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Abstract 

Background Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual 
timing and development. Early and late pubertal onset are both associated with various diseases developing later 
in life, and epigenetic characterisation of pubertal timing and development could lead to important insights. Blood 
DNA methylation, reacting to both genotype and environment, has been associated with puberty; however, such 
studies are relatively scarce. We investigated peripheral blood DNA methylation profiles (using Illumina 450 K and EPIC 
platforms) of 1539 young adult Finnish twins associated with pubertal development scale (PDS) at ages 12 and 14 
as well as pubertal age (PA).

Results Fixed effect meta-analysis of the two platforms on 347,521 CpGs in common identified 58 CpG sites asso-
ciated (p < 1 ×  10−5) with either PDS or PA. All four CpGs associated with PA and 45 CpGs associated with PDS were 
sex-specific. Thirteen CpGs had a high heritability (h2: 0.51–0.98), while one CpG site (mapped to GET4) had a high 
shared environmental component accounting for 68% of the overall variance in methylation at the site. Utilising twin 
discordance analysis, we found 6 CpG sites (5 associated with PDS and 1 with PA) that had an environmentally driven 
association with puberty. Furthermore, genes with PDS- or PA-associated CpGs were consistently linked to various 
developmental processes and diseases such as breast, prostate and ovarian cancer, while methylation quantitative 
trait loci of associated CpG sites were enriched in immune pathways developing during puberty.

Conclusions By identifying puberty-associated DNA methylation sites and examining the effects of sex, environment 
and genetics, we shed light on the intricate interplay between environment and genetics in the context of puberty. 
Through our comprehensive analysis, we not only deepen the understanding of the significance of both genetic 
and environmental factors in the complex processes of puberty and its timing, but also gain insights into potential 
links with disease risks.
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Background
Puberty is a necessary developmental phase between 
childhood and adulthood, enabling sexual reproduction. 
In addition to pubertal timing and pubertal develop-
ment differing between the sexes, they are highly vari-
able between individuals of the same sex. Early pubertal 
development is associated with an increased risk of many 
diseases in later life, such as breast, endometrial and 
prostate cancer [1–3]. On the other hand, late puber-
tal development is associated with asthma in both sexes 
and cervical cancer in females [3]. Nevertheless, the 
mechanisms behind these links remain elusive. Thus, 
understanding puberty from a genetic and epigenetic 
perspective may provide further insight into this impor-
tant period of life and its links with disease risk in later 
life.

Pubertal timing and development are highly influenced 
by genetic factors, (twin-based heritability estimates 
range from 37 to 91%) [4–7]. Studies have identified 
numerous genetic loci associated with pubertal timing 
[1, 8, 9], with a large proportion of the implicated genes 
involved in neural processes. These identified genetic sig-
nals partially explained some diseases, such as breast and 
prostate cancers, linked to the timing of puberty [1, 8, 9]. 
Additionally, recent evidence indicates a shift towards 
an earlier onset of puberty in girls, suggesting that key 
nongenetic factors play a role in pubertal timing [10, 11]. 
Indeed, prenatal growth, diet, maternal smoking, psycho-
logical distress in childhood, and exposure to endocrine-
disrupting chemicals such as phytoestrogen have been 
associated with early onset of puberty [12]. In addition, 
although mainly explained through genetic overlap with 
pubertal timing, high BMI has been associated with early 
puberty [13, 14]. Epigenetic marks react to the environ-
ment and may provide a mechanism for the environ-
ment to act on genome function and ultimately lead to 
phenotypic consequences. Indeed, DNA methylation, the 
most studied epigenetic mark, has been associated with 
pubertal onset [15–17]. As the focus of these studies was 
mainly the change in methylation before and after puber-
tal timing, there is still a need to identify consistent CpG 
sites associated with pubertal timing or development in 
(early) adulthood, where the methylation profile relevant 
to puberty is more stable than that within early adoles-
cence and could therefore be more reliably linked to dis-
ease risk in adulthood. Considering the high heritability 
of puberty and the wide heritability range of DNA meth-
ylation at each CpG site [18], it is necessary to investigate 
the variance components of DNA methylation sites asso-
ciated with puberty and to analyse them in the context of 
methylation quantitative trait loci (meQTLs) [19].

In this epigenome-wide association study (EWAS), we 
profiled DNA methylation in the blood of young adults 

to further understand pubertal timing, pubertal devel-
opment and potential diseases they associate with. We 
investigated genome-wide DNA methylation and its 
association with pubertal timing and pubertal develop-
ment in both sexes. As puberty differs between males and 
females, we additionally stratified the analyses by sex. We 
also employed twin study designs to evaluate heritabil-
ity and within-pair differences and to explore qualitative 
and quantitative sex differences in DNA methylation at 
the associated CpG sites. The twin analyses coupled with 
meQTLs were utilised to gain insight into the genetic and 
environmental factors affecting methylation values of 
CpG sites associated with puberty.

Materials and methods
Cohorts
This study was based on the participants of two longitu-
dinal and comprehensive birth cohorts of Finnish twins, 
namely the FinnTwin12 (twins born in 1983–1987) and 
FinnTwin16 study (twins born in 1974–1979). Both 
cohorts have been described in detail elsewhere [20, 21]. 
In brief, FinnTwin12 was initiated when the twins were 
11–12  years of age, and the follow-up questionnaires 
were sent at ages 14, 17, and 24, while the FinnTwin16 
baseline questionnaire was at the age of 16, with fol-
low-up at the ages of 17, 18, 25, and 35. A subsample of 
these twins participated in onsite visits, where biologi-
cal samples were collected, and anthropometric meas-
ures were taken (N = 1539, 54.6% female). The current 
study included both monozygotic (MZ) and dizygotic 
(DZ) twin pairs who had completed the questionnaires 
regarding puberty (see below) and had blood DNA meth-
ylation data (Illumina 450 K or EPIC) in early adulthood 
available.

Data on puberty
The pubertal development scale (PDS) was measured 
twice in the FinnTwin12 cohort, at ages 12 and 14 years, 
based on the discrete self-reported markers of puberty: 
growth spurt, body hair, skin changes, voice change 
(boys)/breast development (girls) and facial hair (boys)/
menarche (girls). At the age of 12, growth spurt was 
coded as 1 = growth spurt has not taken place, 2 = growth 
spurt in beginning, 3 = growth spurt is rapidly under-
way; body hair as 1 = no body hair, 2 = some body hair, 
3 = definite body hair; skin changes as 1 = no, 2 = some, 
3 = definite skin changes; voice change as 1 = no, 2 = voice 
is beginning to change, 3 = voice change is underway; 
breast development as 1 = no, 2 = breast growth is begin-
ning, 3 = breasts are clearly growing; facial hair as 1 = no, 
2 = facial hair is beginning to grow, 3 = facial hair is 
clearly growing; and menarche as 1 = no, 4 = yes. At the 
age of 14, an additional 4 = “the developmental phase has 
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been completed” was added to each marker of puberty 
(range 1–4) but facial hair growth and menarche, which 
were coded as at age 12. PDS was calculated by summing 
the markers of puberty to obtain a total score, which was 
then divided by five to maintain the individual item value 
range [22]. Hence, the higher the mean score the further 
puberty has progressed. The scores cannot be transposed 
in Tanner stages but serve to identify individual varia-
tion in pubertal development. All individuals with any 
missing value on PDS variables were excluded from the 
analysis. PDS data were not available for the FinnTwin16 
cohort. Self-reported pubertal age (PA), defined as 
the age of menarche (girls) or voice break (boys), was 
obtained from FinnTwin12 participants at the age of 17 
and FinnTwin16 participants at the age of 16. All individ-
uals with missing or inconsistent information on PA were 
excluded. Moreover, individuals who reported that they 
did not have menarche/voice break yet were coded as the 
event happening at the age of 17 [13].

Other phenotypic data
For each twin included in the analysis, we also extracted 
the following items: sex, zygosity, age at questionnaire 
wave as well as age, smoking status and alcohol consump-
tion at the time of blood sampling. Smoking status was 
categorised into current, former (abstinent for at least six 
months) and never smokers, while alcohol consumption 
was calculated in units of ethanol g/day during the past 
week, as described previously [23].

DNA methylation data
Blood samples for DNA methylation analyses were col-
lected during in-person visits in adulthood (age range: 
21–33.7 and 23.3–42.7 for FinnTwin12 and FinnTwin16, 
respectively). High molecular weight DNA extracted 
from whole blood by standard protocols was bisulfite 
converted with the EZ-96 DNA Methylation-Gold Kit 
(Zymo) according to the manufacturer’s instructions. 
Methylation was quantified using Illumina Infinium 
HumanMethylation450 and EPIC BeadChip platforms 
that cover more than 450,000 and 850,000 CpG sites, 
respectively.

The DNA methylation data were pre-processed in the 
R package meffil [24]. Bad quality samples were excluded 
based on the following criteria: i) sex mismatch, ii) 
median methylation vs. unmethylated signal > 3 stand-
ard deviations (SD), iii) failed control probe metrics 
and if > 20% of probes per sample had iv) detection p 
value > 0.05 and v) bead number < 3. To remove techni-
cal variation between the samples, functional normalisa-
tion including the control probe principal components 
was performed, followed by bad quality probe removal: 
i) probes with detection p value > 0.05 in more than 20% 

samples, ii) bead number < 3 in more than 20% sam-
ples, iii) sex chromosome probes and iv) cross-reactive 
and ambiguously mapped probes as well as probes on 
polymorphic CpGs [25, 26]. BMIQ normalisation imple-
mented in the R package wateRmelon [27] was then per-
formed to adjust for type 2 probe bias. The same pipeline 
was used for 450 K and EPIC data. The data pre-process-
ing resulted in 390,304 and 765,385 probes in 450 K and 
EPIC data, respectively. Thirty-nine and 85 samples were 
excluded after pre-processing in 450  K and EPIC data, 
respectively. Beta-values representing DNA methylation 
were used in all analyses.

Statistical analysis
All analyses were performed in R software (version 4.1.1) 
[28].

EWAS designs
The EWAS analyses were performed using the limma 
package [29]. For each design, we created a linear 
model using the “lmFit” function, and the model statis-
tics were computed using the “eBayes” function. The 
EWAS on PDS was performed separately on individu-
als who reported the PDS items at ages 12 and 14. Both 
sex-stratified and combined models for PDS were per-
formed. The EWAS on PA was performed on the merged 
cohorts of individuals who reported their PA at age 17 in 
FinnTwin12 and 16 in FinnTwin16. The EWAS on PA was 
performed separately in males and females. All EWAS 
designs are reported in the Supplementary Methods 
(see Additional file 1). For both 450 K and EPIC data, the 
cell-type proportions were calculated using Flow-Sorted.
Blood. EPIC [30] R package, which is based on a modified 
version of the Houseman algorithm [31].

We evaluated various combinations of covariates by 
utilising the AIC to determine the best model fit for 
the data. This was done using the “selectModel” func-
tion from the limma package. For each EWAS run, we 
evaluated the test statistics inflation and bias using the 
BACON package [32]. Additionally, for visual investiga-
tion of inflation and bias, QQ plots and test statistic his-
tograms were used, respectively. The QQ and Manhattan 
plots were created using the qqman package [33].

All EWAS models were corrected for smoking, alcohol 
consumption, age (at the time of blood sampling), cell-
type proportions, date of BeadChip run and row of the 
array slide. Additionally, the family ID was included as 
a random effect to account for the relatedness of twins 
within a pair. The models that included both sexes were 
corrected for sex, and the models on PA were corrected 
for the cohort. The addition of family ID as a random 
effect was done using the “duplicateCorrelation” function 
to estimate the intra-block correlations of methylation 
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data with family ID as the blocking vector and by includ-
ing the mentioned covariates. The estimated correlations 
were then included in the “lmFit” function where the 
family ID was again included as a blocking vector.

EWAS meta‑analysis
The EWAS results from the 450  K and EPIC platforms, 
based on the same design, were merged using a meta-
analysis. A fixed effect meta-analysis with inverse-var-
iance weights was performed using the “rma” function 
from the metafor package [34]. The standardised effect 
sizes and sampling variances were calculated using the 
“escalc” function. The computed metric was the partial 
correlation coefficient [35].

The input parameters were the t statistic, sample size 
and number of covariates in the regression model. The 
output parameters were the standardised meta-analysed 
effect size, p value, Q heterogeneity estimate and its cor-
responding p value. We corrected the heterogeneity p 
values using the Benjamini‒Hochberg (BH) method. All 
CpG sites with a corrected Q p value < 0.01 were consid-
ered heterogeneous, and a random effect meta-analysis 
was performed on such CpG sites.

For the discovery of CpG sites, we used two signifi-
cance cut-offs on the p values obtained from the meta-
analysis: the cut-off recommended for the 450 K platform 
2.4 ×  10−7 [36] and a suggestive p value cut-off at 1 ×  10−5 
[37]. We annotated all CpG sites with a standardised 
effect size larger than the absolute value of 0.13 using the 
IlluminaHumanMethylation450kanno.ilmn12.hg19 pack-
age [38]. This effect size cut-off value corresponds to the 
maximum effect size at the 99th percentile across the 
analysed eight models.

Analyses of genetic and environmental influences on CpG 
sites
To follow-up on results from the EWAS, we ran four sets 
of analyses to further understand the genetic and envi-
ronmental influences on CpG sites significantly associ-
ated with puberty. These analyses, described in detail 
below, include univariate twin modelling, discordant 
twin pair analyses, meQTL analysis and analysis of sex 
differences in CpG sites. Broadly speaking, each analysis 
provides information on the sources of variation underly-
ing methylation at each CpG site.

Univariate twin modelling
CpG sites associated with PDS or PA with a p value lower 
than the suggestive cut-off (p < 1 ×  10−5) that met the 
model assumptions and with methylation value SD > 0.05 
were assessed by twin modelling (see details in Addi-
tional file  1: Methods). Univariate twin modelling was 
performed by the openMx R package [39] with age at 

blood sampling and sex included as covariates to estimate 
variance components for additive genetic effects (A), 
common environmental effects (environmental expo-
sures and experiences within each twin pair that act to 
make twins within a pair more similar to each other—C), 
genetic dominance effects (D), and unique environmental 
effects (nonshared exposures and experiences that act to 
make twins within a pair less similar to each other—E). 
All potential models (i.e. ACE, ADE, AE, CE, DE, E) were 
compared to determine the best-fitting set of variance 
components based on the log-likelihood test.

Discordant twin pair analyses
CpG sites associated with PDS or PA with a p value lower 
than the suggestive cut-off (p < 1 ×  10−5) were assessed by 
discordant twin pair analysis. The discordant twin pair 
design tests whether cotwins who differ in pubertal age 
or pubertal development also differ in methylation value 
at each CpG site while naturally controlling for all genetic 
and environmental confounders shared by the twins 
within a pair. Discordant twin pair analyses offer the most 
powerful statistical approach when conducted within MZ 
twin pairs since the twins in a pair share 100% of their 
genomes. Here, we additionally pooled MZ and DZ twin 
pairs together to increase power due to increased sam-
ple size compared to the within-pair analyses among MZ 
pairs only.

We performed a mixed effects model that decom-
poses the individual-level effect identified in the EWAS 
into between-pair and within-pair effects. We included a 
random effect of family and fixed effects of age at blood 
sampling, sex, and platform as covariates. The between-
pair predictor was defined as the average of the expo-
sure within a twin pair. The resulting between-pair effect 
quantifies how pubertal age and development on average 
relate to methylation. The within-pair predictor (i.e. dis-
cordance) was defined as each twin’s value on the expo-
sure subtracted from their cotwin’s value. The resulting 
within-pair effect quantifies the degree to which the twin 
with higher pubertal age or development also has higher 
or lower methylation, as compared to their cotwin, aver-
aged across pairs and controlling for shared confounds. 
All pairs were included in the analysis without setting 
any threshold for within-pair discordance, as they still 
contribute information to the between-pair effect. Dis-
cordant twin pair analyses were conducted in the same 
subsample for which significant EWAS results were 
identified.

meQTL analysis
In the context of this study, on the one hand, meQTL 
SNPs could represent a genetic mechanism that explains 
the high heritability of a CpG site and, on the other hand, 
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could additionally provide functional information on the 
SNP-trait association. We used the Genetics of DNA 
Methylation Consortium (GoDMC) meQTL database 
[40, 41] to explore whether the CpG sites associated with 
PDS or PA are established meQTL. For each CpG site, 
we extracted all genome-wide significant (p < 5 ×  10−8) 
meQTLs. In addition, for each CpG site for which we 
could estimate heritability, we evaluated the correlation 
between the number of meQTLs and heritability using 
spearman correlation.

Sex differences
Sex differences at the PDS- or PA-associated CpG sites 
were tested in two ways: differences in methylation val-
ues and differences in twin model parameters between 
the sexes. To test for the differences in DNA methylation 
value medians between males and females within CpG 
sites associated with PDS or PA, we performed a Wil-
coxon two-sample test using the “wilcox.test” function 
and corrected the p values using the Bonferroni method. 
CpG sites with a p value < 0.01 were considered differen-
tially methylated between the sexes. Potential sex differ-
ences were also evaluated for all CpGs included in the 
univariate twin modelling analyses. We explored quan-
titative and qualitative sex differences, where quantita-
tive sex differences refer to cases where the same genes 
influence a trait (here, methylation at a particular CpG 
site) in both sexes but in different magnitudes, and quali-
tative sex differences refer to cases where different sets 
of genes influence a trait for each sex (i.e. genes specific 
to one sex). Importantly, this analysis cannot identify 
which specific genes influence the trait in each sex, only 
whether the set of genes as a whole is the same or differ-
ent between sexes.

An omnibus test was performed to explore whether 
there were any sex differences in any parameter in the 
model. The omnibus test compares a model in which 
every parameter is freely estimated for males and females 
to a nested model in which all parameter estimates are 
simultaneously fixed to be equal for both sexes. For all 
CpG sites with a significant omnibus test (i.e. there are 
sex differences present in the model), we evaluated each 
parameter individually to determine which differed 
between the sexes. The specific sex differences were eval-
uated by comparing the model in which one parameter 
was constrained to equality between sexes to a model 
in which the parameter was freely estimated. P values 
were generated from likelihood ratio tests and were cor-
rected using the Bonferroni method (function “padjust” 
in R). The significance cut-off for these adjusted p values 
was < 0.01 for all tests. A significant p value indicates that 
males and females do differ on that parameter, whereas a 
non-significant p value indicates no sex differences.

Pathway analysis
Ingenuity pathway analysis (IPA) software from QIA-
GEN Inc. [42] was used to assess whether the PDS- and 
PA-associated CpG sites and meQTLs were enriched in 
specific gene ontologies or pathways. The IPA was per-
formed on gene annotated CpG sites with a standardised 
effect size >|0.13|, using the “Human Methylation 450 
v1-2” and the “Ingenuity Knowledge Base” as the refer-
ence gene set for CpGs and meQTL SNPs, respectively. 
The analyses were based only on Homo sapiens, and we 
interpreted the results based on the p value of the asso-
ciations (significance cut-off was 0.05) with a focus on 
the canonical pathways and linked diseases or biological 
functions (“Diseases or function annotation”).

Results
To identify blood DNA methylation profiles in early 
adulthood associated with PDS or PA, we performed 
sex-stratified meta-EWAS on Finnish twins with sample 
sizes stratified by the array platforms shown in Addi-
tional file  3: Table  S1. Furthermore, we also performed 
EWAS models on PDS using the full sample to deter-
mine sex-independent CpG sites. The workflow of the 
current study is presented in Fig.  1. The average age at 
which the methylation data were obtained was 22.7 years 
(SD: 1.7) for FinnTwin12 and 28.1 years (SD: 4.3) for the 
FinnTwin16 cohort. The PDS was obtained from the 
FinnTwin12 cohort at mean ages of 11.4 (SD: 0.3) and 
14.0 (SD: 0.1), while the PA was obtained at mean ages 
of 16.2  years (SD: 0.1) and 17.6  years (SD: 0.2) from 
the FinnTwin16 and FinnTwin12 cohorts, respectively. 
The PDS and PA of the selected individuals (individu-
als with methylation data included in the study) did not 
significantly differ from the complete FinnTwin12 and 
FinnTwin16 cohorts [43]. Detailed descriptive statis-
tics on PDS, PA and other relevant variables are seen in 
Table 1. A total of 347,521 CpG sites were included in the 
EWAS meta-analyses, with no evidence of inflation or 
bias in any of the EWAS models (across both platforms, 
the bias test statistic ranged from − 0.213 to 0.142, while 
the inflation test statistic ranged from 0.9 to 0.995). Over-
all low heterogeneity was observed between the two plat-
forms (< 0.07% heterogeneous CpGs across all models).

Puberty‑associated CpG sites
At the age of 12, PDS was associated with 9 CpG sites 
(p < 1 ×  10–5) in both sexes combined, while 13 and 
10 were exclusively associated with PDS in males and 
females, respectively (Table  2, Additional file  2: Figs. 
S1 and S2). Two CpG sites in females (cg07581365, 
cg06988547) had a lower p value than the threshold of 
2.47 ×  10−7. At the age of 14, no CpG sites were associated 
with PDS in the model including both sexes (Additional 
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file 2: Figs. S1 and S2). However, 12 and 10 CpG sites were 
associated with PDS in males and females, respectively 
(Table 2 and Fig. 2). One CpG site in males (cg04239863) 
and one in females (cg20599748) were significantly asso-
ciated with PDS (p < 2.47 ×  10−7). A total of 12 of the 54 
CpG sites associated with PDS showed significant hetero-
geneity between the 450 K and EPIC platforms (Table 2), 
indicating lower reliability of the observed associations 
for those CpG sites. After performing a random effect 
meta-analysis for these CpG sites, none remained signifi-
cantly associated with PDS.

Four CpG sites were associated with PA with 
p < 1 ×  10−5: two unique CpGs in males and two in females 
(Table  2, Additional file  2: Figs. S1 and S2). One of the 
CpG sites associated with PA in males (cg06096446) had 
a p < 2.47 ×  10−7. None of the CpGs associated with PA 
were heterogeneous between the two platforms.

Genetic and environmental effects underlying 
the associations
First, as puberty itself as well as DNA methylation are 
highly heritable, we wanted to investigate the heritabil-
ity and shared/nonshared environmental components 

explaining the variance of the 58 CpG sites associated 
with PDS or PA in early adulthood. We identified 14 
CpGs for which both assumptions of the twin models 
were met, and the CpG had methylation SD > 0.05 (Addi-
tional file  3: Table  S2). With respect to the univariate 
models, 13 out of 14 CpG sites were best modelled with 
only additive genetic (A) and unique environmental com-
ponents (E) (Table 3). Heritabilities for the AE CpG meth-
ylation values ranged from 0.51 to 0.98, indicating strong 
additive genetic influences on these CpGs (average herit-
ability was 0.79). Only one of the 14 CpGs (cg15030014, 
associated with PDS at age 12 in both sexes) also required 
the inclusion of a shared environmental component (C), 
indicating strong familial resemblance on this CpG due 
to environmental sources in addition to additive genetic 
influences (A = 0.24, C = 0.68).

Second, as only 14/58 CpG sites met the twin mod-
elling criteria, we applied a discordant twin pair study 
design to identify PDS- and PA-associated CpG sites 
with their methylation likely driven by nongenetic fac-
tors. Mixed effects models were run to decompose 
the effect identified in the EWAS into within-pair and 
between-pair associations. Significant within-pair 

Fig. 1 Workflow diagram of the study. Through a meta-analysis of 450 K and EPIC platforms on 347,521 CpGs, we identified CpG sites associated 
with PA or PDS at age 12 or 14 (p < 0.00001). We performed univariate twin modelling to assess heritability and to define the proportion of variance 
attributed to unique and shared environments and investigated potential sex differences in the significant CpG sites. We identified enriched 
pathways and linked diseases among CpG sites with an absolute effect size > 0.13 by IPA
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associations are consistent with a nongenetic effect 
(i.e. an environmental effect consistent with causality). 
Here, CpGs that were considered differentially methyl-
ated within the pairs had a significant within-pair dif-
ference in the pooled analysis (MZ and DZ) as well as 
a suggestive difference in the same direction (p < 0.10) 
in the MZ-only analyses. Full results are available in 
Additional file  3: Table  S3. We identified six differen-
tially methylated CpGs, five of which were associated 
with PDS-12 and one with PA. For three CpGs, the MZ 
twin with a higher PDS-12 score also had higher meth-
ylation than their cotwin (cg14609721, cg03468249, 
cg05797363). For two CpG sites, the MZ twin with a 
higher PDS-12 score had lower methylation than their 
cotwin (cg08091771, cg10669219). Finally, for one CpG, 
the MZ twin with older PA also had higher methyla-
tion than their cotwin (cg06096446). These effects sug-
gest an environmentally driven relationship between 
early pubertal development and DNA methylation. 
This effect is consistent with a causal relationship but 
cannot determine the direction of effect (i.e. whether 
methylation causes earlier puberty or if early puberty 
causes methylation) due to the timing of methylation 
data relative to pubertal development.

Third, to gain additional insight into the genetic basis 
of DNA methylation at the 58 CpG sites associated with 
PDS and PA, we looked for cis and trans-meQTLs from 
the GoDMC database affecting methylation at these sites. 
Thirty-nine of the 58 CpG sites had cis-meQTLs, and 
only one CpG had trans-meQTLs (Fig.  3). The number 
of associated meQTLs ranged from 1 to 1676 at these 39 
CpG sites and a strong correlation between the number 
of meQTLs and heritability of the CpG was observed 
(ρ = 0.88, p value = 4.1e−05). Additionally, we found 3 
CpG pairs whose methylation was affected by a subset of 
common SNPs (Fig. 3).

Sex differences in CpG sites
As we observed overall stronger associations in the sex-
stratified models compared to models including both 
sexes, and as there were no common significant CpG sites 
between the EWAS models in males vs females, we aimed 
to characterise potential sex differences and similarities 
in the identified CpG sites. Therefore, we performed a 
Wilcoxon two-sample test on CpG sites associated with 
PDS or PA and investigated sex differences by exploiting 
the properties of opposite-sex dizygotic twin pairs. Based 
on all included samples in this study, 21 CpG sites were 

Table 1 Characteristics of pubertal development scale (PDS) in FinnTwin12, and pubertal age (PA) and EWAS covariates in FinnTwin12 
and FinnTwin16

Values are given as the mean; SD, except for smoking

*Self-reported evaluation of PDS items
‡ PDS was calculated as the sum of its 5 items divided by 5

A FinnTwin12 
age 12

FinnTwin12
age 14

PDS and its
items

All Males Females All Males Females

Height growth 
spurt*

1.91; 0.80 1.79; 0.77 2.01; 0.81 2.43; 1.08 2.24; 0.80 2.57; 1.22

Body hair growth* 1.56; 0.66 1.31; 0.51 1.74; 0.70 2.95; 0.72 2.60; 0.69 3.20; 0.63

Skin changes* 1.49; 0.55 1.31; 0.48 1.63; 0.56 2.03; 0.53 1.94; 0.52 2.10; 0.53

Breast development/
Voice change*

1.56; 0.67 1.05; 0.22 1.94; 0.64 2.56; 0.81 2.14; 0.95 2.86; 0.50

Menarche/
Hair growth on face*

1.07; 0.43 1.02; 0.14 1.10; 0.55 2.50; 1.44 1.24; 0.46 3.42; 1.19

PDS‡ 1.52; 0.41 1.29; 0.26 1.68; 0.43 2.49; 0.65 2.03; 0.49 2.83; 0.54

Age at questionnaire 11.41; 0.29 11.42; 0.28 11.41; 0.29 14.04; 0.08 14.04; 0.09 14.04; 0.07

B Complete FinnTwin12 FinnTwin16

PA and covariates
in EWAS models

All Males Females All Males Females All Males Females

Pubertal age 13.28; 1.30 13.93; 1.16 12.75; 1.16 13.27; 1.29 14.00; 1.11 12.75; 1.14 13.30; 1.31 13.85; 1.20 12.76; 1.19

Age at DNAme 25.17; 4.15 25.40; 4.06 24.96; 4.21 22.73; 1.71 22.77; 1.72 22.71; 1.71 28.07; 4.33 27.98; 4.04 28.16; 4.61

EtOH g/day 11.21; 15.33 15.48; 18.77 7.49; 10.14 11.20; 14.49 16.48; 18.39 7.28; 8.88 11.23; 16.29 14.47; 19.10 7.79; 11.74

Smoking (Never;
Current;Former)

849; 572; 382 365; 297; 181 484; 275; 201 481; 352; 148 187; 172; 59 294; 180; 89 368; 220; 234 178; 125; 122 190; 95; 112



Page 8 of 17Sehovic et al. Clinical Epigenetics          (2023) 15:181 

Table 2 CpG sites significantly associated (p < 1 ×  10–5) with pubertal development scale (PDS) and pubertal age (PA)

Original model
and CpG ID

Individual platform 
effect size (450 K; 
EPIC)

Standardised 
effect size*

P value Q p value‡ Chr Gene Mean (M)† Mean (F)† Wilcoxon two‑
sample test (p)§

PDS-12

cg15030014 − 0.025; − 0.037 − 0.175 2.85E−07 1.000 7 C7orf20 0.886 0.890 1.000

cg25614726 − 0.023; − 0.013 − 0.169 7.61E−07 1.000 1 APITD1 0.378 0.399 2.31E−12

cg08273672 − 0.01; − 0.01 − 0.161 2.59E−06 1.000 4 UCHL1 0.754 0.760 0.131

cg05038881 − 0.026; − 0.004 − 0.161 2.65E−06 1.000 1 APITD1 0.430 0.451 3.32E−09

cg26027669 0.014; 0.012 0.159 3.38E−06 1.000 1 GFI1 0.054 0.048 9.03E−14

cg22064581 0.004; − 0.001 0.156 5.30E−06 1.000 6 0.032 0.031 1.000

cg08091771 − 0.012; − 0.011 − 0.156 5.57E−06 1.000 3 PTPRG 0.705 0.708 1.000

cg26489369 − 0.009; − 0.002 − 0.155 6.19E−06 1.000 6 HLA-DQA2 0.950 0.952 0.228

cg06993494 − 0.009; − 0.017 − 0.153 8.26E−06 1.000 11 OR5A1 0.966 0.967 0.132

PDS-12—Males

cg25801636 0.009; 0.037 0.245 8.46E−07 0.007 2 0.949 0.949 1.000

cg13653963 0.003; 0.018 0.242 9.10E−07 0.001 9 C9orf98 0.965 0.967 1.11E−04

cg14609721 0.015; − 0.005 0.249 1.04E−06 0.750 1 DEPDC1 0.019 0.018 0.098

cg03468249 0.008; 0 0.250 1.16E−06 0.932 2 0.026 0.025 1.000

cg09736922 − 0.029; − 0.006 − 0.245 1.99E−06 0.960 3 THPO 0.753 0.757 1.000

cg22539434 − 0.015; − 0.006 − 0.246 2.03E−06 1.000 7 GLI3 0.963 0.962 0.937

cg15680660 − 0.012; − 0.012 − 0.246 2.05E−06 1.000 3 XYLB 0.949 0.947 1.000

cg04547799 − 0.003; − 0.007 − 0.234 5.80E−06 0.860 6 HMGN3 0.029 0.030 0.001

cg05797363 0.008; − 0.002 0.232 6.16E−06 0.700 1 DEPDC1 0.016 0.016 1.000

cg04052235 0.03; 0.062 0.231 7.46E−06 0.722 11 0.422 0.433 1.49E−05

cg06002616 0.021; 0.105 0.225 8.37E−06 0.039 8 SPAG1 0.074 0.071 1.000

cg04769618 0.011; 0.015 0.230 8.70E−06 0.874 10 LOC387647 0.033 0.034 1.000

cg14685946 − 0.005; − 0.034 − 0.222 8.73E−06 0.002 2 ACSL3 0.924 0.925 1.000

PDS-12 – Females

cg07581365 − 0.005; 0 − 0.233 1.54E−07 1.000 17 CBX8 0.031 0.031 1.000

cg06988547 − 0.036; 0.003 − 0.231 1.87E−07 1.000 1 0.909 0.910 1.000

cg18397726 − 0.04; − 0.024 − 0.217 1.38E−06 1.000 14 CHGA 0.949 0.949 0.016

cg07844563 − 0.002; − 0.014 − 0.206 2.25E−06 0.001 1 LOC653566 0.959 0.956 0.038

cg08883485 − 0.033; − 0.085 − 0.209 2.80E−06 0.660 1 NAV1 0.452 0.473 4.36E−05

cg23204278 0.001; 0.001 0.211 2.87E−06 1.000 18 0.012 0.012 1.000

cg10669219 − 0.02; − 0.008 − 0.207 4.34E−06 1.000 5 0.822 0.827 0.863

cg19237923 − 0.015; − 0.035 − 0.204 5.39E−06 0.710 1 NTRK1 0.671 0.699 7.53E−39

cg09550127 − 0.008; − 0.01 − 0.203 6.90E−06 1.000 6 0.929 0.936 1.24E−04

cg17052466 − 0.006; 0.001 − 0.201 8.25E−06 1.000 11 TSSC4 0.952 0.956 1.41E−06

PDS-14—Males

cg04239863 0; − 0.056 − 0.273 8.15E−09 9.38E−09 16 0.831 0.841 0.004

cg03115019 − 0.028; − 0.148 − 0.256 5.28E−07 0.040 17 FN3K 0.837 0.848 0.012

cg22325292 − 0.044; − 0.291 − 0.252 7.82E−07 0.038 17 FN3K 0.719 0.729 1.000

cg15142913 − 0.016; − 0.001 − 0.259 7.88E−07 0.952 8 PTP4A3 0.929 0.931 1.000

cg00008671 − 0.01; − 0.038 − 0.247 2.06E−06 0.350 10 FAM190B 0.238 0.228 2.57E−04

cg14466923 0.002; 0.011 0.232 3.40E−06 1.73E−04 6 COL11A2 0.943 0.943 1.000

cg21759953 0.006; 0.006 0.242 5.09E−06 1.000 2 GLI2 0.917 0.918 1.000

cg18223453 0.005; 0.054 0.227 6.73E−06 0.001 17 TBX4 0.682 0.735 3.59E−82

cg02763540 − 0.016; 0.002 − 0.235 8.71E−06 0.922 19 UHRF1 0.804 0.812 0.049

cg19238380 − 0.018; − 0.031 − 0.235 9.49E−06 0.969 1 LMNA 0.473 0.487 1.63E−09

cg24786174 − 0.067; − 0.074 − 0.236 9.83E−06 1.000 18 ZNF516 0.542 0.528 1.000

cg04230403 − 0.001; − 0.017 − 0.224 9.98E−06 0.001 10 FAS 0.026 0.026 1.000
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differentially methylated between males and females 
(Table  2). Three differentially methylated CpGs were 
obtained from models that included both sexes (associ-
ated with PDS at the age of 12).

To investigate sex differences utilising the twin model-
ling method, we first examined qualitative sex differences 
(i.e. whether different sets of genes impact CpG methyla-
tion in males and females). We also performed an omni-
bus model on all 14 CpGs included in the twin analyses 
to determine whether there are any quantitative sex dif-
ferences (i.e. whether parameter estimates differ between 
males and females). Qualitative sex differences existed for 
none of the 14 CpGs, indicating that the same additive 
genetic influences impact methylation of CpG sites asso-
ciated with puberty in both males and females and that 
there are no sex-specific genes influencing their meth-
ylation. We obtained ten CpG sites (9 based on AE mod-
els and 1 ACE model) with quantitative sex differences 
(Table 3, Additional file 3: Table S4). Three CpGs exhib-
ited significant differences in variance compositions. For 
both cg09179916 and cg02614024 (associated with PA 
in females and PDS at 14 in females, respectively), the 
additive genetic component was larger in females, and 
the nonshared environmental component was larger in 
males, but total variance did not differ between the sexes. 
For cg15030014 (associated with PDS at age 12 in both 

sexes), both the additive genetic component and the total 
phenotypic variance were larger in males. In general, 
we identified sex differences in both methylation and its 
underlying variation in CpGs associated with puberty in 
one or both sexes.

Enrichment analysis
We obtained relevant canonical pathways and associated 
diseases/functions using IPA software on PDS- and PA-
associated CpG sites with an effect size larger than the 
absolute value of 0.13 (see Additional file  3: Tables S5 
and S6 for the CpG sites). CpGs associated with PDS at 
the age of 14 in males were enriched in sperm motility, 
axonal guidance signalling and synaptogenesis signalling 
canonical pathways, while in females, the pathway results 
were less conclusive. Full results of the canonical path-
ways from IPA for all models can be seen in Additional 
file 3: Table S7.

CpGs associated with PA in males were enriched in 
adipogenesis, choline degradation and thyroid hormone 
biosynthesis canonical pathways, while in females, they 
were enriched in tyrosine degradation and choline bio-
synthesis. Across all sex-specific models, associated 
CpGs were linked to physiological system development, 
such as growth of muscle tissue or development of neural 
cells in PDS-14 models or connective tissue development 

*Standardised effect sizes ranging from − 1 to 1 obtained from the fixed effect meta-analysis of 450 K and EPIC datasets
‡ Benjamini‒Hochberg corrected p value of the heterogeneity test statistic (Q) on the meta-analysis between 450 K and EPIC platforms
† Methylation Mean Beta Value
§ The p value of the Wilcoxon two-sample test was corrected using the Bonferroni method

Table 2 (continued)

Original model
and CpG ID

Individual platform 
effect size (450 K; 
EPIC)

Standardised 
effect size*

P value Q p value‡ Chr Gene Mean (M)† Mean (F)† Wilcoxon two‑
sample test (p)§

PDS-14—Females

cg20599748 − 0.005; − 0.012 − 0.238 7.39E−08 0.390 14 SERPINA10 0.953 0.955 1.000

cg13634653 − 0.002; − 0.006 − 0.212 1.70E−06 0.047 15 0.969 0.970 0.002

cg17965926 0.001; 0.009 0.203 2.38E−06 5.18E−06 8 0.031 0.031 1.000

cg23130651 − 0.003; − 0.019 − 0.203 2.40E−06 3.14E−06 10 COMMD3 0.883 0.871 9.54E−11

cg03551401 − 0.019; − 0.055 − 0.208 3.46E−06 0.286 8 ADCY8 0.457 0.512 8.35E−53

cg00083685 0.007; 0.033 0.206 3.62E−06 0.114 21 TFF2 0.924 0.927 0.497

cg16198723 − 0.009; − 0.043 − 0.202 3.96E−06 0.001 3 CCDC80 0.600 0.598 1.000

cg02614024 − 0.026; 0.014 − 0.207 4.18E−06 0.733 15 0.194 0.200 1.000

cg23972915 − 0.007; − 0.047 − 0.201 4.27E−06 4.14E−04 14 0.643 0.648 0.509

cg03351418 0.012; 0.008 0.202 8.55E−06 1.000 6 SHPRH 0.841 0.842 1.000

PA—Males

cg06096446 0.014; 0.012 0.204 1.22E−07 1.000 6 TULP4 0.719 0.697 4.02E−07

cg09303847 0.003; 0.003 0.173 9.85E−06 1.000 6 0.042 0.033 1.92E−20

PA—Females

cg17382841 − 0.009; − 0.01 − 0.166 2.74E−06 1.000 5 EGFLAM 0.807 0.792 0.001

cg09179916 − 0.01; − 0.003 − 0.163 3.96E−06 1.000 5 EGFLAM 0.919 0.911 0.004
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Fig. 2 Manhattan plots of the meta-analyses. The Manhattan plots show significant associations between CpG methylation and PDS at age 14 in A 
males and B females. The red line indicates a significance cut-off of 2.4 ×  10–7 as recommended for the 450 K platform, while the blue line indicates 
a suggestive significance cut-off at 1.0 ×  10–5. Embedded (top left corner of Manhattan plots) are the QQ plots of meta-analysis p values
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and tissue morphology in PA (Additional file 3: Table S8). 
Breast, prostate and ovarian cancers were universally 
found to be linked to CpGs in the sex-stratified mod-
els on PDS both at ages 12 and 14. Intestinal and thy-
roid cancers were highly significantly linked diseases in 
CpGs associated with PDS at age 14 in males. In females, 
the highly significant diseases were cancer of the head 
(umbrella term) and gastric cancer (Additional file  3: 
Table S8).

To explore whether the SNPs underlying the meth-
ylation associations with puberty are enriched in any 
relevant processes and functions, we performed IPA 
on meQTLs of all 39 CpG sites. IPA was performed on 
13,787 unique meQTLs, and they were enriched in sev-
eral immune pathways, such as antigen presentation and 
the T-helper 1 and T-helper 2 pathways, usually driven 
by genes linked to the human leukocyte antigen (HLA) 
complex (e.g. HLA-DQA2 and HLA-DPA1). The mul-
tiple sclerosis signalling pathway was one of the highly 
enriched canonical pathways among the meQTLs (Addi-
tional file 3: Table S9). Concerning the diseases and func-
tions category of IPA, several diseases were highlighted, 

such as insulin-dependent diabetes mellitus, rheumatoid 
arthritis, and endocrine, thyroid and breast cancers.

Discussion
In a sizable cohort of Finnish twins, we identified methyl-
ation values at 58 CpG sites to be positively or negatively 
associated with PDS or PA when assessed among indi-
viduals in early adulthood. We observed both sex-specific 
associations and associations common to both sexes, 
with overall stronger associations in sex-stratified mod-
els. On average, we identified stronger and more numer-
ous associations with PDS than PA. Moreover, relatively 
few CpGs overlapped between any of the models.

We considered PDS at age 14 of particular importance; 
compared to the models at age 12, it is generally closer to 
pubertal development peak [44], while PA was reported 
retrospectively, making it more prone to reporting errors. 
Additionally, CpG sites with methylation associated with 
PDS at age 14 were frequently located in development-
related genes. For instance, male PDS-related hypometh-
ylated cg19238380 is located in the LMNA gene, which 
plays a critical role in the normal development of the 

Table 3 Univariate and sex differences twin modelling of 14 CpG sites meeting the twin modelling assumptions

Best twin model, standardised variance components and potential identified sex differences are shown

CpG name MZ twin 
correlation

DZ twin 
correlation

Mean SD Best model Heritability [95% 
CI]

Shared 
environment
[95% CI]

Unique 
environment 
[95% CI]

Sex differences 
identified

cg02614024 0.69 0.29 0.19 0.06 AE 0.67 [0.61, 0.72] – 0.33 [0.28, 0.39] Unstandardised 
genetic and envi-
ronmental
variance compo-
nents

cg03115019 0.96 0.50 0.85 0.11 AE 0.96 [0.95, NA] – 0.04 [NA, 0.05] None

cg03551401 0.55 0.33 0.49 0.07 AE 0.51 [0.42, 0.58] – 0.49 [0.42, 0.58] Mean structure

cg05038881 0.83 0.44 0.44 0.06 AE 0.84 [NA, NA] – 0.16 [0.13, NA] Mean structure

cg06096446 0.89 0.48 0.70 0.09 AE 0.88 [0.86, 0.90] – 0.12 [0.10, 0.14] Mean structure

cg08883485 0.94 0.52 0.46 0.08 AE 0.94 [0.92, NA] – 0.06 [NA, 0.08] Mean structure

cg09179916 0.61 0.18 0.92 0.06 AE 0.60 [0.53, 0.67] – 0.40 [0.33, 0.47] Mean Structure, 
unstandardised 
genetic and
environmental 
variance compo-
nents

cg15030014 0.89 0.78 0.89 0.06 ACE 0.24 [0.17, 0.33] 0.68 [NA, 0.75] 0.08 [0.07, 0.10] Unstandardised 
genetic variance 
component
and total pheno-
typic variance

cg16198723 0.79 0.36 0.60 0.05 AE 0.78 [0.73, NA] – 0.22 [NA, 0.27] None

cg17382841 0.61 0.28 0.80 0.07 AE 0.64 [0.56, 0.70] – 0.36 [0.30, 0.44] Mean structure

cg18223453 0.81 0.48 0.71 0.05 AE 0.77 [0.72, 0.81] – 0.23 [0.19, 0.28] Mean structure

cg22325292 0.98 0.53 0.73 0.19 AE 0.98 [0.97, 0.99] – 0.02 [NA, 0.03] None

cg24786174 0.97 0.55 0.53 0.14 AE 0.97 [0.96, NA] – 0.03 [NA, 0.04] None

cg25614726 0.77 0.42 0.39 0.05 AE 0.78 [0.74, NA] – 0.22 [0.19, 0.26] Mean structure
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peripheral nervous system and skeletal muscle [45, 46]. 
Additionally, the CpG site cg03551401, where meth-
ylation is negatively associated with PDS in females, is 
located on the ADCY8 gene, which contributes to several 
brain functions, including learning, memory, and drug 
addiction [47]. Depending on their genomic location, 
there are numerous ways the methylation of CpG sites 
can affect the function or expression of the respective 
gene. For example, several reported CpGs in this study 

are mapped to enhancer or promoter regions, and could 
in theory affect the regulation of the respective gene [48]. 
Similarly, CpG sites found on the first intron of a gene 
could also have an impact on the function of the respec-
tive gene through affecting transcription factor binding 
[49]. However, the potential effects of reported CpG sites 
on their respective genes are to be elucidated and quan-
tified in the future studies. Any explicit functional con-
clusions are beyond the scope of the current study where 

Fig. 3 Circos plot showing the chromosomal locations of the 58 CpGs associated with PDS or PA. The inner circle shows the standardised effect 
sizes of the association (scale ranging from − 0.3 to 0.3) with the dashed line representing 0. The shape of the points plotted on the effect size 
scale determines the variable analysed (PDS or PA) in the model in which the CpG was found, while the colour of the CpG site identifier shows 
whether the model was performed on males, females or both sexes. The 8 trans-meQTLs of CpG cg08883485 are depicted with the black line 
inside the circos plot (pink arrowhead pointing to the CpG site and purple arrowhead pointing to the genomic region of the 8 trans-meQTLs). The 
CpGs with common cis-meQTLs are shown with black square brackets
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methylation was quantified years after puberty in adult-
hood, and the methylation at the highlighted CpG sites 
should be rather considered as biomarker for pubertal 
development.

Three CpGs, with an effect size larger than the abso-
lute value of 0.13 but below the specified p value thresh-
olds, were also found in two studies that investigated 
genome-wide DNA methylation profiles in peripheral 
blood before and after puberty [16, 17]. The three CpG 
sites are cg01794929, cg21361322 and cg15028548 (the 
former two mapped to the SELM gene and the latter to 
ABI3BP) and were associated in our study with PDS at 14 
in females, PDS at 12 in females and PDS at 14 in males, 
respectively. Notably, the main difference between our 
study and the two mentioned studies is that we explored 
the methylation profiles of young adults explained by 
pubertal timing and development, while they investigated 
methylation profiles before and after puberty. This differ-
ence is reflected in the observed opposite directionality 
of effect sizes for the 3 CpG sites.

Overall, canonical pathway enrichment results when 
both sexes were considered together were less conclu-
sive than sex-specific pathway analyses. Sperm motility, 
axonal guidance signalling and synaptogenesis signal-
ling pathways were the most strongly enriched canoni-
cal pathways from the CpGs associated with PDS at age 
14 in males. Additionally, an antagonistic enrichment 
related to choline and tyrosine metabolism was found 
between males and females among the CpG sites asso-
ciated with PA. Furthermore, although not the diseases 
with the strongest enrichment, breast, ovarian and pros-
tate cancers were linked to CpG sites across all models, 
which is consistent with studies showing associations 
between early puberty and these diseases [1, 9]. Previ-
ously reported diseases related to early puberty, such as 
endometrial cancer [1, 9] or cardiovascular diseases [3], 
were also linked to CpG sites in some of the models in the 
current study, such as in the sex-stratified PDS at age 14. 
Importantly, the significant canonical pathways and dis-
eases do not necessarily indicate a direct functional effect 
of the underlying DNA methylation sites associated with 
puberty. Rather, they represent a general list of pathways 
or diseases that could be linked to puberty through the 
identified DNA methylation biomarkers.

In addition to characterising the genes relevant to the 
identified CpG sites, we also examined their underlying 
sources of variation via twin modelling, as both puberty 
[4–7] and DNA methylation are known to be heritable 
traits [18, 19]. The CpG sites reported in this study, which 
were predominantly best modelled with additive genetic 
and unique environmental sources of variation, were 
mostly found to be highly heritable. Generally, meth-
ylation values of these CpGs were more heritable than 

pubertal development or PA themselves, with heritabil-
ity ranging between 0.51 and 0.98 for AE CpGs, while for 
age at menarche or age at voice change, it ranges from 
0.50 to 0.59 [4, 5, 50]. Methylation at only one CpG site 
(cg15030014), located in the GET4 gene, showed strong 
influence from the shared environment. Interestingly, 
GET4 has an enhancer with a SNP (rs9690350) mapped 
to the gene region of PDGFA, which is associated with 
pubertal onset [51]. The same CpG, as well as 47 other 
significant CpGs, are associated with age [52], which 
supports our findings on associations with pubertal tim-
ing. Additionally, they could be considered markers for 
epigenetic age acceleration in this critical period of life. 
It is unclear to what extent the high heritability of CpGs 
observed here may reflect genetic mechanisms that influ-
ence pubertal development, given that the blood sam-
pling occurred after the completion of puberty.

To assess in more detail the potential genetic effects 
on puberty-associated CpG sites, we performed meQTL 
analyses. Across 39 CpG sites, 13,787 unique meQTLs 
were found, with a strong correlation between the num-
ber of meQTLs and heritability of individual CpGs, as 
was found in Min and colleagues in 2021 [40]. A total 
of 4507 unique SNPs associated with age of menarche 
in two large-scale genome-wide association studies 
(GWAS) [1, 9] were identified as meQTLs in our study. 
They could provide a putative mechanistic explanation 
for PDS- or PA-associated SNPs identified in the GWA 
studies, as DNA methylation may impart a mechanistic 
link for these SNPs and explain their association with age 
at menarche. A nonzero proportion of SNPs reported 
by the two studies was found in all our designs, barring 
PDS at age 14 in males and females combined. The per-
centage of meQTLs associated with CpGs from the eight 
models, also found among the 4507 SNPs, ranged from 
21.1 to 43.2% (26–1289 meQTLs). The meQTLs of highly 
heritable CpGs also had a substantial proportion of com-
mon meQTLs with GWAS on puberty, ranging from 1 to 
36.3% (16–465 meQTLs). Hence, these meQTLs could, in 
part, reflect genetic mechanisms that influence pubertal 
development.

Pathway-level analyses on the meQTLs of CpG sites 
associated with puberty revealed an enrichment in HLA 
complex-related immune pathways such as antigen pres-
entation and T-helper pathways. A positive association 
between HLA complex heterozygosity and later pubertal 
development was reported and was hypothesised to be 
an evolutionary trade-off between immunocompetence 
reflected in pathogen resistance and sexual maturation 
[53]. Moreover, an increase in antigen presentation and 
T-helper responses has been reported as part of immune 
changes during pubertal development [54]. Thus, path-
way analyses on meQTLs underlying the methylation 
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associations with puberty demonstrate their involvement 
in immune processes fully developed during puberty, 
which might be relevant in terms of susceptibility to 
various diseases later in life. Furthermore, the IPA of 
meQTLs revealed some of the same linked diseases as 
our IPA of differentially methylated CpG sites, such as 
breast and thyroid cancers. Interestingly, the enriched 
immune pathways were also associated with the central 
nervous system and could be linked to susceptibility to 
multiple sclerosis [54], which was strongly enriched in 
the meQTL IPA analysis.

To rule out the effects of shared genotypes and envi-
ronment on the observed associations, we performed 
within-pair analyses. We observed 6 CpG sites with 
their methylation differing within the pairs, indicat-
ing a potentially causal relationship between PDS or PA 
and methylation at these CpG sites. Two of these CpGs 
were positively related to PDS, and three were negatively 
related to PDS, while only one CpG site (cg06096446) 
with high heritability, whose mapped gene (TULP4) is 
associated with height [55], was positively related to PA. 
The same CpG site has also been associated with alcohol 
consumption and disorders in pregnancy [56, 57]. One of 
the negatively associated CpGs with a significant within-
pair methylation difference (cg08091771) has been asso-
ciated with maternal BMI and nitrogen dioxide exposure 
[58, 59] and is mapped on PTPRG, which is associated 
with precocious puberty [60]. These effects are consist-
ent with a causal environmentally mediated relationship 
between earlier pubertal development and methylation, 
although our analyses cannot conclusively determine the 
direction of causality (i.e. whether methylation causes 
earlier puberty or whether earlier puberty causes meth-
ylation). The rest of the puberty-associated CpG sites did 
not differ within the pairs, suggesting that the relation-
ship between PDS/PA and CpG methylation is due to 
genetic or environmental confounding.

Twin modelling results on quantitative sex differences 
and differential methylation results were concordant: all 
CpGs identified as having sex differences in the mean 
structure were also differentially methylated between 
the sexes. Furthermore, for CpGs with sex differences 
in variance, the sex with a larger variance from additive 
genetic sources was also the sex for which the EWAS 
association was identified. For example, cg09179916 was 
associated with PA in females, and females had a larger 
additive genetic component. This convergence of results 
could suggest a mechanistic role, but further analyses are 
necessary to determine if methylation at these CpG sites 
has a functional role related to puberty. In addition to the 
mechanistic role, the observed sex differences emphasise 
the importance of sex-stratified models for epigenetic 
studies of puberty.

We found an overall high heritability across the PDS- 
and PA-associated CpG sites, which for 6 highly herit-
able CpGs (h2 > 0.8) was likely due to direct SNP effects 
observed as meQTLs. However, the methylation discord-
ance within twin pairs revealed that, for some CpG sites, 
despite their high heritability, environmental factors play 
an essential role in shaping their methylation, possibly 
indicating the presence of gene‒environment interac-
tions. Finally, the observed sex differences indicate that 
the same genetic mechanisms, but with different magni-
tudes in males and females, affect the heritability of CpG 
sites associated with puberty, giving additional impor-
tance to investigating meQTLs in this context.

Our study has both strengths and limitations. The key 
strengths of our study are the relatively large sample 
size as well as the inclusion of twin pairs with longitu-
dinal phenotype data on which we were able to separate 
genetic effects from environmental effects on methyla-
tion at the puberty-associated CpG sites. Importantly, 
previous studies reported no substantial difference in PA 
between twins and singletons [7, 61]. As the EWAS was 
performed on blood samples several years after puberty 
was completed, the main limitation of this study is that 
it is unclear whether the methylation profile associ-
ated with PDS or PA was formed before, during, or after 
puberty. Although not revealing clear causal character-
istics, the methylation profile in the peripheral blood 
of young adults is associated with pubertal timing and 
development, making the associated genes, enriched 
pathways and linked diseases potential intriguing sub-
jects for future investigation. Furthermore, incorrect 
reporting of pubertal age, especially in males, could be 
a source of noise and inconsistency within the analyses 
[62]. In addition, while the self-reported PDS is not the 
gold standard for measuring pubertal development, it 
is considered reliable [63]. Furthermore, clinical assess-
ments, such as Tanner staging [64, 65], are too costly for 
study designs and sample sizes such as ours. Another 
limitation was the use of two different methylation pro-
filing platforms, reflecting the technological development 
of array-based methylation analysis. Despite an overall 
low heterogeneity between the 450  K and EPIC plat-
forms, significant heterogeneity was observed for some 
of the CpG sites associated with PDS. Since the variance 
and distribution of PDS and PA did not differ between 
the samples analysed by the two platforms, the observed 
heterogeneity could have been caused by technical dif-
ferences between the platforms and/or the smaller sam-
ple size of the EPIC cohort, which mandates that the 
identified associations at these heterogeneous CpG 
sites are interpreted with caution. In all reported analy-
ses we used the methylation beta-values, instead of the 
M-values. Although heteroscedasticity of beta values at 
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highly methylated or unmethylated CpG sites have been 
observed [66], simulation studies and real data examples 
have demonstrated that generally there is no significant 
differences in differential methylation analysis results 
when using beta-values vs M-values [67].

Conclusions
By identifying CpG sites associated with PDS and PA, we 
found potential genes, pathways and diseases relevant to 
puberty in an epigenetic context and complemented the 
previously reported genetic characterisation of pubertal 
timing. Our comprehensive analyses on puberty-related 
CpGs, such as twin modelling, assessment of environ-
mentally driven associations or genetics underlying the 
association, highlight the role of genetics and unique 
environment in pubertal timing and development. In 
addition, we provide evidence for DNA methylation 
being a putative mechanistic link between genotypes 
and puberty, as well as puberty-related diseases. Further-
more, our within-pair effects are consistent with a causal 
environmentally mediated relationship between pubertal 
development and methylation. To further advance our 
understanding, it will be essential to utilise longitudi-
nal data from multiple cohorts, such as the Adolescent 
Brain Cognitive Development Study. By doing so, we 
could acquire additional insights into the chronological 
methylation patterns of CpGs associated with PDS and 
PA, enabling us to deepen our knowledge of the intricate 
mechanisms underlying puberty and its implications for 
health and disease.
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