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Abstract 

Hematopoietic stem and progenitor cells (HSPCs) are quantified in daily clinical practice by flow cytometry. In this 
study, we provide proof of concept that HSPCs can also be estimated by targeted DNA methylation (DNAm) analysis. 
The DNAm levels at three individual CG dinucleotides (CpG sites) in the genes MYO1D, STK17A, and SP140 correlated 
with CD34+ cell numbers in mobilized peripheral blood and with blast counts in leukemia. In the future, such epige-
netic biomarkers can support the evaluation of stem cell mobilization, HSPC harvesting, or blast count in leukemia.
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Introduction
Monitoring of hematopoietic stem and progenitor cells 
(HSPCs) is crucial to determine the efficiency of HSPC 
mobilization for stem cell apheresis in clinical routine. 
These cells are usually determined by flow cytometry 
based on the cell surface marker CD34 [1]. For more 
detailed quantification of early hematopoietic progeni-
tors, such as primitive hematopoietic stem cells (HSCs), 
lymphoid-primed multipotent progenitors (LMPPs), or 
common myeloid progenitors (CMPs), additional sur-
face markers and the absence of lineage-specific markers 

can be utilized [2]. However, immunophenotypic analysis 
necessitates fresh blood samples, and measuring of mul-
tiple surface markers is labor-intensive and costly.

The composition of cells in tissue can also be estimated 
based on epigenetic parameters [3]. DNA methylation 
(DNAm) is a reversible modification of cytosine resi-
dues particularly at CG dinucleotides (CpG sites). Epige-
netic signatures based on hundreds of CpGs have been 
used for deconvolution of leukocyte subsets [4]. The first 
predictors were generated and applied on Illumina Bead 
Chip Microarray datasets—initially on the 450k platform 
[4] and more recently on the human EPIC 850k Bead 
Chip [5]. Furthermore, multi-CpG signatures have been 
adjusted to better discern additional and non-hemat-
opoietic cell types [6]. We have previously demonstrated 
that even targeted analysis of individual cell-type specific 
CpG sites can be used to estimate granulocytes, CD4 
T cells, CD8 T cells, B cells, NK cells, and monocytes 
[7, 8]. However, so far epigenetic biomarkers have not 
been established for HSPCs. We have therefore revisited 
DNAm profiles of sorted subsets from peripheral blood 
to identify CpG sites that might provide reliable biomark-
ers for HSPCs.
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Methods
Selection of cell‑type specific CpGs
To identify CpG sites specific for HSPCs, HSCs, LMPPs, 
and CMPs, we compared 450k Illumina Bead Chip 
Microarray data from sorted cell types, available on Gene 
Expression Omnibus (GEO). A detailed description of 
the datasets and the analysis is provided in Additional 
file  1: Methods. In short, raw data processed with R. 
DNAm (β-values) were normalized with ssNoob and the 
candidate CpGs were identified based on two parameters 
as described before [7, 8]: (1) high difference in mean 
DNAm levels (β-values) between HSPCs versus all other 
cell types and (2) low variation of β-values within each of 
these two groups. We arbitrarily selected the most rel-
evant CpGs according to both parameters, taking cor-
responding gene functions into account as well. DNAm 
of candidate CpGs was further investigated on 301 inde-
pendent DNAm profiles of 42 different studies (Addi-
tional file 1: Table S1).

Blood samples
Peripheral blood samples from healthy donors (PB, n = 8), 
PB from patients with hematologic diseases (n = 39; par-
ticularly acute myeloid leukemia), cord blood (CB, n = 5), 
mobilized peripheral blood (mPB, n = 9), and stem cell 
apheresis product (n = 6) were collected after informed 
and written consent according to guidelines specifically 
approved by the local ethics committee of the RWTH 
Aachen University (EK206/09, EK099/14).

Pyrosequencing
Genomic DNA was isolated using QIAamp DNA Mini 
Kit (Qiagen) or NucleoSpin Tissue XS (Macherey Nagel) 
and subsequently bisulfite-converted using EZ DNA 
Methylation Kit (Zymo research). Bisulfite-converted 
DNA (10–20 ng) was amplified using PyroMark PCR Kit 
(Qiagen) with primers designed with PyroMark Assay 
Design 2.0 software (Qiagen) and purchased at Meta-
bion (Additional file  1: Table  S2). PCR amplicons were 
sequenced on a PyroMark Q96 ID (Qiagen), and all 
measurements are provided in Additional file 2: Table S3.

Further information on CD34+ cell sorting, colony 
forming unit assays, DNA isolation, pyrosequencing, 
models for the cellular deconvolution, and gene expres-
sion analysis is provided in Additional file 1: Methods.

Results and discussion
To select individual CpGs that discriminate between 
HSPCs and other cell types, we used profiles of CD34+ 
cells from mobilized peripheral blood (mPB) and of puri-
fied leukocyte subsets. Cell-type specific CpGs were 
identified as described before [7, 8], and most of these 
were hypermethylated in HSPCs. We selected three 

candidate CpGs that were located within the genes ser-
ine/threonine kinase 17a (STK17A, cg17707057), myo-
sin ID (MYO1D, cg00164282), and SP140 nuclear body 
protein (SP140; cg17607231) (Fig. 1A). These CpGs were 
either localized in the gene body (SKT17A, MYO1D) or 
in the promoter region of corresponding genes (SP140; 
Additional file  1: Fig. S1). To further validate that the 
CpGs can discern HSPCs from other cell types, we com-
piled a dataset of 301 DNAm profiles (Additional file 1: 
Table S1). In fact, all three CpGs were consistently meth-
ylated across various subsets of HSPCs, while they were 
hypomethylated in mature leukocytes of all lineages. 
Notably, the HSPC-associated CpGs were also meth-
ylated in other non-hematopoietic cell types, such as 
fibroblasts, endothelial cells, and epithelial cells (Fig. 1B). 
Thus, the three candidate CpGs are not specifically meth-
ylated in HSPCs, but rather specifically hypomethylated 
during hematopoietic differentiation.

To assess whether these three CpG sites can be used 
for targeted deconvolution of HSPC fractions, we created 
artificial mixtures of CD34+ and CD34− cells, derived 
from cord blood (CB, n = 2), and mobilized peripheral 
blood (mPB; n = 3). Pyrosequencing essays were estab-
lished and tested on DNA isolated from these artifi-
cial mixes. Overall, the DNAm levels at the three CpGs 
were higher in CD34+ cells from mPB as compared to 
CB, which might be attributed to epigenetic differences 
between fetal and adult hematopoiesis (Fig. 1C). Despite 
this difference, DNAm levels in dilutions of all donor 
samples revealed a high correlation with CD34+ counts 
determined by flow cytometric measurements, further 
substantiating that the three candidate CpGs can be 
indicative for HSPC fractions.

To estimate HSPC fractions, we trained a three CpG 
multivariable model based on the dilution measure-
ments for either mPB or CB. The CB model was initially 
tested on cryopreserved cord blood samples (n = 5), and 
the mPB model was tested on peripheral blood (n = 11), 
CD34+-enriched cells from bone marrow (n = 5), mobi-
lized peripheral blood (n = 7), and stem cell apheresis 
products (n = 6; Fig.  1D). As expected, HSPCs were not 
predicted in non-mobilized blood, and the highest num-
ber of HSPCs was estimated in CD34+-enriched cells 
from bone marrow. Furthermore, predictions correlated 
with flow cytometric analysis of CD34+ counts in mPB 
(n = 9; r = 0.95, albeit the HSPC numbers were overesti-
mated and correlation is particularly driven by one lev-
erage point (Fig.  1E)). We have also tested our HSPC 
predictor on colony forming units (CFUs) derived from 
clonogenic HSPCs. CFUs consistently revealed high pre-
dictions for HSPCs (Fig.  1F). This might be expected, 
given that CFUs are used as surrogate assay for HSPCs. 
Next, we tested whether the HSPC predictor might also 
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Fig. 1  Epigenetic biomarker for hematopoietic stem and progenitor cells. A Candidate CpG sites to discriminate HSPCs (GSE72867) from other 
leukocytes (GSE35069) were selected based on the difference in mean DNAm levels (β-value) and variation of β-values within these two groups. 
B DNAm levels of the three candidate CpGs are depicted in independent DNAm profiles (n = 301) of 42 studies (Additional file 1: Table S1). C 
DNAm levels at the three relevant CpGs in the genes MYO1D, STK17A, and SP140 were analyzed with pyrosequencing in dilutions of CD34+ HSPCs 
from mobilized peripheral blood (mPB, n = 2) and cord blood (CB, n = 3), measured with flow cytometry. D Multivariable models for the three CpGs 
were trained on the dilution data for mPB or CB. These models were then applied to estimate the fraction of HSPCs in different types of frozen 
samples (mPB model for PB, mPB, CD34+ BM cells, and apheresis samples; CB model for CB). E Estimates of HSPC counts based on the mPB 
multivariable model were compared to flow cytometric CD34 measurements in mPB (n = 9). F The CB HSPC predictor was applied to individual 
colonies in colony forming units (CFUs). G Correlation of DNAm at the CpG in MYO1D (cg00164282) with manual counts of blasts in leukemic 
samples (n = 39). Correlations were assessed by Pearson correlation coefficient r
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reflect leukemic blast counts, which also often express 
the CD34 antigen and derive from HSPC-related cell 
types. We found that particularly the DNAm levels at 
MYO1D showed a high correlation with blast counts 
(n = 39; r = 0.97; Fig.  1G). Blast counts also correlated 
with DNAm at STK17A (r = 0.92) and to a lesser extent at 
SP140 (r = 0.62; Additional file 1: Fig. S2A). Yet, our pre-
dictors for HSPCs in blood revealed offsets for estimating 
absolute blast counts (Additional file 1: Fig. S2B). Either 
way, these results indicate that such epigenetic analysis 
may also support the evaluation of blast counts, espe-
cially if driver mutations are not available to determine 
blast burden more precisely.

There are lineage-specific DNAm differences between 
the small fraction of hematopoietic stem cells, myeloid 
progenitors, and lymphoid progenitors [2, 9]. Thus, we 
investigated whether even subsets of HSPCs might be 
discerned based on DNAm of individual CpGs. To this 
end, we used 450k DNAm profiles of CMPs, LMPPs, and 
HSCs (Additional file  1: Fig. S3) [2]. For each of these 
subsets, we selected three hypo- and three hyper-meth-
ylated candidate CpGs in comparison with the other two 
HSPC subsets and leukocyte subsets (Fig.  2A). MYO1D 
and STK17A were again within the top 18 candidate 
CpGs (Additional file  1: Table  S4 and Additional file  3: 
Table S5). Notably, many of the corresponding genes have 

Fig. 2  DNA methylation in subsets of hematopoietic progenitor cells. A Candidate CpGs were selected for hematopoietic stem cells (HSCs), 
lymphoid-primed multipotent progenitor (LMPPs), and common myeloid progenitor cells (CMPs). The selection is based on (1) difference of mean 
β-value in DNAm profiles of these progenitor subsets (GSE63409) in comparison with all other subsets and leukocytes (GSE35069) and (2) variance 
of β-values within these groups. Three hypo- (blue) and three hypermethylated CpGs (red) were depicted for each subset. B Gene expression 
profiles were compared in HSPCs versus leukocytes (GSE24759), and 12 of the 18 selected CpGs were significantly differentially expressed (adjusted 
P value < 0.05). C Heatmap depicts DNAm (β-values) for 18 CpGs (GSE63409, GSE35069). D Estimation of HSPC subsets based on a non-negative 
least square model (NNLS model) for 6 CpGs in different types of cryopreserved blood samples. E Pearson correlation of DNAm levels 
in pyrosequencing with CD34 counts in mPB (HSPCs, flow cytometry, n = 9) and leukemic blasts (manual counts, n = 39)
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previously been shown to be higher expressed in primi-
tive hematopoietic stem cells, including HOXB3, MEIS1, 
CD48, and hepatic leukemia factor (HLF) [10]. In fact, 
HLF seems to be a key regulator of earliest lineage com-
mitment at the transition from multipotency to lineage-
restricted progeny [11]. When we analyzed differential 
gene expression in HSPCs versus leukocytes (GSE24759) 
we found that 12 of the 18 genes were significantly differ-
entially expressed (adjusted P value < 0.05; Fig. 2B). Thus, 
the selected candidate CpGs overall seem to be related to 
functionally relevant genes. DNAm levels of all 18 CpGs 
were able to discern hematopoietic progenitor cells from 
leukocytes (Fig. 2C). We also observed clear DNAm dif-
ferences between LMPPs and CMPs. Yet, they were not 
clearly demarcated from DNAm patterns of HSCs. This 
suggests that hematopoietic differentiation is a con-
tinuum with no clearly defined intermediate states. Fur-
thermore, in contrast to the CpGs initially selected for 
CD34+-associated cells, the DNAm levels varied greatly 
in non-hematopoietic cell types (Additional file  1: Fig. 
S4).

Despite this limitation, we tried to estimate the 
composition of HSPCs based on targeted DNAm 
analysis with pyrosequencing. In order to reduce the 
labor-intensive work and costly analysis of all 18 CpG 
sites, we focused on six CpGs (one hypo- and one 
hypermethylated CpG for each HSPC subtype): HLF 
(cg08865625), STK17A (cg17707057), Bcl-2-modify-
ing factor (BMF, cg09749364), FTO alpha-ketoglu-
tarate-dependent dioxygenase (FTO, cg01986630), 
tescalcin (TESC, involved in myeloid differentiation, 
cg06768361), and MYO1D (cg00164282). For epigenetic 
predictions, a non-negative least square model (NNLS 
model) was trained on the mean DNAm data of the 
reference datasets for HSCs, LMPPs, CMPs, and leu-
kocytes (Additional file 4: Table S6) [8]. As there were 
no available DNAm profiles with known composition 
of the different HSPC subsets, we applied our NNLS 
model on the same PB, CB, BM-derived sorted CD34+ 
cells, mPB, and stem cell apheresis samples that we 
used for estimating total HSPCs (Fig. 2D). The sum of 
the estimated HSCs, LMPPs, and CMPs fractions was 
very similar to the total HSPC fraction we predicted 
with our multivariable HSPC model (Fig. 1D). When we 
tested this approach on individual CFUs, particularly 
CFU-GEMM and BFU-E were predicted to have higher 
fractions of progenitor cells (Additional file 1: Fig. S5). 
All of the six selected CpGs correlated with CD34+ 
counts in mPB (n = 9). Furthermore, all three hyper-
methylated CpGs had very high correlation with blast 
counts in leukemia samples (n = 39; STK17A r = 0.92; 

FTO r = 0.64; MYOD1 r = 0.96), whereas this was not 
observed for the hypomethylated CpGs (Fig.  2E). It is 
well known that aberrant DNAm exists in leukemia 
that varies extensively between different samples [12]. 
However, the correlation of our hypermethylated can-
didate CpGs with blast counts indicates that DNAm 
at these CpGs is affected to a lesser degree by disease 
entity or patient-specific variation.

Taken together, our study provides proof of principle 
that epigenetic measurements can reflect the fraction of 
HSPCs in blood. This approach may facilitate monitor-
ing of hematopoietic stem cell mobilization or measuring 
of HSPCs in a transplant. In contrast to flow cytometric 
measurements, DNAm analysis is also applicable to fro-
zen blood or dried blood spots, enabling retrospective 
analysis or self-assessment with a finger prick [7, 8]. The 
epigenetic biomarkers might even track numbers of leu-
kemic blasts. While the high correlations of our results 
with CD34 counts or blast counts are promising, further 
validation in larger cohorts is needed. Particularly for 
blast cells, which may vary extensively in their epigenetic 
makeup between different disease entities, larger cohorts 
should be considered that include specific types of leuke-
mia. We also like to note that a limitation of our study—
and of epigenetic deconvolution in general—is that, when 
analyzing bulk DNA, it may not be possible to reliably 
discern subsets that are present in very low quantities, 
such as HSPCs. Even when CpG sites have been identi-
fied with very high methylation differences in the cell 
type of interest, this will barely affect the overall meth-
ylation values of the bulk DNA. To tackle this, methods 
with very high precision and accuracy are required. In 
principle, multi-CpG signatures for Illumina Bead Chip 
data can provide additional controls for bisulfite conver-
sion, better correction for SNPs, and larger signatures 
may be more redundant and thus more stable. However, 
these microarrays can hardly be used for clinical diagnos-
tics since they are not accredited for diagnostic applica-
tion [13]. For clinical applications, site-specific DNAm 
analysis might therefore be more advantageous and the 
precision of this approach might be further improved 
in the future—for instance, by using digital droplet PCR 
(ddPCR) instead of pyrosequencing. Notably, several 
ddPCR machines are already approved for clinical appli-
cation, e.g., in Europe under the in vitro diagnostic medi-
cal device directive (IVDD) [13]. While it is currently 
unlikely that epigenetic quantification of HSPCs will 
replace the conventional methods, it could be useful to 
confirm measurements for stem cell mobilization, qual-
ity control of apheresis samples, and to estimate leukemic 
blasts in the future.
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