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Abstract 

Background In utero exposure to maternal hyperglycemia has been associated with an increased risk for the devel‑
opment of chronic diseases in later life. These predispositions may be programmed by fetal DNA methylation (DNAm) 
changes that persist postnatally. However, although some studies have associated fetal exposure to gestational hyper‑
glycemia with DNAm variations at birth, and metabolic phenotypes in childhood, no study has yet examined how 
maternal hyperglycemia during pregnancy may be associated with offspring DNAm from birth to five years of age.

Hypothesis Maternal hyperglycemia is associated with variation in offspring DNAm from birth to 5 years of age.

Methods We estimated maternal hyperglycemia using the area under the curve for glucose (AUC glu) following 
an oral glucose tolerance test conducted at 24–30 weeks of pregnancy. We quantified DNAm levels in cord blood 
(n = 440) and peripheral blood at five years of age (n = 293) using the Infinium MethylationEPIC BeadChip (Illumina). 
Our total sample included 539 unique dyads (mother–child) with 194 dyads having DNAm at both time‑points. We 
first regressed DNAm M‑values against the cell types and child age for each time‑point separately to account for the 
difference by time of measurement for these variables. We then used a random intercept model from the linear mixed 
model (LMM) framework to assess the longitudinal association between maternal AUCglu and the repeated meas‑
ures of residuals of DNAm. We adjusted for the following covariates as fixed effects in the random intercept model: 
maternal age, gravidity, smoking status, child sex, maternal body mass index (BMI) (measured at first trimester of 
pregnancy), and a binary variable for time‑point.

Results In utero exposure to higher maternal AUC glu was associated with lower offspring blood DNAm levels at 
cg00967989 located in FSD1L gene (β = − 0.0267, P = 2.13 ×  10–8) in adjusted linear regression mixed models. Our 
study also reports other CpG sites for which DNAm levels were suggestively associated (P < 1.0 ×  10–5) with in utero 
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exposure to gestational hyperglycemia. Two of these (cg12140144 and cg07946633) were found in the promotor 
region of PRDM16 gene (β: − 0.0251, P = 4.37 ×  10–07 and β: − 0.0206, P = 2.24 ×  10–06, respectively).

Conclusion Maternal hyperglycemia is associated with offspring DNAm longitudinally assessed from birth to 5 years 
of age.

Keywords Epigenetics, DNAm, Fetal programming, Gestational hyperglycemia, Pregnancy, Offspring

Background
Gestational diabetes mellitus (GDM) is defined by hyper-
glycemia first occurring during pregnancy in an indi-
vidual who did not previously have diabetes [1]. GDM 
affects approximately 14% of pregnancies worldwide 
[2] with variation in prevalence depending on ethnic-
ity [3] and the diagnostic criteria applied [4]. Regard-
less of GDM diagnosis, maternal hyperglycemia along 
the whole spectrum has been linearly associated with 
adverse perinatal outcomes in both mother and offspring 
[5]. Exposure to maternal hyperglycemia in utero is also 
associated with an increased risk for the development of 
chronic diseases later in childhood, including obesity [6], 
metabolic [7] and cardiovascular diseases [8], asthma [9], 
autism [10], as well as other adverse neurodevelopmental 
outcomes [11]. The Developmental Origin of Health and 
Disease (DOHaD) hypothesis is central to the concept of 
fetal programming and based on lasting fetal metabolic 
adaptions to environmental/maternal stressors during 
the critical developmental period [12]. Epigenetic marks 
are highly malleable during in utero development and in 
early life but can be stable over time [13]. Epigenetics is 
one of the most likely molecular mechanisms as part of 
the DOHAD theory and fetal metabolic programming.

DNA methylation (DNAm) is the most studied epige-
netic modification. It involves the addition of a methyl 
group to the fifth carbon of a cytosine when located just 
upstream of a guanine [14]. Growing evidence supports 
that DNAm may be the bridge between prenatal expo-
sure to maternal hyperglycemia and the predisposition 
to chronic disease in later life. The most comprehensive 
study consists of a meta-analysis of an epigenome-wide 
association study (EWAS) investigating associations 
between maternal hyperglycemia exposure and cord 
blood DNAm variations. This study reported significant 
associations (FDR < 0.05) at two loci between cord blood 
DNAm and the area under the curve of glucose (AUC 
glu) following an oral glucose tolerance test (OGTT) [15]. 
Candidate gene studies also reported significant correla-
tions between maternal hyperglycemia exposure during 
pregnancy and offspring DNAm in genes implicated in 
chronic disease pathways [16, 17].

However, although the association between maternal 
hyperglycemia exposure and DNAm measured at birth 
has been explored in a few studies, no study has yet 

examined how maternal hyperglycemia may be associ-
ated with offspring DNAm from birth to five years of age. 
To address this gap, we conducted an EWAS examining 
the association between maternal glycemic response to 
an OGTT performed during pregnancy, and offspring 
DNAm assessed longitudinally at birth (cord blood) 
and at age 5  years (peripheral blood), using modeling 
approaches that integrate DNAm at both time-points.

Methods
Study population
Our study sample consists of 539 mother–child dyads 
from the Genetics of Glucose Regulation in Gestation 
and Growth (Gen3G) prospective cohort. We recruited 
Gen3G participants in the Sherbrooke City area, Canada, 
to investigate environmental and genetic determinants 
of glucose regulation in pregnancy, and their impacts 
on fetal development and offspring health [18]. Between 
2010 and 2013, we invited pregnant women to participate 
in the study when they attended a routine prenatal blood 
sampling visit during their first trimester of pregnancy 
at the Centre Hospitalier Universitaire de Sherbrooke 
(CHUS), if they planned to deliver at CHUS [18]. Eligible 
women were ≥ 18 years old, with a singleton pregnancy, 
and not reporting using medication that alters glucose. 
We excluded women with pre-existing diabetes or dia-
betes diagnosed in the first trimester based on labora-
tory screening (A1c > 6.5% or 1 h-glucose ≥ 10.3 mmol/L 
post-50  g glucose challenge test [GCT]). Details on 
Gen3G participants have been published previously [18]. 
All women provided signed consent, and the CHUS IRB 
approved all Gen3G protocols.

At enrollment, women provided information on age, 
ethnicity, smoking habits during pregnancy (never/for-
mer smoker vs current smoker) and gravidity (primi-
gravid vs multiparous). During the first (6–14  weeks) 
and second (24–30  weeks) pregnancy visits, research 
staff measured weight (in kg) and height (in m) using 
standardized procedures, and we calculated body mass 
index (BMI) using the standard formula (kg/m2) [18]. 
At the first visit, most women completed a non-fasting 
50  g-GCT. At the second visit, all women conducted a 
75  g-OGTT in order to measure glucose tolerance. At 
delivery, we abstracted from the medical records infor-
mation about gestational age at birth (in weeks), child sex, 
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and birth weight (in g). Research staff collected umbilical 
cord blood samples rapidly after delivery (< 30 min).

We conducted in-person follow-up visits with mother–
child pairs at the CHUS Research Center approximately 
5 years after birth. During this visit, we collected updated 
medical history and anthropometric measures, in addi-
tion to child blood samples.

Maternal glucose measured during a 75 g‑OGTT 
in the second trimester, and estimation of the area 
under the curve for glucose
We measured glucose levels (mmol/L) using the glucose 
hexokinase method (Roche Diagnostics, Indianapolis, 
US) at the CHUS biochemistry clinical laboratory rapidly 
after blood collection [18, 19]. We calculated the AUC glu 
based on the trapezoidal formula [20], to capture a global 
measure of maternal hyperglycemia in pregnancy that 
encompasses all three time-points of the OGTT since 
all of them have been associated with adverse pregnancy 
outcomes [5], and the AUC glu was the most informative 
phenotype in prior EWAS investigating dysregulation in 
child cord blood DNAm [15].

Genome‑wide DNA methylation level assessment
Genomic DNA was purified from umbilical cord blood 
cells and from blood cells, respectively, collected at deliv-
ery and 5 years of age using the AllPrep DNA/RNA/Pro-
tein Mini kit (QIAGEN, Hilden, Germany). DNA was 
then bisulfite converted with the EZ-Methylation kit 
(Zymo Research, CA, US), and subsequently analyzed 
for DNAm at > 850,000 CpG sites at single-nucleotide 
resolution using the Infinium MethylationEPIC Bead-
Chip (Illumina, San Diego, CA). We first performed a 
manual inspection of the quality of the methylation assay 

looking at probes call rate (> 99%), color balance, stain-
ing, extension, hybridization, specificity and bisulfite 
conversion (probe types I and II) using the BeadArray 
Controls Reporter software. We transferred raw methyla-
tion files into R (version 4.1.1) for further preprocessing 
using the minfi R package [21]. Our final dataset included 
440 cord blood samples and 293 peripheral blood sam-
ples collected at the ~ 5-year visit after quality controls. 
In terms of participants, this represents 539 unique dyads 
(mother–child pairs), from which 194 dyads had both 
time-points (cord blood and peripheral blood) included 
in the analyses (see support Fig. 1).

We implemented functional normalization for back-
ground and dye bias correction [22] of the methylation 
data, and the regression on correlated probes (RCP) 
method [23] to adjust for probe-type bias, as previously 
described [24]. We filtered out probes with null meth-
ylation variance and detection P-value > 0.05 in at least 
5% of the samples. We annotated CpG sites in the array 
using the R package IlluminaHumanMethylationE-
PICmanifest (version 1.0 B4), and we excluded probes 
located on sex chromosomes, non-CpG probes (“rs” or 
“ch”), single-nucleotide polymorphism (SNP)-associated 
probes at the CpG site, the single-base extension, or any-
where within the probe, if the SNP had a minor allele 
frequency (MAF) ≥ 0.05. In addition, we removed cross-
reactive probes as previously described [25]. We used 
ComBat [26] to correct for technical variability and batch 
effects, while protecting our variables of interest. The 
model thus included the three glucose values (fasting glu-
cose, 1  h-glucose, and 2  h-glucose post-OGTT), mater-
nal age, BMI in the first trimester of pregnancy, gravidity, 
smoking status, and child sex. After quality control, we 
included up to 719,360 high-quality CpG sites in the 

Fig. 1 Flowchart illustrating the participant selection from the Gen3G prospective cohort
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analysis using DNAm from combined cord blood and 
childhood peripheral blood. We calculated the predicted 
cell counts in cord blood based on the method described 
by Gervin et al.[27], and the predicted cell counts in child 
blood based on the method from Salas et al.[28], imple-
mented in the FlowSorted.Blood.EPIC R package.

Statistical analyses
We described baseline characteristics of the overall sam-
ple, and of samples at each time-point, using standard 
descriptive statistics. For each CpG site, we used meth-
ylation values measured in the β-value scale, as a range 
estimating between 0% (unmethylated) and 100% (com-
pletely methylated), to transform into M-values prior to 
analyses based on the statistical validity of this method 
to identify differential DNAm [29]. Due to differences 
in the cell types predicted in each time-point (i.e., cord 
blood = CD8 + T cells, CD4 + T cells, monocytes, natural 
killer, B cells, granulocytes and nucleated red blood cells 
(nRBC); peripheral blood at ~ 5  years = CD8 + T cells, 
CD4 + T cells, monocytes, natural killer, B cells and neu-
trophils) and different age measures (cord blood: gesta-
tional age in weeks; peripheral blood: child age in years), 
we regressed DNAm M-values against the cell types and 
age for each time-point separately, and retrieved residu-
als from this association to perform the longitudinal 
EWAS. For the linear mixed model (LMM), we consid-
ered a random intercept model using the nlme R pack-
age [30] to assess the longitudinal association between 
maternal AUC glu (primary exposure) and repeated meas-
ures of residuals of DNAm (in M-values adjusted for cell 
types and age, respectively, in each DNAm time-point) 
at ~ 719,360 CpG sites as outcomes. We conducted simi-
lar analyses for individual glucose components of mater-
nal AUC glu: fasting glucose, 1 h-glucose, and 2 h-glucose 
post-OGTT as secondary exposures. We included the 
following covariates as fixed effects: maternal age, gravid-
ity (primigravid vs multigravida), smoking in the first tri-
mester of pregnancy (smoker versus non-smoker), child 
sex, maternal BMI in the first trimester of pregnancy, 
and a binary variable for time-point (i.e., birth = 0, early 
childhood = 1). We used a random intercept for the sub-
ject to account for the correlation of multiple measures 
on the same individual. We also conducted separate lin-
ear models for individual CpG at each of the two time-
points (cord blood and 5y peripheral blood) using blood 
DNAm transformed in the same way (residuals on cell 
counts and age), for all four maternal glycemic expo-
sures (maternal AUC glu, fasting glucose, 1 h post-OGTT 
and 2 h post-OGTT) using the same covariates (without 
the time-point variable). We also explored if we could 
find differentially methylated regions (DMRs) using the 
DMRff method [31] using the residuals that were used 

for the EWAS as the individual-level data. We choose this 
method as it provides decent power for detecting DMRs 
and without an inflated Type I error rate [32].

We reported coefficient estimates at the individual 
CpG site as the mean difference in DNAm residuals on 
cells and age, per unit increase in the AUC glu. We cal-
culated the genomic inflation factor or lambda (λ) for 
each EWAS (Additional file  1). We adjusted associa-
tions for multiple testing using Bonferroni, deeming epi-
genome-wide significant associations as P < 6.9 ×  10–8, 
while we considered “suggestive” associations identified 
with an arbitrary P ≤ 1.0 ×  10–5. For each top CpG site 
(P ≤ 1.0 ×  10–5 in at least one model (mixed model, or lin-
ear models in cord blood and 5y peripheral blood)), we 
visually inspected outliers and distribution by plotting 
the residuals (standardized or not) versus the fitted val-
ues, and by using quantile plots. Top CpG sites identified 
in the EWAS were annotated to their gene using the Illu-
mina annotation (IlluminaHumanMethylationEPICanno.
ilm10b2.hg19 R package [33]) and if not annotated, we 
completed using the closest gene using the UCSC Gene 
Browser. We visualized the results using Manhattan and 
quantile plots. All analyses were performed in R (version 
4.1.1).

Results
Participants’ characteristics
The characteristics of the mothers and children are shown 
in Table  1. Briefly, mothers were 28.2 ± 4.2  years old 
(mean ± SD) and had a median [IQR] BMI of 23.9 [21.6; 
27.9] kg/m2 at the first trimester of pregnancy (median 
9.4 [8.1; 11.7] weeks). Forty-nine (9.1%) women reported 
smoking and 180 (33.4%) were primigravid. Median and 
IQR values of maternal glycemia during the 75 g OGTT 
(median gestational age; 26.3 [25.9; 27.1] weeks) are indi-
cated in Table 1. The median AUC glu was 12.0 [10.5; 13.4] 
mmol/L*h and fifty (9.3%) women developed GDM. At 
delivery, the median gestational age was 39.7 [38.9; 40.4] 
weeks and 252 of these children were female (46.8%). At 
the 5-year visit, the children had a median age of 5.2 [5.1; 
5.4] years old and 130 (44.4%) were female.

Maternal AUC glu is associated with DNAm variations in cord 
blood and in blood at 5 years of age
We first identified a total of 10 CpG sites (9 loci) at 
which offspring DNAm levels were associated with expo-
sure to maternal AUC glu at a suggestive threshold of 
P-value ≤  10–5 (Fig. 2). The strongest association reached 
the genome-wide significant threshold and was observed 
at the cg00967989 located within the proximal promo-
tor of the FSD1L gene (β = −  0.0267, P = 2.13 ×  10–8) 
(Fig.  3a). Among the other loci with suggestive asso-
ciations, cg07946633 (β = −  0.0206, P = 2.24 ×  10–6) and 
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cg12140144 (β = −  0.0251, P = 4.37 ×  10–7) were both 
located within the promotor region of the PRDM16 gene 
(Fig. 3b). The seven other CpG sites were located at the 
HES1, CCDC28A, INPP5F, CKB, GP1BB/SEPT5, SAR1B, 
and RGS3 gene loci. We presented in Table  2 the com-
plete list of CpGs at which offspring blood DNAm levels 
were associated with exposure to high maternal AUC glu 
at a suggestive threshold (P ≤ 1.0 ×  10–5), their associated 
genes, genomic location, regression β values and P-val-
ues from the main longitudinal EWAS (based on LMM). 
Using DMRff, we identified two DMRs, one contain-
ing the two CpG sites (cg07946633 and cg12140144; adj 
P = 0.03) previously reported at the PRDM16 gene locus 
and the second containing the one CpG site (cg00967989; 
adj P = 0.02), previously reported at the FSD1L gene locus 
(Additional file 2).

We also tested associations between maternal AUC glu 
and DNAm measured at birth (cord blood) and at 5 years 
(peripheral blood), separately (Additional file  3). When 
looking at individual time-points for FSD1L, the signal 
appears to be primarily driven by its association in child-
hood, with only nominal association observed at birth. 
A similar pattern applies to the CpGs localized at the 
GP1BB/SEPT5 gene locus. In contrast, the signals identi-
fied for PRDM16 (cg12140144), SAR1B, CCDC28A, and 
INPP5F appear to be primarily driven by their associa-
tions reported at birth. Interestingly, the signal observed 
for PRDM16 (cg07946633) appears to be equally driven 

Table 1 Characteristics of Gen3G mother–child pairs during 
pregnancy, delivery, and child at ~ 5 years

AUC glu, Area Under the Curve of glucose; BMI, Body Mass Index; GDM, 
Gestational Diabetes Mellitus; SD, Standard Deviation

N Mean ± SD or 
median [IQR] or 
N (%)

Maternal measures – 1st trimester

Age, years 539 28.2 ± 4.2

Gestational age, weeks 539 9.4 [8.1; 11.7]

Primigravid, yes 539 180 (33.4%)

Smoking status, yes 539 49 (9.1%)

BMI, kg/m2 539 23.9 [21.6; 27.9]

Maternal measures – 2nd trimester

Gestational age, weeks 539 26.3 [25.9; 27.1]

GDM, yes 539 50 (9.3%)

Glucose fasting, mmol/L 539 4.2 [3.9; 4.4]

Glucose 1 h post‑OGTT, mmol/L 539 7.1 [6.0; 8.2]

Glucose 2 h post‑OGTT, mmol/L 539 5.7 [4.8; 6.6]

AUC glu, mmol/L * h 539 12.0 [10.5; 13.4]

Measures at delivery

Gestational age, weeks 539 39.7 [38.9; 40.4]

Sex, girls 539 252 (46.8%)

Child measures – 5 years

Age, years 293 5.2 [5.1; 5.4]

Sex, girls 293 130 (44.4%)

Fig. 2 Epigenome‑wide association plot (− log10 P‑values) for maternal AUC glu. Manhattan plot for the EWAS of maternal AUC glu following 
a 75 g‑OGTT with DNAm measured longitudinally at birth and five years of age (red line: Bonferroni threshold = P‑value < 6.9 ×  10–8; blue line: 
Suggestive threshold = P < 1.0 ×  10–5)
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by its associations at birth and at age 5 years with a simi-
lar pattern in HES1, CKB, and RGS3 genes.

Most of the CpG sites associated with maternal AUC glu were 
associated with 1 h and 2 h post‑OGTT glucose levels
Using LMM, we tested the association between off-
spring DNAm levels (cord blood and 5-year blood), 

and maternal fasting glucose, 1 h, and 2 h post-OGTT 
glucose levels as separate exposures (Additional files 
4, 5, and 6). From the 10 CpG sites initially associ-
ated with maternal AUC glu (P-value ≤  10–5), DNAm 
levels at cg00967989, located in the FSD1L gene, were 
associated with maternal 1  h-glucose (β = −  0.0347, 
P = 6.68 ×  10–8) and suggestively with the 2  h-glucose 

Fig. 3 FSD1L and PRDM16 gene regional plot association (− log10 P‑values) for maternal AUC glu. Genomic regional plots for a FSD1L (on Chr 9) and 
b PRDM16 (on Chr 1) genes of maternal AUC glu following a 75 g‑OGTT with DNAm measured longitudinally at birth and five years of age (Solid line: 
Bonferroni threshold = P‑value < 6.9 ×  10–8; dashed line: Suggestive threshold = P < 1.0 ×  10–5)

Table 2 CpG sites identified (suggestive P <  10–5) in linear mixed models (LMM) testing associations between maternal AUC glu and 
DNAm measured in cord blood and blood at 5 years of age

Model adjusted for maternal age, gravidity, smoking status, child sex, BMI at first trimester of pregnancy and the binary variable for time-point. Significant result after 
Bonferroni correction with P-value < 6.9 ×  10–8 are in bold

AUC glu, Area Under the Curve of glucose; Chr, Chromosome; CpG, Cytosine–phosphate–Guanine; DNAm, DNA methylation; SD, Standard deviation

CpGs Chr Position Cord blood DNAm levels in 
β‑value Mean ± SD N = 440

Five years blood DNAm levels 
in β‑value Mean ± SD N = 293

Nearest gene LMM regression estimates

cg00967989 9 108,210,147 0.013 ± 0.002 0.015 ± 0.003 FSD1L β: − 0.0267
P: 2.13 × 10–08

cg03703356 14 103,989,368 0.073 ± 0.012 0.132 ± 0.016 CKB β: − 0.0217
P: 4.25 ×  10–07

cg12140144 1 2,984,275 0.017 ± 0.004 0.045 ± 0.008 PRDM16 β: − 0.0251
P: 4.37 ×  10–07

cg07946633 1 2,984,245 0.251 ± 0.034 0.339 ± 0.032 PRDM16 β: − 0.0206
P: 2.24 ×  10–06

cg08694430 9 116,420,234 0.864 ± 0.032 0.838 ± 0.035 RGS3 β: 0.0324
P: 1.33 ×  10–06

cg20153537 3 193,917,170 0.949 ± 0.017 0.944 ± 0.007 HES1 β: − 0.0223
P: 2.70 ×  10–06

cg19978242 10 121,578,846 0.856 ± 0.030 0.886 ± 0.026 INPP5F β: − 0.0322 
P: 4.85 ×  10–06

cg02357751 22 19,710,880 0.014 ± 0.003 0.030 ± 0.015 GP1BB; SEPT5 β: − 0.0368
P: 7.71 ×  10–06

cg23517035 5 133,971,253 0.954 ± 0.010 0.939 ± 0.011 SAR1B β: 0.0212
p: 8.68 ×  10–06

cg17385945 6 139,095,355 0.010 ± 0.002 0.014 ± 0.003 CCDC28A β: − 0.0257
p: 9.93 ×  10–06
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(β = −  0.0357, P = 2.80 ×  10–6) post-OGTT. DNAm at 
CpG sites within the PRDM16 gene associated with 
maternal AUC glu were suggestively associated with 
maternal 1  h-glucose (only cg12140144) and 2  h-glu-
cose (both cg12140144 and cg07946633) post-OGTT. 
In addition, DNAm levels at cg17385945, cg19978242, 
cg03703356, and cg08694430 located within the 
CCDC28A, INPP5F, CKB, and RGS3 genes, respectively, 
were suggestively associated with the 1  h post-OGTT 
glucose levels (same direction of effect to what we had 
found in the analyses with maternal AUC glu). None of 
the CpG sites initially associated with maternal AUC glu 
or with the 1 h- and 2 h-glucose was found associated 
with fasting glucose levels. These results, along with all 
CpG sites we found significantly associated with fasting 
glucose, 1 h and 2 h post-OGTT, are summarized in a 
Venn diagram (Fig. 4) and presented in Additional files 
7, 8, and 9.

Discussion
In this study, we conducted a longitudinal EWAS based 
on blood DNAm from birth and 5 years of age in child-
hood in relation to maternal glycemic response after 
a 75  g-OGTT conducted during the second trimester 
of pregnancy. We found CpG sites at which offspring 
blood DNAm was associated with maternal AUC glu as 
well as other glycemic indices measured during preg-
nancy, including 1 h and 2 h post-OGTT glucose levels, 
but not fasting glucose levels. The different results we 
obtained with fasting glucose levels could be explained 
by the different metabolic characteristics observed in 
the impaired glucose tolerance (IGT) and impaired glu-
cose fasting (IGF) conditions. For example, the insu-
lin resistance state affects different tissues in the two 
conditions (peripheral in IGT vs. hepatic in IGF) and 
only IGT subjects show a defect in late-phase insulin 
secretion in a non-pregnant population [34]. In addi-
tion, the two conditions affect different populations that 

Fig. 4 Venn diagram showing common CpGs between maternal AUC glu, fasting, 1 h and 2 h post‑OGTT glucose levels. All CpG sites shown in the 
Venn diagram were at least suggestively associated (P < 1.0 ×  10–5) with maternal glucose measurements. Cg00967989 is located at the FSD1L gene 
locus; cg12140144 and cg07946633 are located at the PRDM16 gene locus
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only partially overlap [35], suggesting likely variations 
in the impact of these complications on potential epi-
genetic adaptations. Of note, in our previous EWAS of 
maternal glycemic traits (PACE cohorts meta-analysis), 
we did not find cord blood DNAm variations that were 
robustly associated with maternal fasting glucose, while 
we identified a few CpG sites at which cord blood DNAm 
was associated with AUCglu and other glycemic indi-
ces measured during pregnancy [15]. We identified one 
CpG site (cg00967989), located in the promotor region 
of FSD1L, at which higher maternal AUC glu was signifi-
cantly associated with lower values of DNAm at birth and 
in childhood (after Bonferroni correction for multiple 
testing). This association was also confirmed with mater-
nal 1 h-glucose and the 2 h-glucose post-OGTT (with a 
less stringent P-value threshold). Our study also reported 
other CpG sites for which offspring blood DNAm levels 
were suggestively associated (P-value <  10–5) with mater-
nal AUC glu. Interestingly, two of these were found in the 
promotor region of PRDM16 with the same direction 
of association. We also observed nominal associations 
between maternal AUC glu and offspring DNAm at indi-
vidual time-points (cord blood DNAm and blood DNAm 
at 5 years of age).

The FSD1L gene is located on chromosome 9 and 
encodes for type 2 cystatins. Among other functions, cys-
tatins regulate the activity of endogenous cysteine pro-
teinases which are involved in tumor cell invasion and 
metastasis [36] potentially via angiogenic properties of 
FSD1L [37]. Genome-wide association studies (GWAS) 
also reported significant associations between SNPs near 
its location and age at menarche in females [38], as well as 
early reproductive traits contributing to fertility in female 
cattle [39]. However, the exact role of FSD1L in humans 
has not been clearly established yet. Thus, although our 
results might support its implication in metabolic health 
programming in the context of prenatal exposure to ges-
tational hyperglycemia, further studies will be needed to 
better understand the exact role of FSD1L in this context.

Our results also suggest lower blood DNAm levels in 
PRDM16 promotor at birth and 5 years in the offspring as 
a response to elevated gestational glycemia. This result at 
PRDM16 is consistent in the direction of association with 
findings by Côté, Gagné-Ouellet et al. who also reported 
inverse correlations between lower PRDM16 DNAm lev-
els in the placenta of newborns and higher maternal gly-
cemia [40]. The PRDM16 gene is located on chromosome 
1 and encodes for one of the 17 PRDM protein family 
members. These proteins contain a PR domain involved 
in the regulation of transcriptional activity mediated by 
chromatin histone modifications [41]. PRDM16 is a tran-
scription factor primarily involved in brown adipose tis-
sue (BAT) differentiation and the transition from white 

adipose tissue (WAT) to beige adipose tissue (iBAT) [42]. 
The BAT is enriched in mitochondria whose inner mem-
brane expresses the uncoupling protein 1 (UCP1). UCP1 
allows protons to leak across the mitochondrial mem-
brane, which leads to an increase in heat production at 
the expense of oxidative phosphorylation and adenosine 
triphosphate (ATP) production [43]. Consistently, BAT 
and iBAT have been positively associated with leanness 
and metabolic health in human adults [44]. More spe-
cifically, PRDM16 induces the expression of peroxisome 
proliferator-activated receptor-y (PPAR-y) and PPAR-y 
coactivator-1α (PGC-1α) with which it forms a complex 
that regulates the expression of genes associated with 
lipid catabolism and thermogenesis [45]. Dysregulation 
of DNAm and gene expression of PGC-1α was observed 
in the placenta of GDM-exposed participants [46]. Stud-
ies involving different polymorphisms of PRDM16 have 
also shown significant correlations between genetic 
variants of the gene and the development of obesity in 
humans [47, 48]. Moreover, Lui et al. [49] demonstrated 
lower DNAm levels in the promotor region of PRDM16, 
measured in omental adipose tissue (OAT) in individu-
als with obesity compared with normal-weight subjects, 
suggesting a role for epigenetic regulation of PRDM16 
in fat mass redistribution of peripheral iBAT to OAT in 
obesity. However, our findings are based solely on blood 
DNAm, which may reflect variations in DNAm in other 
tissues exposed similarly during in utero environmental 
factors, but we could not biopsy various tissues in healthy 
newborns for ethical reasons.

Even though computationally intensive, the use of mul-
tilevel modeling to analyze trends in DNAm variation is 
a better strategy to understand the biological relevance 
of methylation changes over time, versus analyzing their 
variation at each time-point separately [50]. In our analy-
sis, we identified one signal at FS1DL with epigenome-
wide significance in the longitudinal analysis and in the 
analysis of blood DNAm at 5 years. With few exceptions, 
most of the top signals detected in the longitudinal analy-
sis showed a higher level of statistical significance in this 
versus the time-point specific analysis, with consistent 
association estimates observed across analyses. These 
findings support the advantage of using multilevel mod-
eling over the single time-point analysis to capture CpGs 
with a time-varying association with the exposure, in this 
case, maternal hyperglycemia in mid-pregnancy. To our 
knowledge, this is the first study that has used a longitu-
dinal approach to investigate changes in offspring DNAm 
associated with maternal hyperglycemia. Previous studies 
have looked at associations between cord blood DNAm 
in relation to elevated maternal AUC glu or individual 
glucose traits measured after an OGTT in pregnancy 
and have followed up these findings by investigating the 
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cross-sectional association of important baseline markers 
with cardiometabolic phenotypes in infants and adults 
[15]. Similarly, the metabolic risk of infants exposed to 
GDM has been assessed in early childhood (3–10  years 
of age), identifying epigenetic age acceleration in those 
born to moms with GDM, which was further associated 
with cardiometabolic risk factors [51]. Future prospective 
studies including larger sample sizes and multiple time-
points over the life course are warranted to investigate 
variation in offspring DNAm in response to maternal 
hyperglycemia in pregnancy and to evaluate the implica-
tion of these markers in the offspring’s future health.

Strengths and limitations
A strength of our study is the prospective cohort 
design, which allowed collection of samples to evaluate 
DNAm levels longitudinally from birth to mid-child-
hood, and their association with maternal glycemia 
objectively measured during a full 75 g-OGTT in preg-
nancy. In addition, we measured DNAm using the 
Illumina MethylationEPIC microarray which provides 
a coverage of more than 850,000 CpG sites across the 
human genome. Some limitations are also noteworthy 
to mention. One CpG site was significantly associated 
based on a predetermined statistical threshold after 
correction for multiple testing; however, other find-
ings with suggestive or nominal significance should 
be interpreted with caution. We investigated DNAm 
using blood cells; other tissues (liver, beta-cells, adi-
pose, and brain) might be of more relevance for stud-
ies of metabolic epigenetic programming related to 
exposure to maternal hyperglycemia but these tissues 
are not easily available in healthy children for obvi-
ous ethical reasons. We have excluded participants 
with pre-existing diabetes prior to pregnancy, but 9% 
of our included population did develop GDM, which 
may account partially for the observed associations; 
however, in the past, we have showed that associa-
tions between maternal glycemic traits and offspring 
DNAm markers were stronger in non-GDM partici-
pants [15]. Our sample size of participants who had 
DNAm measurements at both time-points (birth and 
5 years) was relatively small (N = 194). For this reason, 
we chose a statistical model (LMM) that combines the 
two time of measurements, which improves power to 
detect associations. However, we cannot exclude that 
other associations with smaller effect sizes were not 
detected. Finally, our study only included participants 
of European descent, which limits the application of 
our results to other races and ethnicities.

Conclusions
We found associations between maternal hyperglycemia 
in pregnancy and offspring blood DNAm levels meas-
ured at birth and at 5 years. The association was signifi-
cant after accounting for multiple testing at a CpG site 
near the FSD1L gene. Notably, our study also reports two 
CpG sites, located in the promotor region of PRMD16—a 
gene implicated in adipose tissue regulation, and that we 
had previously observed associations between maternal 
hyperglycemia and placenta DNAm. We also confirmed 
some of our suggestive associations with other mater-
nal glycemic traits, predominantly with 1 h-glucose and 
2  h-glucose post-OGTT. Overall, our study provides 
results supporting that maternal hyperglycemia might be 
implicated in offspring epigenetic programming which 
may last until 5 years after birth.
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