
Novgorod and Nizhny Novgorod region), while Yakutia is 
one of the coldest geographical regions on Earth with a 
permanent population, and the average winter tempera-
ture in Yakutsk reaches − 42 °C. The duration of the nega-
tive temperature period is also different: from November 
to March in Nizhny Novgorod and from October to 
April in Yakutsk. The difference in average temperatures 
between the warmest and coldest periods is extremely 
high in Yakutsk, and it reaches 70  °C, while in Nizhny 
Novgorod it is about twice less [49].

Nizhny Novgorod region and the Republic of Sakha 
(Yakutia) differ significantly in demographics. The aver-
age age of the population is 35.0  years in Yakutia and 
42.9  years in Nizhny Novgorod region. There are also 
significant differences between the sexes: The aver-
age age of men in Yakutia is 33.2  years, in Nizhny 
Novgorod—39.7  years; the average age of women in 
Yakutia is 36.6  years, in Nizhny Novgorod—45.5  years. 
Life expectancy at birth in the Republic of Sakha in 
1990 was 66.2 years, which is lower than life expectancy 
in Nizhny Novgorod, which was 69.8  years. However, 
recently there has been a tendency to reduce this gap 
in life expectancy, which may be due to many reasons, 
in particular, migration, changes in the mortality rate 
from natural and unnatural causes, and many others. It 
is worth noting that life expectancy of men and women 
differs significantly in both regions. Male life expectancy 
at birth in Yakutia in 1990 is 61.4  years (65.65  years in 
2021), in Nizhny Novgorod—64.0  years (63.81  years 
in 2021); female life expectancy at birth in Yakutia 
in 2021 is 71.4  years (74.47  years in 2021), in Nizhny 
Novgorod—75.0 years (73.97 years in 2021) [50].

DNA methylation data for 245 samples were collected 
using Illumina Infinium MethylationEPIC BeadChip 
technology that measures DNA methylation levels from a 
total number of 866,836 genomic sites with single-nucle-
otide resolution. After all preprocessing procedures, 
739,168 CpG sites remained.

EWAS was performed in three different settings 
(Fig.  1C): EWAS between two regions, Central Russia 
and Yakutia (Sect.  “Region-specific differences”), as well 
as two EWAS investigating sex differences in these two 
regions (Sect.  “Sex-specific differences in regions”). The 
results of these two sex-specific studies were also then 
compared with each other.

Each EWAS study followed the workflow shown in 
Fig.  1D. Differentially methylated positions (DMPs) 

analysis allows to perform a contrast comparison 
between two phenotypes for the considered covariate (in 
our case, region or sex, depending on the task). The top of 
the most significant CpG sites and corresponding genes 
were considered: Enrichment of chromosomes, genomic 
regions, and CpG islands were studied, and overlaps 
with similar lists of specific CpG sites and genes from 
published works were examined. The resulting FDR-cor-
rected [51] p values of the statistical test for the difference 
in methylation levels between the two considered groups 
for all CpGs were used to perform Gene Set Enrichment 
Analysis (GSEA). The resulting significant terms from the 
Gene Ontology (GO) library [52, 53] were then analyzed 
and interpreted from a biological perspective.

Next, methylation data were uploaded to Horvath’s 
online calculator [54]—it allowed to obtain values for the 
4 most common estimators of epigenetic age: Horvath 
DNAm age [37], Hannum DNAm age [36], DNAm Phe-
noAge [39], and GrimAge [38] and also blood cell count 
measures for the following cell types: CD8T, CD4T, NK, 
B cells, monocytes, granulocytes, according to Houseman 
algorithm [55]. In addition to the classical versions of epi-
genetic clocks, we considered their retrained with prin-
cipal components variations, which significantly increase 
the reliability of classical epigenetic models [56]. Another 
epigenetic biomarker used in the work, which character-
izes the rate of aging, is DunedinPACE—estimation of 
the rate of aging by DNA methylation. This metric can be 
interpreted as the number of biological years per chrono-
logical year (with a mean value of 1) [57].

Region‑specific differences
In this section, epigenetic differences between the two 
regions—Central Russia (131 samples) and Yakutia (114 
samples)—are analyzed according to the workflow shown 
in Fig. 1C.

Region‑specific CpGs, DMPs, and GSEA
To investigate the epigenome-wide differences between 
the two regions, we first applied the limma method [58] 
to search for region-specific CpGs (DMPs). Figure  2 
shows the results of this algorithm.

The Manhattan plot (Fig.  2A) illustrates the order-
ing by chromosomal position of CpG sites with differ-
ent statistical significance (FDR-corrected p value) in the 
methylation level between the two regions. Volcano plot 
(Fig.  2B) in addition to statistical significance contains 
absolute value of logarithmic fold change, which indi-
cates relative methylation level: Yellow dots with negative 
log2(FoldChange) values correspond to CpG sites hyper-
methylated in Central region relative to Yakutia (Fig. 2C), 
whereas gray dots with positive log2(FoldChange) val-
ues are hypermethylated in Yakutia region relative to 
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Central region (Fig. 2D). SMYD3 gene (Fig. 2C) is highly 
expressed in platelets and testis, moderately expressed in 
CD8 + T cells and plays a crucial role in carcinogenesis 

and tumorigenesis [59, 60]. MYO5C gene (Fig.  2D) is 
associated with adiposity [61, 62] and serum C-reactive 
protein levels [63, 64].

Fig. 2 DMP analysis (limma) of regional specificity. A Manhattan plot for the distribution of corrected p values of region-specific CpGs distributed 
by location in chromosomes; B Volcano plot of limma results for all CpGs. Hypermethylated CpGs in the Central region are highlighted in yellow, 
and hypermethylated CpGs in Yakutia are highlighted in gray. The two most significant CpGs are highlighted in the plot; the distributions 
of methylation levels between regions are shown in C cg04944491 (SMYD3 gene) and D cg24649109 (MYO5C gene). The solid line on the boxplot 
corresponds to the median value; the dotted line corresponds to the mean value
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We identified the Top-1000 CpG sites with the most 
statistically different methylation levels between regions 
with the lowest p values (Additional file 1: Table S2) and 
considered the distribution and enrichment analysis of 
these CpGs for chromosomes, genomic regions, and CpG 
islands (Fig. 3).

These region-specific probes were statistically signifi-
cantly overrepresented only in chromosome 16, and no 
statistically significant features were detected in all other 
chromosomes. Overrepresentation of such CpGs was 
also found in the regulatory genomic region TSS1500 
and underrepresentation in the gene body. It is note-
worthy that the selected Top-1000 CpGs belong mainly 
to islands, regions with increased CpG density (overrep-
resentation with p value < 1e− 25), and CpGs in Open-
Sea (regions with the lowest density) are statistically 
underrepresented.

It is interesting that chromosome 16 contains numer-
ous erythroid-specific alpha-globin genes, and hyper-
methylation of certain differentially methylated regions 
at different stages of erythropoiesis has been shown [65]. 
In the context of differences between the considered 
regions, it would be interesting to consider the relation-
ship between red blood cell count (RBC) and adaptation 
to cold temperatures; however, very few such studies 
have been performed. In [66], it was shown that exposure 
to extremely low temperatures for 50 days can lead to a 
decrease in RBC.

It is interesting to compare the obtained Top-1000 
CpGs, corresponding to 656 genes, with the list of 791 
genes from the work Cardona et  al. [9], analyzing sin-
gle-nucleotide polymorphism data for 10 indigenous 
Siberian populations, thereby describing the genetic 
influence/impact on epigenetic variation. These 791 

genes are associated with biological processes and path-
ways hypothesized to be involved in cold adaptation 
and related to basal metabolic rate, non-shivering ther-
mogenesis, response to temperature, smooth muscle 
contraction, blood pressure, and energy metabolism. 
The intersection of the two lists (our list and list from 
[9]) results in 33 genes (Additional file  1: Table  S3), 
which, according to [9], is associated with blood pres-
sure (PDGFB, DDAH1, POMC, REN, SGK1, F2R, NAV2, 
LRP5, PLCB3), basal metabolic rate (PIK3CD, TG, 
CCNA1, STK11, PAX8, CDKN1A, CACNA1A), energy 
metabolism (STK11, DPP4, PLCB3, CACNA1A, GATA4, 
STX1A, GNB2), response to temperature (ADM, XYLT1, 
DNAJB6, TRPM2, IL6, MYOF, DNAJC7), smooth mus-
cle contraction (ADM, F2R, PTPRM, KCNMA1, P2RY2), 
non-shivering thermogenesis (EPAS1, PRDM7, PARK2). 
Let us further explore more functions of some genes 
from the intersection.

PIK3CD gene is involved in the development and 
migration of natural killer cells to inflammation foci and 
is involved in NK cell receptor activation [67]. Another 
gene, IL6, is also found to be associated with the find-
ings of differences in cellular composition between the 
regions: It is responsible for the differentiation of CD4T 
cells and takes part in the initiation of the immune 
response [68]. TG gene is responsible for thyroid hor-
mone thyroglobulin production [69], and PAX8 gene is 
also associated with thyroid function and thyroid-specific 
gene expression [70]. As shown in [9], the PDGFB gene 
may be associated with blood pressure regulation. In the 
context of the difference between the considered regions, 
the appearance of this gene can be explained by the influ-
ence of the ambient temperature on blood pressure, the 
increase in which is associated with lower temperatures 

Fig. 3 Enrichment of A chromosomes, B genomic region, and C relation to CpG island for Top-1000 region-specific CpGs. Odds ratio values 
and corresponding p values (shown by color) were obtained from Fisher exact test. Black color indicates the absence of statistical significance (p 
value > 0.05)
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[71]. This may also include the ADM gene, whose activity 
has also been associated with the production of hypoten-
sive and vasodilator agents [72], as well as the REN gene, 
which initiates a response cascade to elevate blood pres-
sure [73]. The found gene GATA4, which is included in 
the regulation of cardiac-specific gene expression, is also 
associated with cardiac development [74, 75]. Interest-
ingly, the PRDM7 gene itself is presumably associated 
with epigenetic regulation of gene expression [76].

Indigenous Siberian populations were also studied in 
[77, 78]. However, there is no overlap between our list 
of genes and the genes from these works. The reason for 
this may be that [77, 78] considered a trio of Yakuts-Han 
Chinese-Europeans, whose differences in adaptation to 
climate and/or nutritional aspects are much higher than 
those between Yakutia and Central Russia.

For further GSEA analysis, we used the adaptive meth-
ylGSA method [79], which does not use pre-selected 
lists of CpG sites and genes according to some threshold 
value, but works with all available CpG sites and their 
p values. As a result, methylGSA identified 17 statisti-
cally significant terms (with adjusted p value < 0.05) from 
the Gene Ontology library [52, 53] (Additional file  1: 
Table  S4). Among the found terms, we can highlight 
one related to actin filament activity, which regulate cel-
lular behavior and are involved in the aging process and 
age-associated diseases [80, 81]. Another term related to 
drinking behavior reflects the mode of water consump-
tion, and the difference between the regions may be 
related to water supply, water pretreatment, and sanita-
tion problems in Yakutia [82]. The group of terms related 
to channel activity is especially interesting in the context 
of differences between Yakutia and Central Russia. The 
sensation of low temperature through the skin sensory 
nerve terminals and the propagation of action poten-
tials in cold-sensitive nerve fibers affects a large number 
of ion channels [83], and thus, they are closely related to 
cold susceptibility [84, 85] and may differ in populations 
living in significantly different climates. The presence of 
terms concerning the regulation of steroid and corticos-
teroid hormone secretion is also legitimate, since they are 
related to endocrine function regulating many aspects 
of human life, likely playing a role in the developmental 
processes that lead up to age-specific early life-history 
transition and thus also in the aging process [86, 87] and 
adaptation to the cold exposure [88], which are most 
interesting in the context of our study. Cell fate commit-
ment related to metabolism has also been shown to be an 
important term in the aging process [89, 90]. Nutritional 
differences between regions and the increased risk of 
digestive system diseases in the Yakutian population [91] 
may be the reason for identifying a term related to diges-
tive system regulation.

It is interesting that among the found terms there are 
not only those related to adaptation to climatic condi-
tions (water consumption, digestive system regulation), 
but also those related to aging processes (actin filament 
activity, cell fate), and both of them (channel activity, reg-
ulation of steroid and corticosteroid hormone secretion). 
Therefore, we further pay attention to aging analysis in 
the considered cohorts.

Epigenetic age accelerations
To investigate the differences in aging processes between 
the two regions, we considered 9 types of epigenetic ages: 
the 4 most common clocks from Horvath’s online calcu-
lator [54] (Horvath DNAm age [37], Hannum DNAm age 
[36], DNAm PhenoAge [39], and GrimAge [38]) and 5 of 
their PC improvements [56]: PCHorvath1, PCHorvath2, 
PCHannum, PCPhenoAge, PCGrimAge.

We investigated the correlation of all epigenetic ages 
with chronological age in the two regions, and it was 
found that the correlation coefficient is close to 1 in all 
cases (Fig.  4A). Scatter plots illustrating dependence 
between chronological age and epigenetic ages reveal 
that Hannum and GrimAge demonstrate underestima-
tion in older participants, while PCGrimAge demon-
strates overestimation in younger participants (Fig. 4A).

Region-specific age acceleration was determined as fol-
lows: First, a linear regression was built between the dif-
ferent epigenetic ages and the chronological age for the 
Central region group. Region-specific age acceleration 
values were defined as residuals relative to this linear 
approximation. Thus, it follows from the definition that 
in the Central region group, the average age accelera-
tion value is 0, and a nonzero value in the Yakutia group 
allows us to conclude about accelerated aging in this 
group relative to the Central region (region specificity of 
age acceleration). In addition, the DunedinPACE value 
also allows us to make conclusions about the differences 
in age acceleration between regions, since this metric 
characterizes the pace of aging [57]. Figure 4B shows the 
distributions of region-specific age acceleration values 
for all considered types of epigenetic clocks with FDR-
corrected [51] p values of Mann–Whitney U Test [92], 
which reflect the measure of statistical significance of the 
found differences. Figure  4C shows the DunedinPACE 
values with the corresponding p value.

For all types of epigenetic ages, we observe statisti-
cally significant (p value < 0.05) positive region-spe-
cific age acceleration in Yakutia relative to the Central 
region. Horvath DNAm age shows the lowest p value, 
and the median acceleration relative to the Cen-
tral region is 5.36  years. For other epigenetic ages, 
the median acceleration does not exceed 3  years. It is 
also interesting that the average DunedinPACE value 
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(Fig.  4C) exceeds 1 for both regions, which may indi-
cate that the Russian population ages faster overall than 
the Dunedin Study participants, whose data were used 
to develop this metric [57]. However, the same effect 
for DunedinPACE that was found for all epigenetic 
clocks persists: In the Yakutia group, the region-spe-
cific age acceleration is statistically higher with respect 
to the Central region (median DunedinPACE is 1.11 
in Yakutia, 1.05 in Central Russia). Region-specific age 
acceleration in the Yakutia group may also be related to 
the fact that the original epigenetic clock models were 
built on data for different populations. To train the 
Horvath model, 39 datasets were used including par-
ticipants from different African, Asian, Hispanic, and 
Caucasian populations. The Hannum model used par-
ticipants of Caucasian and Hispanic origin. Participants 
from NHANES for the PhenoAge model were of Afri-
can American and Caucasian ancestry. GrimAge was 

built using Caucasian participants from the Framing-
ham heart study Offspring Cohort. For PC clock modi-
fications, data of participants from the London Life 
Sciences Prospective Population study, of South Asian 
origin, were used.

Analysis of the statistical significance of the differ-
ence in region-specific age acceleration for different 
age groups shows that the lowest p value for all groups 
is demonstrated by the Horvath clock (Fig.  4D). Inter-
estingly, for younger participants (under 40  years) and 
for older participants (after 80  years), only Horvath 
age acceleration is statistically significant between the 
regions. The difference in DunedinPACE values is not 
statistically significant between regions in any of the age 
groups, GrimAge acceleration is statistically significant 
only in the 40–60  years group, and Hannum age accel-
eration is statistically significant only in the 60–80 years 
group.

Fig. 4 Region-specific age acceleration in Central and Yakutia regions for different epigenetic ages: Hannum, Horvath, PhenoAge, GrimAge, 
PCHorvath1, PCHorvath2, PCHannum, PCPhenoAge, PCGrimAge. A Scatter plots demonstrate dependence between chronological age 
and epigenetic ages for Central (yellow) and Yakutia (gray). The black dotted line y = x in each scatter plot corresponds to the equality 
of the plotted ages; the yellow bold line represents the regression plotted on samples from the Central region. Pearson correlation coefficients 
between the corresponding epigenetic age and chronological age are given for Central (yellow) and Yakutia (gray). B Violin plots show 
region-specific age acceleration for different epigenetic ages. Region-specific age acceleration values were determined as residuals from a linear 
regression model constructed on samples from the Central region group (yellow bold lines in Fig. 4A). Mann–Whitney U test was applied to analyze 
the statistically significant difference in epigenetic age acceleration between groups. The obtained p values were FDR-corrected. C DunedinPACE 
values with the p values of Mann–Whitney U test. D Bar plots illustrate p values of Mann–Whitney U test analyzing the statistically significant 
difference in epigenetic age acceleration between regions in different age groups (under 40 years, 40–60 years, 60–80 years, over 80 years). The red 
dotted line corresponds to the significance level of p value = 0.05
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Blood cell counts estimation differences
Horvath’s online calculator [54] allows to obtain the dis-
tributions of blood cell count measures: CD8T, CD4T, 
NK, B cells, Monocytes, and Granulocytes using House-
man algorithm [55]. The quantitative composition of 
blood cell populations can vary by race/ethnicity. For 
example, it has been shown that there is a difference in 
the levels of naïve CD8 + T cells and naïve CD4 + T cells, 
as well as different estimated proportions of neutrophils, 
B cells, and natural killer cells in different races [20, 31].

Figure 5 shows the distribution of blood cell counts for 
individuals from the Central Russia and Yakutia regions 
with FDR-corrected [51] p values of Mann–Whitney U 
Test [92].

Statistically significant increased numbers of CD8T 
and NK are observed in the Yakutia region relative to 
Central. In contrast, the values of CD4T and Mono-
cytes are statistically lower in Yakutia than in the Central 
region. CD8T cells are responsible for the response to 
the impact of external pathogens unfamiliar to the body 
[93], their increased number may be associated with an 
increased viral load in Yakuts compared to the residents 
of Central Russia. This is consistent with an increase in 
natural killer cells, which, along with their main function, 
can produce high levels of cytokines [93]. A decrease in 
the CD8T cell count is observed with age [94], which can 
be associated with underestimation of Hannum age in 

the elderly (Fig. 4A, top left). Differences in CD4T levels, 
as well as in CD8T and NK levels, may also be due to eth-
nic differences [95]. For monocytes, European ancestry 
has been shown to have higher levels of monocytes com-
pared to other populations [96].

Sex‑specific differences in regions
This section examines epigenetic differences between 
males and females independently in the two regions and 
then compares the results to highlight sex-specific differ-
ences between the regions. In the Central region, the sex 
distribution among participants was 78 females and 53 
males, and in Yakutia, 63 females and 51 males (Fig. 1B). 
The sex-specific analyses in each region follow the work-
flow shown in Fig. 1C.

Sex‑specific CpGs, DMPs, and GSEA
Further, following the general pipeline (Fig.  1C), we 
studied epigenome-wide differences between males and 
females in both regions using limma [58]. The result-
ing distribution of p values of sex-specific CpGs in both 
regions (Fig. 6A–C for Central region and Fig. 6D–F for 
Yakutia) differs significantly from the similar distribution 
in the region-specific task (Fig. 2A, B): The number of sta-
tistically significant CpG sites in both sex-specific tasks is 
significantly lower than in the region-specific task. How-
ever, we should note the similarity in the distributions of 

Fig. 5 Blood cell count distribution in Central and Yakutia regions: A CD8T, B CD4T, C NK, D B cells, E Monocytes, F Granulocytes. Mann–Whitney U 
test was applied to analyze the statistically significant difference in distribution between the groups. The resulting p values were FDR-corrected. The 
solid line on each boxplot corresponds to the median value, dashed line—to mean value
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Fig. 6 DMP analysis of sex specificity in the Central and Yakutia regions. A Manhattan plot for the distribution of adjusted p values of sex-specific 
CpGs distributed by location in chromosomes for the Central region. B Volcano plot of limma results for all CpGs in the Central region, 
hypermethylated in females CpGs are highlighted in pink and hypermethylated in males CpGs are highlighted in light blue. C Examples 
of the sex-specific DMPs distribution for the Central region: top—hypermethylated in females; bottom—hypermethylated in males. D Manhattan 
plot for the distribution of adjusted p values of sex-specific CpGs distributed by location in chromosomes for the Yakutia region. E Volcano plot 
of limma results for all CpGs in the Yakutia region, hypermethylated in females CpGs are highlighted in red and hypermethylated in males CpGs 
are highlighted in dark blue. F Examples of the sex-specific DMPs distribution for the Yakutia region: top—hypermethylated in females; bottom—
hypermethylated in males. G UpSet plot showing the intersections of the Top-1000 most statistically significant sex-specific CpGs in the Central 
and Yakutia regions with the lists of sex-specific CpGs from other published studies. Each column corresponds to the intersection of all lists. The 
sum of all elements in a row is the total value of the elements in the selected CpG list. (This number is given on the left bar plot: 395 for Grant et al. 
[44], 417 for Inoshita, et al. [97], 235 for McCarthy et al. [98], 1000 for both our sex-specific CpG lists.) All subsets that include common elements 
of sex-specific lists for the Central and Yakutia regions from this study are highlighted in red. Yellow indicates subsets of CpGs common to the three 
sets: sex-specific in Central, sex-specific in Yakutia, and from Grant et al. [44]. Blue indicates subsets of CpGs common to the two sets: sex-specific 
in Central and Grant et al. [44] (without Yakutia). Green indicates subsets of CpGs common to the two sets: sex-specific in Yakutia and Grant et al. 
[44] (without Central)
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sex-specific CpGs between the two regions, which can be 
observed especially clearly in the p value and fold change 
ranges in Fig.  6B, E. Examples of the distributions of 
hypo- and hypermethylated sex-specific CpGs for both 
regions are shown in Fig. 6C, F.

Selecting the Top-1000 sex-specific CpGs (Additional 
file 1: Table S5) with the lowest p values in both regions, 
it appears that these lists overlap by about a third (309 
CpGs, which are the sum of all bars with red highlighting 
in Fig. 6G). In addition, we considered the intersections 
with the lists of sex-specific CpGs from other papers, 
which also investigated various aspects of sex specificity 
in epigenetics. One of the first meta-analyses of autoso-
mal chromosome DNA methylation to identify sex-spe-
cific CpG sites was performed in McCarthy et  al. [98]. 
235 CpG sites were detected after correction for multi-
ple testing. Using full-genome DNA methylation profil-
ing, Inoshita et al. [97] investigated the effect of sex using 
multiple linear regression analysis corrected for age and 
inferred blood cell proportions. 417 CpG sites showed 
significant gender differences in DNA methylation. One 
of the most recent studies of sex-specific DNA methyla-
tion patterns by Grant et al. [44] used data from the Illu-
mina EPIC standard and identified 395 sex-associated 
CpG sites.

A detailed representation of all possible intersections 
of the lists of sex-specific CpGs is illustrated in Fig. 6G. 
The largest overlap between the two lists proposed in this 
paper for Central and Yakutia regions was found with the 
chronologically most recent work of Grant et al. [44]. All 
possible subsets involving all 3 lists, Central, Yakutia, and 
Grant et al., are highlighted in yellow (131 CpGs in total). 
If we consider the lists of the two regions separately, the 
Central region overlapping with Grant et  al. gives 208 
CpGs (sum of yellow and blue bars in Fig.  6G), and for 
Yakutia region—177 CpGs (sum of yellow and green bars 
in Fig. 6G). Thus, the lists of both regions include almost 
half of all sex-specific CpGs from the work [44]. CpG 
sites located in noteworthy genes according to [44] were 
found in the intersection. In particular, CpGs located in 
the DDX43 gene, which are involved in spermatogenesis 
and male fertility [98], or CpG located in the GABPA 
gene, are associated with early onset Alzheimer’s disease, 
Parkinson’s disease, and breast cancer [99]. All the over-
laps with other works turned out to be relatively smaller 
and are also presented in Fig. 6G.

The enrichment analysis of the Top-1000 sex-specific 
CpGs for the both regions was also performed (Fig.  7). 
CpGs for the Central region were overrepresented in 
the 6th chromosome, and for Yakutia in the 4th chro-
mosome. Interestingly, the work [44] also observed the 
largest number of sex-specific CpGs in chromosome 6. 
(This work considers the population from the UK, which 

is just more similar in terms of ethnicity to Central Rus-
sia than to Yakutia.) Statistically significant underrepre-
sentation in the gene body is observed in both lists. Also, 
for both lists there is overrepresentation in high-density 
CpG islands and shores and underrepresentation in low-
density OpenSea regions.

Further GSEA, performed independently for both 
regions, revealed 40 terms in the GO library for the Cen-
tral region and 39 terms for Yakutia (Additional file  1: 
Table S6). Moreover, the lists of terms for the two regions 
are almost identical: 39 common terms and only 1 spe-
cific for the Central region (GO:0004713 protein tyrosine 
kinase activity). Among the common terms appear ones 
related to fat cell proliferation, whose differences between 
the sexes have been well studied [100, 101]. Next, a whole 
group of terms related to the processes of glycogen, glu-
cose, and carbohydrate metabolism is worth mentioning. 
The processes associated with glycogen metabolism dur-
ing exercise differ significantly in men and women, with 
less muscle glycogen being depleted in women [102, 103]. 
In the resulting list, 6 of 40 terms are related to glycogen. 
The processes of glucose metabolism are also related to 
it. In women, glucose metabolism is affected by the men-
strual phase, and glucose production in the liver is lower 
and glucose appearance rates are higher [103]. Because 
of this, the incidence of different types of diabetes dif-
fers in men and women [104]. Terms related to carbo-
hydrate processes contribute to 10% of the total number 
of sex-specific terms. Women tend to oxidize less total 
carbohydrates than men in response to physical activity 
[102, 105]. The term manganese ion binding may reflect 
the fact that men in general absorb less manganese than 
women [106].

Epigenetic metrics: age accelerations and blood cell counts
Similar to the analysis of between-region differences 
(Sect. “Region-specific differences”), 9 types of epigenetic 
ages (4 types of classical clocks [36–39] and their PC var-
iations [56]), DunedinPACE values [57], and blood cell 
counts measures [55] were considered.

Sex-specific age acceleration within each region was 
determined as follows: A linear regression was built 
between chronological age and corresponding epige-
netic age on the female group only, and the sex-specific 
age acceleration values were derived from these linear 
models. As a result, in both regions, the mean accelera-
tion value for the female group will be 0 (by construc-
tion), while for the male group a nonzero value will 
be obtained, based on which we can conclude about 
sex-specific age acceleration in the two regions. The 
difference in the distribution of sex-specific age accel-
eration values between males and females was tested 
using the Mann–Whitney U Test with FDR-corrected 
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p values < 0.05. An additional characteristic that allows 
us to make conclusions about sex-specific age accelera-
tion in the two regions is DunedinPACE with the cor-
responding p value. Figure  8 shows the summary of 
statistically significantly different epigenetic biomark-
ers between males and females in both regions.

In the Central region, a positive statistically signifi-
cant sex-specific age acceleration in the male group 
was found in 5 of the 9 types of epigenetic ages, while 
in Yakutia it was found only for 2 types, and they are 
GrimAge and its PC modification, which are also statis-
tically significant in the Central region. Several studies 
have shown that DNAm GrimAge shows more accurate 
results compared to other models, as well as confirm-
ing the thesis of slower aging rates in females compared 
to males [107–109]. The distribution of DunedinPACE 
values is not statistically different between males and 
females in different regions, nor are blood cell counts 
estimations.

Discussion
Conclusion
This work is the first epigenetic study focused on the 
Yakutian population that try to elucidate different dimen-
sions of the variability observed addressing: (1) epige-
netic features of the adaptation mechanisms to the cold; 
(2) pattern of age acceleration and aging rate in a popula-
tion characterized by extreme environmental conditions; 
and (3) sex-specific methylation patterns.

In this work, we examined the epigenetic features of 
the 114 individuals from the Yakutian population in com-
parison with 131 participants from Central Russia. The 
Yakutian population live in the extreme environment and 
experience an extended period of severe cold tempera-
tures, dramatic variation in photoperiod, and variability 
in food resources. Participants from Central Russia live 
in a milder environment, with higher temperatures in a 
shorter winter period compared to Yakutia. The consid-
ered populations also differ in terms of genetic history: 

Fig. 7 Enrichment for the Top-1000 sex-specific CpGs in Central region of: A chromosomes, B genomic region, C relation to CpG island; in Yakutia 
of: D chromosomes, E genomic region, F relation to CpG island. Odds ratio values and corresponding p values (shown by color) were obtained 
from Fisher exact test. Black color indicates the absence of statistical significance (p value > 0.05)
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Representatives of Central Russia are close to the peoples 
of Northeast Europe, while Yakutia shows genetic com-
ponents that characterized Siberian populations and East 
Asian populations.

First, we focused specifically on region-specific differ-
ences between the considered regions, and next, we stud-
ied sex-specific differences in both regions and compared 
them.

We selected 1000 most significant region-specific 
CpGs, for which enrichment analysis showed statistically 
significant overrepresentation in chromosome 16, in the 
regulatory genomic region TSS1500 and in CpG islands. 
We intersected the list of genes we obtained from the list 
of the most statistically significantly different CpGs with 
the list from Cardona et  al. [9], a notable work analyz-
ing single-nucleotide polymorphism data from Siberian 
populations, including Yakutian, and identifying genes 
associated with biological processes hypothetically asso-
ciated with adaptation to the cold. 33 genes appeared in 
the intersection, most of which are associated with blood 
pressure, basal metabolic rate, energy metabolism, and 
response to temperature, suggesting that part of the epi-
genetic variability observed could be ascribable to genetic 
background that characterized this population.

Among the overlapping genes, there are also those 
whose functions are closely related to immune responses 
and to the considered blood cells, such as NK cells and 
CD4T cells (PIK3CD and IL6 genes). Interesting cor-
relation is found between the TG gene responsible for 
thyroid hormone thyroglobulin production [69] and the 
terms related to endocrine system functioning and hor-
mone production found by GSEA. Glucocorticoids regu-
late thyroid function, thereby influencing the production 
of thyroglobulin [110]. The KCNMA1 gene, which is 
associated with the regulation of the contraction of 
smooth muscle, also has channel activity among its func-
tions, which appeared among important GO terms [111, 
112]. CACNA1A [113] and STX1A [114] genes are also 
associated with channel activity.

GSEA of statistically significantly different CpGs by 
methylation levels between the two regions revealed 17 
Gene Ontology terms. Among the found terms, we can 
highlight the ones related to actin filament activity, chan-
nel activity, regulation of steroid, and corticosteroid hor-
mone secretion, as well as a term related to regulation of 
the digestive system. Among the found terms, there are 
those related to adaptation processes to the cold climate, 
to aging processes, and to both aspects.

Fig. 8 Summary of statistically significantly different epigenetic biomarkers between males and females in the Central region (left yellow 
column) and Yakutia (right gray column). Mann–Whitney U test was applied to analyze the statistically significant difference in the distribution 
between the groups separately for all epigenetic ages. The obtained p values were FDR-corrected. Only significant biomarkers are shown. The solid 
line in each diagram corresponds to the median value, the dotted line to the mean value
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To analyze the aging process, we considered the 4 most 
common epigenetic clocks (Horvath DNAm age, Han-
num DNAm age, DNAm PhenoAge, and GrimAge) and 
their 5 PC modifications (PCHorvath1, PCHorvath2, 
PCHannum, PCPhenoAge, PCGrimAge). All these met-
rics were highly correlated with each other. When com-
paring the region-specific age acceleration of the studied 
models and DunedinPACE aging rate, we found that in 
Yakutia, for all considered epigenetic ages, there is a sta-
tistically significant positive region-specific age accelera-
tion compared to Central region representatives. At the 
same time, the average DunedinPACE aging rate exceeds 
1 in both regions. (In other words, the Russian popula-
tion as a whole is aging accelerated, with more than one 
biological year per chronological year.) All considered 
epigenetic models are based on data from participants 
of different populations mainly of European ancestry 
(mostly industrialized ones), without including the indig-
enous populations, which may affect the results. Epi-
genetic age acceleration in Yakutia and increased aging 
rates in both considered populations may signal the need 
for increased attention to healthcare and public health 
problems.

Differences between regions are also observed for 
blood cell composition: Statistically significant increased 
number of CD8T and NK and statistically significant 
decreased number of CD4T and Monocytes are observed 
for the Yakutia region.

Next, we analyzed sex-specific differences in the two 
regions and selected 1000 most significant sex-specific 
CpGs in each region. We also considered the lists of sex-
specific CpGs from Grant et al. [44], McCarthy et al. [98], 
Inoshita et  al. [97] and compared them with the lists 
obtained for the Central and Yakutia regions. The larg-
est overlap of our lists is obtained with [44] (almost half 
of the list), and CpGs corresponding to genes related to 
spermatogenesis and various diseases can be found in the 
overlap.

GSEA of statistically significantly different CpGs by 
methylation levels between the sexes in both regions 
revealed almost identical Gene Ontology terms for the 
Central region and Yakutia: 39 common terms and one 
specific term for the Central region. Among the found 
terms, we can highlight the ones related to the processes 
of glycogen, glucan, glucose, and carbohydrate metabo-
lism, as well as fat cell proliferation and manganese ion 
binding. However, we did not find clear region-specific 
differences between the sexes in the highlighted biologi-
cal functions.

As for regional differences, we next focused on the 
analysis of sex-specific epigenetic differences in the aging 
process in the two regions. We considered 9 types of 
epigenetic clocks (classical ones and PC modifications), 

DunedinPACE metric, and blood cell counts. Five out of 
9 epigenetic age models showed statistically significant 
positive sex-specific age acceleration in men compared to 
women in the Central region, while in the Yakutia region 
only GrimAge with its PC modification showed the same 
result. At the same time, neither DunedinPACE nor 
blood cell counts had statistically significant differences 
between males and females in both regions.

Thus, we performed the first study of the epigenetic 
data of the Yakutian cohort, paying special attention to 
region-specific features, aging processes, age accelera-
tion, and sex specificity. We revealed geographic region-
specific differentially methylated regions associated with 
both, adaptation to climatic conditions and aging pro-
cesses. We also showed that representatives of the Yaku-
tia region show higher age acceleration compared to 
Central Russia, one of the reasons for which may be the 
more severe climatic conditions in which Yakuts live and 
the need to adapt to the cold. Other possible factors that 
we do not take into account in this study may include 
diet, pathogen load, socioeconomic conditions, and 
many others. However, a certain degree of age accelera-
tion is found for Central Russia too. For both regions, we 
confirmed that men age faster than women (resulting in 
a shorter life expectancy), but no significant sex-specific 
difference was found between the regions.

Limitations
We would also like to address the limitations of this work. 
The most common limitation of many studies investigat-
ing biomedical data is sample size. Data such as DNA 
methylation often have small sample sizes compared 
to their dimensionality. Another limitation is the wide 
variety of methods available for performing GWAS and 
EWAS analyses, which take into account different back-
ground information, require a selection of thresholds, and 
can lead to varying results. Among several approaches to 
determining age acceleration, we implemented a linear 
regression-based method, which is recommended when 
the slope of the relationship between predicted age and 
real age differs from unity. In terms of interpretation of 
the obtained results, differences between regions can be 
caused by both genetics and environment, and it is dif-
ficult to disentangle their influence. There remains a 
challenge in identifying population-specific CpGs and 
climate adaptation associated CpGs; a deeper compari-
son of the Yakut population with other Asian populations 
may shed light on this.

Methods
Data collection
All study participants were explained the specifics of 
the procedure, possible inconveniences and risks. Each 



Page 15 of 19Kalyakulina et al. Clinical Epigenetics          (2023) 15:189  

participant signed an informed consent and filled out a 
consent for personal data processing, taking into account 
the principle of confidentiality (accessibility only to the 
research group and presentation of data in a common 
array). The study was approved by the local ethical com-
mittee of Nizhny Novgorod State University. All research 
procedures were in accordance with the 1964 Helsinki 
Declaration and its later amendments.

All study participants were healthy; exclusion criteria 
included chronic diseases in the acute stage, cancer and 
acute respiratory viral infections at the moment of bio-
material donation, as well as pregnancy in women.

The main criterion for inclusion of participants from 
Yakutia in this study was ethnicity. All participants are 
Yakuts (Sakha) in three generations. They were born and 
live on the territory of the Republic of Yakutia (Sakha), 
and their parents and ancestors are indigenous to Yaku-
tia. All participants from the Central region are native 
Russian residents.

DNAm processing
Phenol Chloroform DNA extraction was used. DNA 
was quantified using the DNA Quantitation Kit Qubit 
dsDNA BR Assay (Thermo Fisher Scientific), and 250 ng 
was bisulfite-treated using the EpiMark Bisulfite Con-
version Kit (NEB) with case and control samples ran-
domly distributed across arrays. The Illumina Infinium 
MethylationEPIC BeadChip [115] was used according 
to the manufacturer’s instructions. DNA methylation is 
expressed as β values, ranging from 0 for unmethylated 
to 1 representing complete methylation for each probe.

DNAm data preprocessing, normalization, and batch 
effect correction were performed with the standard pipe-
line in the ChAMP [116, 117] R package. The preproc-
essing was as follows: (1) Probes with a detection p value 
above 0.01 in at least 10% of samples were removed; (2) 
probes with a beadcount less than three in at least 5% 
of samples were removed; (3) all non-CpG probes [118], 
SNP-related probes [119], and multi-hit probes were 
removed [120]; (4) all probes located on chromosomes 
X and Y were filtered out. It is also worth noting that all 
remaining samples have less than 10% of probes with a 
detection p value above 0.01 and they do not need to be 
excluded. As a result, 739,168 CpGs remained for the 
analysis. Functional normalization of raw methylation 
data was performed using minfi [121] R package func-
tion. The ComBat method [122, 123] was used to correct 
for Slide and Array batch effects.

DMPs
DMPs analysis was performed using limma method 
[58] generalization in the ChAMP [116, 117] R pack-
age. Region and sex were used as categorical variables 

to perform a contrast comparison between the two phe-
notypes. This method provides adjusted p values [51] of 
the statistical test for the difference in methylation lev-
els between the two considered groups, as well as fold 
change, which indicates the differences in mean values 
between the groups.

GSEA
Traditional approaches to testing a gene set can produce 
biased results because of differences in gene length, and 
the number of CpG sites can vary even among genes 
of the same length. EWAS can lead to multiple p value 
associations per gene, so it is necessary to consider the 
number of CpGs instead of gene length, and consider-
ing all p values provides an opportunity to take into 
account dependencies between genes in the set. Meth-
ylGSA R package [79] takes all these details into account, 
and therefore, we used this method. It allows testing of 
gene sets with length bias adjustment in DNA methyla-
tion data. Enrichment of GO annotations was calculated 
using the methylglm function, which takes p values of 
each CpG and implements logistic regression adjusted 
for the number of probes in the enrichment analysis. The 
minimum and maximum number of genes in gene sets 
were set to 10 and 1000, respectively. All other settings 
were defaults. The result contains gene sets ranked by p 
values. GO terms whose adjusted p values were less than 
0.05 were considered statistically significant.

Epigenetic ages and estimates of blood cell counts
We used Horvath’s online calculator [54] to obtain 4 epi-
genetic ages (Horvath DNAm age [37], Hannum DNAm 
age [36], DNAm PhenoAge [39], and GrimAge [38]). The 
Hannum DNAm Age model measures the rate of human 
methylome aging under the influence of sex and genetic 
variants and is able to highlight certain components of 
the aging process. The Horvath DNAm Age model can be 
applied to a wide range of tissues and cell types, allow-
ing to compare the age of different tissues of the same 
person to identify signs of accelerated aging associated 
with different diseases. Using a two-step process involv-
ing incorporation of clinical measures of phenotypic age, 
the epigenetic aging biomarker DNAm PhenoAge was 
developed, and it correlates with age in all tissues and 
cells tested. This model is capable of capturing the risks 
of a variety of outcomes in different tissues and cells 
and highlighting the aging pathways. Another predictor 
of longevity, DNAm GrimAge, is a biomarker based on 
a limited number of DNAm surrogates that can predict 
time to death, heart attack, cancer, and other age-associ-
ated diseases.

The PC modifications of the epigenetic ages were cal-
culated according to the original algorithm [56]. These 
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PC clocks can minimize noisy PCs and separate noise 
from age-associated signals, and they use information 
from multiple CpGs, diluting noise from individual 
CpGs.

To compare different epigenetic ages, we used Pear-
son correlation coefficient [124]. Age acceleration was 
determined as follows for regions and sexes. To com-
pare the regions (region-specific age acceleration), first, 
a linear regression was built between the different epi-
genetic ages and the chronological age for the Central 
region group. Age acceleration values were defined as 
residuals relative to this linear approximation. To com-
pare the sexes (sex-specific age acceleration), a linear 
regression was built for the females group. This linear 
regression approach is recommended when the slope of 
the dependence between predicted age and real age dif-
fers from one [125–128]. Specifically, for our data, we 
observe an underestimation of Hannum and GrimAge 
in older participants and an overestimation of PCGrim-
Age in younger participants.

Horvath’s online calculator also allows to obtain the 
distributions of blood cell counts: CD8T, CD4T, NK, B 
cells, Monocytes, and Granulocytes using Houseman 
algorithm [55].

The distributions of age-accelerated values and blood 
cell composition between the considered groups were 
tested using the Mann–Whitney U test [92]. This is a 
nonparametric test for comparing results between two 
independent groups, which is used to test the probability 
that two samples come from the same population, with a 
two-sided null hypothesis that the two groups are not the 
same. All resultant p values were FDR-corrected accord-
ing to the Benjamini–Hochberg procedure [51].

Additionally, it is worth mentioning that both the origi-
nal versions of the epigenetic clock in the Horvath’s cal-
culator and their PC modifications were developed for 
the Illumina 450  k methylation data standard, not for 
Illumina EPIC, so the values of some CpGs may be miss-
ing. Also, some CpGs involved in the calculation of epige-
netic clock values are excluded at the data preprocessing 
stages (filtering, quality control, exclusion of SNP-related 
probes); therefore, all values of such missing for various 
reasons CpGs were automatically imputed according to 
the algorithms in the corresponding articles.
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