
de Sena Brandine et al. Clinical Epigenetics          (2023) 15:127  
https://doi.org/10.1186/s13148-023-01541-6

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Clinical Epigenetics

Global effects of identity and aging 
on the human sperm methylome
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Abstract 

Background  As the average age of fatherhood increases worldwide, so too does the need for understanding effects 
of aging in male germline cells. Molecular change, including epigenomic alterations, may impact offspring. Age-
associated change to DNA cytosine methylation in the cytosine–guanine (CpG) context is a hallmark of aging tissues, 
including sperm. Prior studies have led to accurate models that predict a man’s age based on specific methylation 
features in the DNA of sperm, but the relationship between aging and global DNA methylation in sperm remains 
opaque. Further clarification requires a more complete survey of the methylome with assessment of variability 
within and between individuals.

Results  We collected sperm methylome data in a longitudinal study of ten healthy fertile men. We used whole-
genome bisulfite sequencing of samples collected 10 to 18 years apart from each donor. We found that, overall, 
variability between donors far exceeds age-associated variation. After controlling for donor identity, we see significant 
age-dependent genome-wide change to the methylome. Notably, trends of change with age depend on genomic 
location or annotation, with contrasting signatures that correlate with gene density and proximity to centromeres 
and promoter regions.

Conclusions  We uncovered epigenetic signatures that reflect a stable process which begins in early adulthood, 
progressing steadily through most of the male lifespan, and warrants consideration in any future study of the aging 
sperm epigenome.

Introduction
Molecular alterations in human germ cell DNA may 
affect fertility and health risks for the offspring. Several 
diseases are known to correlate with paternal age at con-
ception. Examples include autism [1], schizophrenia [2], 
bipolar disorder [3], Huntington’s disease [4] and child-
hood leukemia [5]. The rates of spontaneous mutation 

and epigenetic alteration in male germ cells increase 
with age [6], and are plausible causes for age-associated 
decrease in fertility and increased risk of disease in prog-
eny. Specific epigenetic features of sperm are strong pre-
dictors of viability when embryos are grown in vitro [7], 
more so than common parameters used in semen analy-
sis, such as volume and motility [8]. Evidence mounts for 
an epigenomic contribution in connecting paternal age 
with offspring viability and health.

DNA cytosine methylation refers to the addition of a 
methyl group on the pyrimidine ring of cytosines. Mam-
malian DNA methylation occurs predominantly in the 
cytosine–guanine (CpG) context. Methylation relates 
to cell phenotype, acting as part of the concerted epig-
enome to regulate gene expression. The methylation level 
at a CpG site refers to the fraction of molecules in the cell 
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population with the methyl mark at that site. Methylation 
is known to have a strong association with chronological 
age. Using the levels at a small number of CpG sites in 
almost any tissue, the donor’s age can be accurately cal-
culated, and, surprisingly, the same formula can be used 
in almost all human cell types with little change in accu-
racy [9]. Sperm is an exception, suggesting that aging has 
a different effect on its epigenome. Nonetheless, predic-
tive models trained solely on sperm data can also predict 
age with similar accuracy to models trained in somatic 
cells [10]. Various changes to the sperm methylation are 
known to correlate with both age and fertility in mam-
mals. In mouse, an age-dependent increase in methyla-
tion of ribosomal DNA is seen both in sperm [11] and 
liver cells [12]. Likewise, loss of CpG methylation in cod-
ing regions occurs in the sperm of older mice, with simi-
lar methylation patterns observed in the brain of their 
offspring [13]. These observations suggest possible age-
associated changes to the mammalian sperm chromatin 
with implications for fertility and offspring phenotype.

To date, the largest population-scale studies of DNA 
methylation have used array-based technology, a cost-
effective and highly reproducible means of studying DNA 
methylation. Insights from array-based data have been 
essential in predictive modeling of the epigenome, but 
CpGs interrogated by arrays are constrained to highly spe-
cific DNA sequences (predominantly CpG islands), which 
hinders the feasibility of studying methylation in various 
loci, including repetitive elements. In contrast, whole-
genome bisulfite sequencing (WGBS) provides the rich-
est data to study DNA methylation. WGBS has been more 
expensive than arrays, but it interrogates the genome at 
much higher spatial resolution [14, 15]. WGBS has dra-
matically refined our view of how DNA methylation is 
organized and how it changes through development, dis-
ease progression and aging. Notably, in a homogeneous 
healthy somatic cell population, the profile of methylation 
levels along the genome—the methylome—takes the form 
of mostly high levels punctuated by defined valleys of 
low methylation. These hypomethylated regions (HMRs) 
mark promoters and enhancers in a cell type-specific 
manner, and have a close relation with accessibility [16, 
17]. WGBS illuminated a methylome feature prominent 
in cancers: global hypomethylation of the genome [18]. 
Early WGBS studies revealed this to be organized in large 
intervals called partially methylated domains (PMDs), due 
to their typical intermediate methylation levels. PMDs 
are associated with regions of heterochromatin, lamina 
attachment and late replication [19–21]. We conjectured 
that WGBS may similarly extend our understanding of 
the aging sperm methylome, complementing knowledge 
established in array-based studies.

Sperm cells have unique epigenetic features not 
observed in somatic cells. Their chromatin is organ-
ized by protamines that significantly compact DNA in 
the sperm head [22]. The sperm methylome harbors 
additional HMRs at retrotransposons [23]. In many 
species of mammal, the HMRs at promoters are sig-
nificantly wider in sperm than in somatic cells [24]. So 
far, however, limitations in the available human refer-
ence genome have restricted our analysis, most nota-
bly excluding centromeres. The telomere-to-telomere 
human assembly provides new opportunities to study 
the methylome more broadly [25]. Using this assem-
bly, early methylation analyses of human cell lines 
have revealed large-scale hypomethylation co-local-
izing with centromeric protein A [26]. The centro-
meric epigenome may be relevant to aging. Changes 
to centromere organization have been linked to cell 
senescence, including an unraveling of satellite hetero-
chromatin [27] and a decrease of centromere protein 
abundance [28]. Much less is known about how, or if, 
the centromeric epigenome changes with age in sperm.

More generally, little is known about variation of 
global features of the sperm methylome within and 
between individuals. The successes in predictive mod-
eling have, by necessity, emphasized precise features 
defined on specific sites or small genomic regions. 
Considerable data normalization is necessary for cross-
sample microarray comparisons, and this can reduce 
the apparent variation in these data. The best predic-
tive models of age or clinical outcome implicitly select 
features with low inter-individual variability. To the 
extent these models are accurate, the features they rely 
on must exhibit low variation between individuals. 
However, we cannot properly study methylome varia-
tion—within or between individuals—unless we have 
repeated measures. In a context where aging is already 
known to be important, this requires a longitudinal 
design.

The present study is motivated by two broad ques-
tions. First, can high-resolution data reveal additional 
connections between the sperm methylome and age? 
Second, are there features of the sperm methylome that 
vary more between individuals than within? We answer 
both questions in the affirmative. We show that many 
global methylome features vary substantially between 
individuals, regardless of age, while remaining stable 
long-term within the individual. In other words, the 
methylome of two sperm samples from the same donor, 
even taken many years apart, are likely more similar to 
each other than to an age-matched sample from a dif-
ferent donor. We also identify several methylome fea-
tures that change consistently with age, across donors. 
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Fig. 1  Donor identity dominates global variation in human sperm DNA methylation. A Study design includes 10 donors with two sperm samples 
collected at least 10 years apart from each donor. B Genome-wide methylation levels for both samples (“younger” vs. “older”) from each donor. 
C Hierarchical clustering of methylation profiles at 10 kb resolution. D DNA methylation through the snoRD-115 locus plotted for each sample 
(younger sample above older); (right) weighted mean methylation through the interval covering snoRD-115-5 to snoRD-115-44. (All data in this 
figure are colored as indicated in panel A)
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These features are often only appreciable once the 
effect of individual has been removed, and the total 
fraction of the sperm methylome impacted by aging is 
remarkably high.

Results
High‑resolution methylomes in a longitudinal design
We produced 20 WGBS datasets from 10 individuals at 2 
time points, separated by 10 to 18 years (Fig. 1A). Donors 
were healthy men, all of whom had healthy children 
between the collection of consecutive samples. All sperm 
samples were identically cryopreserved in liquid nitrogen 
with a previously established assay [29] used for in vitro 
fertilization [30].

Following confirmation of the absence of somatic cells 
in all samples (Methods), bisulfite-converted libraries 
were constructed from sperm DNA and sequenced to 
produce short paired-end reads of 2× 100 bases. Librar-
ies were sequenced to attain at least 10x coverage of 
CpGs genome-wide when combining both strands. To 
our knowledge, this is the first set of WGBS data that 
covers a comprehensive age range (more than 40 years) of 
the adult male lifespan.

Sequenced WGBS reads were mapped to the human 
telomere-to-telomere genome (CHM13 v2.0) [25, 31]. 
A methylation level was estimated at every cytosine in 
the genome as the fraction C/(C + T) of read cytosines 
(Cs) and thymines (Ts) mapping over a reference cyto-
sine [32]. High data quality was confirmed by multiple 
metrics (Table  S1). Reads from all 20 samples had an 
approximately 80% mapping rate to the human refer-
ence genome, with a negligible number of reads mapped 
to mitochondrial DNA. Bisulfite conversion estimated 
using cytosines outside the CpG context was above 99% 
for all samples, which also indicates non-CpG methyla-
tion is negligible. There was also no correlation between 
bisulfite conversion rate and global methylation levels 
( p = 0.3 ). Methylation levels at CpG sites matched the 
expected fraction of methylated CpGs reported in prior 
studies at approximately 70% [10], with a tight distribu-
tion (see below) of global methylation level across all 20 
samples. These data uniformly interrogate the fraction of 
the human genome that is mappable by paired-end reads 
of size 2× 100 bases.

The global (weighted) average CpG methylation level 
for all samples varies between 69.2% and 72.0% (Meth-
ods). Between different collection times, for the same 
donor, global methylation level changes range from −
0.6% to 1.3%. We found no directional change within 
donors (Fig.  1B, p = 0.39 , paired t-test) or correlation 
between donor identity and methylation level ( p = 0.8 ). 
Similarly, we did not observe directional change in meth-
ylation in annotated CpG islands. We also did not detect 

a correlation between age and frequency of CpG→TpG 
mutations within our estimates (Methods), although such 
a correlation likely exists. This indicates that any findings 
of methylation loss with age would not be an artifact of 
accumulated C → T mutation.

We compared these 20 methylomes on a finer scale by 
partitioning each in bins of 10 kb, which captures varia-
tion in methylation along the genome. We calculated the 
weighted average methylation level in each bin (Meth-
ods). Hierarchical clustering of these profiles shows that 
methylomes from the same donor exhibit much greater 
similarity than any pairs from distinct donors (Fig. 1C). 
This implies that, at least for the 10 kb resolution, donor 
identity is the single strongest factor accounting for vari-
ation in the methylomes.

One striking example of DNA methylation deter-
mined by donor identity is the snoRD-115 locus, an array 
of small nucleolar RNAs on chromosome 15 covering 
roughly 100 kb. This locus is contained in the chromo-
some region 15q11–13, which overlaps an imprinted 
gene cluster whose alleles are expressed by parent-of-
origin rather than genotype [33]. The deletion of a 2 Mb 
locus in this cluster from the paternal or maternal allele 
causes Prader–Willi or Angelman syndrome, respectively 
[34]. Aberrant DNA methylation of various genes often 
co-occur with these deletions, and targeted methylation 
measurements of these loci serve as a highly accurate 
diagnostic test for both diseases [35]. It is hypothesized 
that repression of the SNORD-115 gene coupled with 
post-transcriptional silencing of the serotonin receptors 
may be responsible for some behavioral features of the 
syndrome in humans [36]. In our data, the methylation 
profile of the snoRD-115 locus varies strikingly between 
donors but remains stable with age within each donor 
(Fig.  1D). The methylation level through roughly 80 kb 
of this locus (and covering 39/48 snoRD-115 genes) var-
ies from highly methylated (e.g., donor D1) to very low 
methylation (e.g., donor D2). This example highlights the 
extent of biological variation between the sperm methy-
lomes of healthy fertile men, and that this can be inde-
pendent of age.

Centromere methylation accumulates with age
Prior studies of the aging sperm methylome have found 
relationships focused precisely on individual sites [10]. 
As a first step to identify parts of the methylome that 
may exhibit an age effect in our data, we applied a mixed 
model to relate age and methylation levels summarized 
in 100 kb bins along each chromosome (Methods). The 
resulting profiles of conditional R2 values indicate the 
relative fit to the data in different parts of the genome 
(Fig.  2A). The most striking feature of these profiles is 



Page 5 of 14de Sena Brandine et al. Clinical Epigenetics          (2023) 15:127 	

that they exhibit clear peaks through centromeres, the 
positions of which are also indicated in Fig. 2A. Beyond 
the positive correlation between methylation levels and 
age, our data support previous observations of cen-
tromere methylation in human sperm: across donors and 
ages, centromeres are substantially hypomethylated rela-
tive to the rest of the genome [11].

We then directly asked if this visually apparent trend 
through centromeres, defined via satellite sequences 
(Methods), is significant. We found a correlation of 
0.72 between age and methylation level through cen-
tromeres ( p = 0.0003 ). However, given the strong effect 
of donor shown in Fig.  1C, we decided to explicitly 
account for donor identity in our models. We fit a linear 

Fig. 2  DNA methylation increases with age through centromeres. A Methylation and conditional coefficient of determination ( R2 ) for methylation 
∼ age, evaluated in 100 kb bins, along each chromosome. B Rainbow plot of methylation as a function of age through centromeric satellites 
(centromeric transition regions excluded). C Correlation of age and methylation plotted through 50 kb of chromosomes 1, 3 and 22, indicating 
both positive and negative correlation relative to the centromere position. D Rainbow plot of methylation as a function of age for ribosomal DNA 
annotations. (Donors colored as in Fig. 1.)
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mixed model to the data using donor identity as a ran-
dom effect (Methods) and tested whether this results 
in a significantly better fit. Our analysis confirms that 
the mixed model with donor as random effect is appro-
priate for these data ( p = 3.2× 10−5 ). We see a condi-
tional correlation of 0.95 ( p = 1.5× 10−4 ) for average 
centromere methylation and age at time of sample 
collection. We depict this relationship by drawing a 
separate line for each donor, with all donors sharing 
a common slope (Fig.  2B; Table  S2). Lines are colored 
according to the scheme of Fig. 1A, and we refer to this 
type of plot as a “rainbow plot.” In Fig.  2B, all donors 
except one (D5) have an increase in centromere meth-
ylation with age, and the increase with age is very 
consistent after accounting for each donor’s unique 
baseline methylation level.

Human centromeres are notably diverse in sequence 
composition and chromosomal position, thus we do not 
expect them to behave uniformly. Applying the mixed 
model approach to individual chromosomes, three did 
not reach statistical significance at a level of 0.05 (chro-
mosomes 3, 4 and 12). The consistently high conditional 
R2 value through the centromere of chromosome 1, seen 
in Fig. 2A, reflects a positive correlation that also drops 
just outside the annotated centromere (Fig. 2C). We can 
also see that the centromere of chromosome 3 lacks this 
feature. Although chromosomes 1 and 3 are both meta-
centric, their centromeres have different sizes: 21 versus 6 
Mb, covering 8.5% versus 3.0% of the respective chromo-
some. The centromere of chromosome 3 includes a large 
human satellite 1A repeat, flanked by active and inactive 
higher-order repeat (HOR) elements. The centromere 
of chromosome 1 includes a massive contiguous human 
satellite 2 repeat, with an uninterrupted active HOR ele-
ment, together making up almost the entire centromere. 
Although analyses for families of satellite repeats reveal 
some trends, in general chromosome identity and cen-
tromere composition are too closely coupled to make 
general claims from our data about which of these two 
factors may be more important in driving overall trends.

An exception, however, is the acrocentric autosomes 
(13–15, 21, 22), which all show a strong trend toward 
increased sperm methylation with age. In human, all 
acrocentric centromeres contain the ribosomal RNA 
genes (rDNA), and physically localize to the nucleolus. 
The positive correlation through the centromere in chro-
mosome 22 is illustrated in Fig.  2C, and falls abruptly 
just after the centromere. We analyzed methylation of 
rDNA genes, copies of which reside in each acrocentric 
centromere, but only in these centromeres. We found a 
correlation of 0.99 after correcting for donor identity 
(Fig.  2D), which agrees with previous similar observa-
tions in the human sperm methylome [11]. Although the 

gain of methylation in acrocentric centromeres with age 
in human sperm remains strong outside the rDNA, the 
strongest trend we observe is within those elements. Var-
iation in ranks of donor baseline levels between rDNA 
regions and centromeres suggests that the identity sig-
nature might differ between metacentric and acrocentric 
chromosomes.

Replicating timing implicated in global age effects
By visual inspection of the profile in Fig. 2A, we noticed 
that the age versus methylation relationship drops 
through several gene-dense loci flanked by gene deserts. 
We hypothesized that the correlation shows a relative 
elevation through regions identified as PMDs in somatic-
derived cells. To test this hypothesis, we used seven 
different public methylomes known to contain PMDs 
(Methods). For each of these methylomes, we identi-
fied PMDs (excluding centromeres) and conducted 
analyses relative to the PMD and non-PMD portions of 
these methylomes. PMDs in these methylomes covered 
between 31% and 52% of the genome outside of cen-
tromeres, with an average of 41%. These PMDs were used 
to partition 100 kb bins in PMD-free and PMD-contain-
ing sets, after which conditional coefficients of determi-
nation in sperm samples were contrasted in both sets. 
Bins with partial overlap to PMDs were excluded from 
further analyses.

We first asked how the age versus methylation cor-
relation, shown in Fig.  2C, relates to PMD status. For 
each of the seven PMD sets, we computed the distribu-
tion of these estimated correlation coefficients (Fig. 3A). 
The PMD and non-PMD portions have strikingly dif-
ferent distributions: the PMD portion appears roughly 
symmetric, while the non-PMD portion of the genome 
skews negative, with a mode significantly below zero. The 
age-associated gain of methylation in PMDs is consist-
ent with our observation in centromeres. Notably, the 
majority of bins that gain methylation (with p < 0.01 ) lie 
in PMD regions and, conversely, the majority of bins that 
lose methylation are in non-PMD portion (Fig. 3B). Simi-
lar to PMDs, centromeres are associated with late repli-
cation in human cells [37].

The contrasting changes in methylation inside and 
outside of PMDs might explain previous observations of 
age-related DNA methylation changes in sperm. Among 
a published set of 428 genes with methylation level in 
sperm that can predict age, 172 gained and 256 lost 
methylation [38] (Table  S3). We asked if the stratified 
correlations inside and outside of PMDs can explain the 
previous findings of gain or loss with age in these genes. 
We determined which genes overlap PMDs in each of the 
PMD-containing methylomes. Among genes reported as 
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gaining methylation with age, on average half overlap a 
PMD in any given methylome and roughly 20% overlap 
a PMD in all tested methylomes (Fig.  3C). Conversely, 
most genes that lose methylation with age never overlap 
a PMD in any tested methylomes. This contrast is also 
seen when counting nucleotides to control for differences 
in gene sizes (data not shown). Thus, on the scale of full 
gene loci, our data connect directional age-associated 
methylation changes in sperm with the shared structural, 
replication timing and epigenomic features of PMDs.

Hypomethylated regions disappear with age
The changes we see in centromeres and PMDs, which are 
connected with replicating timing, are measured on the 
scale of mega-bases. At higher resolution, methylome 
features are usually associated with gene regulation. In 
particular, across most mammalian cell types hypometh-
ylated regions, evident as valleys in a background of high 

methylation, typically mark active or accessible regulatory 
regions like promoters and enhancers. HMRs are contigu-
ous intervals on the order of hundreds to a few thousand 
base pairs. Typical human sperm methylomes have about 
70k of these HMRs and average 1.5 kb in size [23].

We identified HMRs in each of the 20 sperm methyl-
omes. We excluded centromeres as the extreme hypo-
methylation at mega-base scale would confound 
identifying smaller intervals (Methods). This also ensures 
that our observations are independent of the age-asso-
ciated changes outlined above. Across all samples, the 
number of identified HMRs varies between 55k and 74k, 
with a mean size in the range of 1723 to 1848 bases. We 
used a similar mixed model strategy as outlined above to 
determine whether the sets of HMRs change with age. 
We observe a striking global decrease with age in the 
number of HMRs ( p = 1.1× 10−5 ). This is a loss of 88.7 
HMRs per year in the human sperm methylome (Fig. 4A; 

Fig. 3  Age effects in estimated early- and late-replicating regions of the genome. A Distribution of age versus methylation correlation in 100 kb 
bins inside (blue) and outside (red) of PMDs. Each bar’s height is the mean from 7 PMD-containing methylomes, indicated separately as dots. B 
Number of bins with significant positive (blue) and negative (red) correlations between age and methylation in two groups: bins that overlap 
a PMD in all (left) versus none (right) of the methylomes tested. C Fractions of genes overlapping a PMD in all or none of the methylomes, separated 
by genes losing methylation with age in human sperm (red), genes gaining (blue) and the expectation based on all genes (gray). Bar groups: 
the mean gene overlap with PMDs across all samples (left), genes overlapping regions that are always PMDs (middle) and genes overlapping 
regions that are never PMDs (right)
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Table  S4). Globally we do not observe a significant 
change to the mean size of regions ( p = 0.0255 ). These 
results indicate that aging has a global effect on features 
that are likely to impact gene regulation at some stage in 
sperm development.

HMRs in sperm of many species of mammal exhibit 
unique properties at promoters. Especially for primates, 
the size of HMRs spanning transcription start sites are 
substantially wider in sperm than in somatic cells, and 
within sperm they are wider at promoters than distal reg-
ulatory regions or retrotransposons [24]. We repeated the 
mixed model analysis but with HMRs separated based on 
whether they overlap a transcription start site (Meth-
ods). The proportion of HMRs that overlap transcription 
starts varies between 23.8% and 27.6%, but the number 
of such HMRs does not decrease significantly with age 
( p = 0.013 ; Fig.  4B). The average of 25.6k unique pro-
moters covered by an HMR spans a range of only about 
1% of all promoters. The majority of HMRs are not at 
annotated promoters (74–78%), and these reduce sig-
nificantly in number with age, at a rate of 87 HMRs per 
year. Therefore, the global decrease in HMRs with age is 
driven by HMRs away from promoters.

We examined HMR size as a function of age using the 
same stratification by promoter status and found that the 
HMRs at promoters do show a significant change in size 

with age (Fig. 4C). In particular, the average size of these 
HMRs at promoters grows by roughly 1.9 bp per year. 
The same does not hold for HMRs away from promoters. 
We can thus conclude that the HMRs at promoters grow 
wider with age, and HMRs away from promoters disap-
pear with age. In both cases, the mixed model indicates 
a consistent change with age, regardless of the donor’s 
baseline.

Discussion
We generated WGBS data from human sperm in a lon-
gitudinal design, covering more than 40 years. Genome-
wide DNA methylation analyses revealed substantial 
variability between donors that remains stable with age 
within the individual. After accounting for donor iden-
tity, we observed age-associated changes to the sperm 
methylome throughout the genome. Centromeres gain 
methylation with age. Age-associated changes outside 
centromeres show strong directionality as a function 
of replication timing and nuclear organization for the 
underlying genome, as indicated through correlation 
with previously identified partially methylated domains. 
Finally, hypomethylated regions, which tend to mark 
promoters and enhancers, disappear with age when dis-
tal from promoters, but are retained and expand in size 
when localized to promoters. Most of these findings are 

Fig. 4  Hypomethylated regions disappear with age. A Rainbow plot showing the genome-wide loss of hypomethylated regions with age. B 
Rainbow plot decomposing the trend indicated in panel A according to whether the regions overlap annotated promoters. C Rainbow plot 
showing size of hypomethylated regions as a function of age, for each individual, stratified by whether the regions overlap annotated promoters. 
(Donors are colored as in Fig. 1.)
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obscured by inter-individual variation, but emerge prom-
inently after controlling for donor identity.

Our data indicate that, relative to variation between 
individuals, the human sperm methylome remains stable 
with age: inter-individual variation explains more total 
variance than does age. Genotype is known to be a major 
factor in determining the methylation status of individ-
ual CpGs in cis through methylation quantitative trait 
loci [39, 40]. Our findings suggest that the role of geno-
type in shaping an individual’s methylome might have 
greater spatial resolution, with a stronger role for effects 
in trans. The snoRD-115 locus is a remarkable example 
that is challenging to explain with a simple hypothesis. 
A donor’s sperm methylome through snoRD-115 may 
be linked to a haplotype in the same locus, but due to its 
size, any one (or even a few) genotypic changes would be 
impacting a broader locus. Since the snoRD-115 locus 
contains many copies of very similar short RNAs, some 
mechanism of RNA-dependent DNA methylation [41] 
could mediate methylation in this locus.

Centromere sequences encode information that is 
essential to coordinating chromosome segregation dur-
ing cell division. The epigenome has a role in this process, 
but it is unclear whether centromeric DNA methylation 
directly impacts this process or is a passenger influenced 
by other components of the integrated epigenome [42]. 
Our results indicate that centromere methylation, which 
is reduced compared to the rest of the genome, increases 
with age in sperm. This phenomenon is detectable even 
without controlling for donor effect, so the molecu-
lar determinants of methylation through centromeres 
likely degrade with age in a way that differs from most 
of the genome. Centromeres are notoriously difficult 
to analyze using short-read sequencing. The telomere-
to-telomere reference is a dramatic step forward, but it 
does not alleviate all technical issues. We analyzed cen-
tromeres using aggregate measures. More precise claims 
would require different approaches—among them, use of 
long reads [26]. It seems reasonable that within the large 
human centromeres, higher-resolution analyses may 
reveal detailed patterns, possibly associated with specific 
sequence features.

We see trends in contrasting directions through por-
tions of the genome labeled PMD and non-PMD: the 
PMD portion exhibits significantly more age-associated 
increase to DNA methylation in sperm, while the oppo-
site is seen in the non-PMD portion. These divergent 
trends agree with current understanding of PMD for-
mation in senescent cells. PMDs represent on average 
40% of the genomes in which they are observed [43]. 
The PMDs in different tissues are very similar, and there 
seems to be at least a common intersection that com-
prises 25% of the human genome [44]. This constitutive 

set includes the largest domains, where DNA replicates 
latest [45]. PMD formation has been previously linked 
with aging via the observation of early PMD signatures 
in centenarian T-cells [46]. PMDs, as originally charac-
terized, have not been seen in sperm. We conjecture that 
late-replicating regions, which correspond to constitutive 
PMDs, harbor hotspots for age-associated changes to the 
sperm methylome. Our findings in mature sperm likely 
reflect events from all progenitor stages that propagate to 
the mature sperm. Late-replicating DNA is more prone 
to mutation [47]. Our results suggest these regions also 
see an accumulation of error in methylome maintenance. 
The constitutive PMDs and the centromeres replicate 
very late during mitosis. Together these observations are 
consistent with a model in which diffuse accumulation of 
epigenomic noise in male germ cells depends on replica-
tion timing or large-scale features of chromatin structure.

We found that a man loses on average 88 HMRs per 
year in his sperm, likely with high variability between 
individual spermatozoa, and this rate seems very sta-
ble through the lifespan. DNA methylation correlates 
strongly with gene expression. In general, genes with 
methylated promoters are silenced and methylated 
enhancers or cis-regulatory modules are rendered inac-
tive. Unmethylated promoters tend to be accessible, so 
their activity depends on the presence of transcriptional 
regulators. One way epigenomic change at the scale of 
HMRs might relate to aging is by disruption of transcrip-
tion regulation for genes involved in specific pathways. 
Targeted change in pathways can occur due to prefer-
ential gain of methylation in certain sequence patterns 
or through age-related change, both likely occurring in 
sperm precursor cells and being inherited in spermato-
genesis. Conversely, if alterations are distributed ran-
domly in the genome, and not targeting specific genes 
or pathways, they could impair function of an increasing 
number of genes in an increasing number of cells over 
time. Importantly, age-associated methylation changes 
may be reversed post-fertilization. The mammalian 
methylome is reprogrammed during early embryogen-
esis [41]. The embryonic methylome is erased and DNA 
is subsequently remethylated, but regions like imprinted 
loci, ribosomal DNA and some retrotransposons escape 
these processes [12, 41]. Phenotypic effects in the off-
spring require that changes occur in loci that escape 
methylation erasure events.

Age can be accurately predicted using DNA meth-
ylation in sperm measured at a small and specific set of 
sites. While WGBS provides higher spatial resolutions, 
presently it estimates methylation at each CpG using 
far fewer molecules, which limits the power of WGBS 
to detect subtle changes at individual sites. We found 
broad variability between individuals that overshadows 
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age-related change. This does not conflict with the accu-
racy of epigenomic aging calculators based on microar-
rays. The sites selected when training aging calculators 
might simply be those least affected by individual varia-
tion. Our results complement these previous studies and 
suggest that the predictive accuracy in existing aging cal-
culators may be further improved by directly accounting 
for relative stability of features across individuals. The 
prospect of using WGBS as the basis for predicting age 
of a sample, using only shallow sequencing, depends on 
some way to determine individual baselines.

Our statistical assumptions keep the scope of our 
analyses to bins and annotated regions whose methyla-
tion levels show evidence of linear trends through the age 
range in our samples. For such regions, mixed models 
allow us to test goodness of fit under different hypoth-
eses. Variation that deviates significantly from linearity 
would be revealed as poor fit and would require differ-
ent approaches to test hypotheses and greater sample 
sizes. Interpretations for the phenotypic consequences of 
the methylation variation we report are limited: donors 
in our study were phenotyped as healthy and fertile. We 
have, however, established a lower bound on the variation 
in sperm methylomes among healthy fertile men. Inter-
individual variation, especially striking examples like the 
snoRD-115 locus, may have little or no clinical relevance. 
However, the differences at snoRD-115 are dramatic. This 
variability is comparable to those seen in cancer-normal 
studies in magnitude and scale. To find a phenotype con-
nected to snoRD-115, methylation in sperm would not 
be surprising. Methylation through the snoRD-115 locus 
is remarkably stable within each donor. Among healthy 
fertile men, not all sperm in a sample are equally viable. 
From our data, we cannot say if the methylation levels 
through the snoRD-115 locus reflect a homogeneous 
sperm population or a mixture of epigenotypes. In either 
case, our data point to an equilibrium methylation level. 
If methylation in sperm through this locus is genetically 
determined, we expect stability with age. However, we 
cannot rule out possible effects of lifestyle as cause for 
any variability we see between donors. The sperm methy-
lome is known to be affected by smoking [48], exercise 
[49] and exposure to trauma [50], among various other 
possible covariates.

Our study highlights the nature of individual differ-
ences in sperm methylomes and how they are shaped by 
aging. Individuals vary substantially at certain loci and 
through certain epigenomic features. Yet, even among 
features that exhibit striking differences between indi-
viduals, we find remarkable stability within individu-
als. We used repeated measures and explicitly modeled 
donor identity, allowing continuous signatures of aging 
to emerge. The resulting picture is a sperm methylome 

impacted almost genome-wide by aging. Although each 
man presents a unique sperm methylome as a baseline, 
our data suggest aging acts on the sperm methylome 
according to processes that are invariant with time and 
uniform across individuals.

Methods
Library preparation and sequencing
Prior to sperm DNA extraction, all samples were evalu-
ated microscopically to confirm the absence of poten-
tially contaminating somatic cells. DNA was isolated 
from cryopreserved samples using a previously estab-
lished sperm-specific extraction protocol [51], wherein 
samples are treated by enzymatic and detergent-based 
lysis, followed by RNase treatment and subsequent DNA 
precipitation using isopropanol and salt and cleaning 
with ethanol. As an additional confirmation of sperm 
DNA purity, methylation data for all samples were evalu-
ated bioinformatically to confirm the absence of somatic 
methylation signatures as described previously [6]. 
Library preparation was carried out by BGI using their 
standard directional WGBS pipeline (BGI Americas, 
Cambridge MA). To prepare for sequencing, the iso-
lated DNA was sonicated to generate 100–300 bp frag-
ments. DNA fragments were end-repaired, after which 
3’-dA overhang and methylated sequence adapters were 
added. The resulting DNA was then treated with sodium 
bisulfite using the Zymo EZ DNA Methylation Gold kit 
(Zymo Research, Irvine CA) and amplified with PCR. 
Each library was sequenced in a DNBSEQ-G400 platform 
(MGI Tech, San Jose CA) to generate 100 bp paired-end 
reads.

Data processing and methylome quantification
The data consist of twenty paired-end pairs of FASTQ 
files with reads of length 100 bp on each end. The qual-
ity of reads was assessed using Falco version 1.2.1 [52], 
which was used to test average PHRED quality scores 
and base content of each set of sequences. Adapters 
were trimmed using trim-galore version 0.6.7 [53]. The 
adapter-trimmed reads were mapped to the CHM13 
human genome reference version 2.0 using abismal ver-
sion 3.1.0 [31]. We created two independent sets of 
mapped reads files in SAM format. The first contained 
only uniquely mapped reads, and the second contained 
uniquely mapped reads and a randomly assigned loca-
tion for reads that mapped ambiguously. The first set was 
used anytime we showed or referenced a specific part of 
the genome (e.g., Figs. 1D, 2A). The second set was used 
to summarize weighted average methylation in large 
regions, including centromeres and rDNA genes, repeti-
tive regions of the genome (see next section). In both 
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cases, reads were mapped by setting the c parameter in 
abismal to 50,000 to maximize the sensitivity of the map-
ping algorithm. The mapped reads were analyzed using 
DNMTools version 1.2.1 [32]. Specifically, paired-end 
mapped read locations from the output SAM file were 
converted to single-end using the dnmtools for-
mat command. The resulting formatted SAM file was 
sorted using SAMTools version 1.13 [54]. PCR dupli-
cates, defined as identical reads that map to identical 
locations in the genome, were removed using the dnm-
tools uniq command. Mutated CpGs→TpGs were 
identified as loci where more than half of the reads con-
tain TpGs in the forward strand and CpAs in the reverse 
strand. These loci were quantified using the dnmtools 
counts command and removed from further calcula-
tions. Hypomethylated regions (HMRs) were identified 
using the dnmtools hmr command. We used the Ref-
Seq gene annotation [55] from NCBI for the CHM13 ref-
erence genome version 2.0. The annotation was used to 
count genes that overlap PMDs and HMRs. Genes were 
defined as contained in PMDs if they have a non-empty 
overlap with any PMD interval. HMRs were classified as 
promoter HMRs if they have a non-empty overlap to the 
transcription start site of any gene and non-promoter 
HMRs otherwise.

Methylation quantification in annotated regions
We used counts of methylated and unmethylated reads 
in each CpG to create weighted methylation averages, 
either genome-wide, or when restricted to one or a set 
of genomic intervals. This includes equally sized bins 
of sized 10 kb or 100 kb, as well as regions annotated as 
centromeric satellites, ribosomal DNA, PMDs and genes. 
In all cases, the input regions to be used for quantifica-
tion were given as browser-extensible data (BED) files. 
BED files of equal-sized bins tiling the genome were cre-
ated using BEDTools [56] with the CHM13 reference 
genome chromosome sizes as input. Regions defined as 
PMDs were inferred using the dnmtools pmd com-
mand [44]. Genes and centromeres were retrieved from 
the UCSC Table Browser, based on data provided by the 
telomere-to-telomere consortium [57]. For our use, the 
set of centromeric intervals was defined as the union of 
all centromere BED files with the exception of centro-
meric transition regions (Table S5). In other words, cen-
tromeres are defined as the union of the following satellite 
repeats: active, inactive and divergent α-Sat higher-order 
repeats (hor and dhor), monomeric α-Sats (mon), classic 
human satellites 1A, 1B, 2 and 3 (hsat1A, hsat1B, hsat2 
and hsat3), beta and gamma satellites (bsat and gsat), and 
other annotated centromeric satellites (censat). When 
we excluded centromeric regions, to be conservative we 

also excluded the ct annotations. We confirmed that all 
centromeric and rDNA regions matched the expected 
genome-wide depth per CpG. Centromere CpG depths 
varied between 6.64 and 10.93 with an average of 9.82. 
Ribosomal DNA CpG depths varied between 5.53 and 
15.28, with an average of 10.77

A methylation level for an interval in a BED file is 
assigned as a weighted average methylation, as previ-
ously suggested [58]. Given a genomic region with M 
CpGs, where CpG i is covered by Ni reads of which ni 
are methylated ( 0 ≤ ni ≤ Ni ), the weighted average 
methylation w is given by

Note that the value of w does not depend on where reads 
map within the region. Through this definition, reads that 
map ambiguously in the genome but uniquely within a 
genomic annotation category (e.g., rDNA) can contrib-
ute toward estimates of a region’s weighted methylation 
estimate. We used this property to calculate methylation 
levels more accurately in highly-repetitive regions, like 
centromeres and subsets of centromeric satellites. This is 
analogous to mapping reads to consensus sequences for a 
family of repeats.

We used unique and ambiguous reads to calcu-
late methylation in centromeres and rDNA. For 
bins, PMDs, genes and HMRs, we used only uniquely 
mapped reads. For centromeric regions, unique reads 
cover 26% of centromere CpGs at 7.6x depth, whereas 
unique and ambiguous reads covered at least 47% of 
CpGs with similar depth. For rDNA, unique reads 
covered on average 2% of CpGs, whereas unique and 
ambiguous reads covered at least 4.92% of CpGs in all 
samples.

Comparing statistical models for age‑association
Let y be a vector of n random variables with values 
estimated using DNA methylation data. Associated 
with each entry in y is an age, which is encoded in the 
known matrix X along with an intercept column. Let 
Z be a known n×m binary matrix that indicates, for 
each observation, the corresponding donor. These are 
related by the following model:

where β = (β1,β0)
T gives the unknown fixed effects, 

with regression coefficient β1 for the predictor and β0 
gives the grand intercept. The m× 1 vector b of ran-
dom effects distributed as N (0, σ 2

b I) . The error ǫ is n× 1 
and distributed as N (0, σ 2

ǫ I) and independent of b. This 

w =

M
i=1 ni
M
i=1Ni

.

y = Xβ + Zb+ ǫ,
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model makes the assumption that individual donors are 
independent. In our setting, we have n = 20 outcomes 
taken from m = 10 individuals, and each of these indi-
viduals provided 2 samples, separated by at least 10 years. 
Thus, within binary matrix Z, each row sum is 1 and each 
column sum is 2. Our null hypothesis is as follows:

Testing this null amounts to asking whether the data 
should be modeled using a common intercept for all m 
individuals.

To test H0 , for a particular measurement from the 
methylome data, we used the exactLRT function from 
the RLRsim R package [59], which is based on the finite 
sample distribution of the restricted likelihood ratio test 
statistic [60]. If we reject H0 , we used the mixed model 
to test for an additional hypothesis concerning an asso-
ciation between the covariate in X and age of the sample, 
conditional on each donor having a different intercept bi 
but shared slope β1 . The null hypothesis for the associa-
tion with age is

We tested this hypothesis using the lmer function 
through the lmerTest R package for estimating param-
eters and hypothesis tests on our fixed effect [61]. To 
obtain a conditional coefficient of determination ( R2 ) 
from a mixed model, as shown in Fig.  2A along each 
chromosome, we used the method of [62], implemented 
in the MuMIn R package.

Partially methylated domain datasets
We used partially methylated domains of seven sam-
ples, including primary cells and cell lines, as replicates 
to create a genome partition between early- and late-
replicating regions. We chose the following cell lines and 
phenotypes (1) adipose  tissue-derived stem cells (ADS), 
(2) ADS-derived cultured adipose, (3) The Calu1 squa-
mous cell carcinoma cell line, (4) foreskin fibroblasts, 
(5) the GM12878 cell line, (6) the IMR90 cell line and (7) 
placenta. Public SRA accessions for each of these samples 
are listed in the Data Availability section in the form of 
Sequence Run Experiment (SRX) IDs. Public datasets 
were processed using the same software tools and param-
eters as the sperm samples. [17, 43, 63] (Data Availability)
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