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Abstract 

Background  Chromatin regulators (CRs) are critical epigenetic modifiers and have been reported to play critical roles 
during the progression of various tumors, but their role in lung adenocarcinoma (LUAD) has not been comprehen-
sively studied.

Methods  Differential expression and univariate Cox regression analyses were conducted to identify the prognostic 
CRs. Consensus clustering was applied to classify the subtypes of LUAD based on prognostic CRs. LASSO-multivariate 
Cox regression method was used for construction of a prognostic signature and development of chromatin regulator-
related gene index (CRGI). The capacity of CRGI to distinguish survival was evaluated via Kaplan–Meier method in 
multiple datasets. Relationship between CRGI and tumor microenvironment (TME) was evaluated. Additionally, clinical 
variables and CRGI were incorporated to create a nomogram. The role of the prognostic gene NPAS2 in LUAD was 
elucidated via clinical samples validation and a series of in vitro and in vivo experiments.

Results  Two subtypes of LUAD were classified based on 46 prognostic CRs via consensus clustering which had sig-
nificantly different survival and TME. A prognostic signature consisting of six CRs (MOCS, PBK, CBX3, A1CF, NPAS2, and 
CTCFL) was developed and proved to be an effective survival predictor in multiple independent datasets. The prog-
nostic signature was also demonstrated to be an indicator of TME and sensitivity to immunotherapy and chemother-
apy. The nomogram was suggested to be a simple tool that can predict survival accurately. Clinical samples show that 
NPAS2 is highly expressed in LUAD tissues, and in vitro and in vivo experiments demonstrated that inhibition of NPAS2 
impeded malignant progression of LUAD cells.
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Conclusions  Our study comprehensively unveiled the functions of CRs in LUAD, developed a classifier to predict 
survival and response to treatments, and suggested that NPAS2 promoted LUAD progression for the first time.

Keywords  Lung adenocarcinoma, Chromatin regulator, Molecular subtype, Tumor microenvironment, NPAS2

Introduction
Lung cancer is one of the most frequently diagnosed can-
cers which is made up of diverse histological subtypes, 
with lung adenocarcinoma representing approximately 
54.7% of all lung cancer cases [1]. Despite the encourag-
ing progresses achieved in screening and treatment, the 
prognosis of patient with LUAD is not optimistic as only 
26.4% of LUAD individuals can survive 5 years or longer 
[1]. Application of predictive biomarkers can aid in strati-
fying patients with varying degrees of mortality risk. 
Poor survival of LUAD makes it necessary to discover 
more robust biomarkers to achieve individual treatment.

CRs consisting of DNA methylators, histone modi-
fiers, and chromatin remodelers can control epigenetic 
alteration which is one of the cancer hallmarks [2]. CRs 
are crucial modulators in a variety of biological processes 
such as energy metabolism and activation of T cells [3, 
4]. Dysregulation of CRs affects chromatin structure and 
expression of cancer-related genes, leading to changes 
in biological processes and malignant behaviors [2, 5]. 
Perturbation of CRs is common in various cancers, and 
mutation or aberrant expression of CRs was associated 
with outcome of malignancies [6]. For example, DNMT1 
which belongs to the family of DNA methyltransferases 
not only regulated stemness and tumorigenicity of liver 
cancer and breast cancer, but also predicted poor prog-
nosis of cervical cancer and breast cancer [7–9]. Another 
study has revealed that CRs served as a predictor of sur-
vival and therapeutic response in bladder cancer [10]. 
The above studies suggest that CRs possess great poten-
tial to be reliable predictors of prognosis.

In this study, we comprehensively analyzed expression 
of CRs in LUAD and identified the prognostic CRs to 
characterize molecular subtypes of LUAD. Additionally, 
we developed a prognostic predictor based on prognostic 
CRs to predict survival and TME for LUAD individuals. 
We also investigated the role of NPAS2 in progression of 
LUAD via a series of in vitro and in vivo experiments.

Materials and methods
Identification of prognostic CRs
Transcriptome, methylation data, and genome files of the 
LUAD samples were collected from The Cancer Genome 
Atlas (TCGA) database (https://​gdc-​portal.​nci.​nih.​gov/). 
Chromatin regulators (CRs) were collected from previ-
ous studies [2] (Additional file 1: Table S1). After removal 

of genes with low expression and data normalization, the 
differentially expressed CRs were identified by “edgeR” 
package based on the screening criteria of adjusted p 
value (FDR) < 0.05 and |log2 fold change (FC)|> 1.0. The 
differentially expressed CRs which had statistically sig-
nificant effect on survival in in univariate Cox regres-
sion analysis were considered prognostic CRs. Mutation 
landscape and copy number variations (CNV) of the CRs 
were assessed based on genome data of the TCGA-LUAD 
cohort.

Subtype characterization of LUAD
Expression data of GSE37745, GSE31210, and GSE50081 
were collected from the Gene Expression Omni-
bus (GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). After those without complete clinicopathologi-
cal information or followed up less than a month were 
removed, LUAD individuals from TCGA, GSE37745, 
and GSE31210 were merged into a large LUAD cohort 
which consisted of 800 samples. “SVA” package which 
used the ComBat function to remove both known 
batch effects and other potential latent sources of varia-
tion was applied in our study to remove the batch effect 
between the LUAD datasets [11]. We summarized the 
clinicopathological variables of all the LUAD samples 
in Additional file  2: Table  S2. The consensus clustering 
algorithm, an unsupervised  clustering  method, is able 
to detect potential groups of a dataset based on intrin-
sic characteristics, making it a popular data mining 
technique in cancer research [12]. In this study, consen-
sus clustering was executed by “ConsensusClusterPlus” 
package to characterize the subtypes of LUAD based on 
expression of prognostic CRs [13]. Principal component 
analysis (PCA) was carried out to confirm the capabil-
ity of the prognostic CRs in distinguishing the clusters 
identified in consensus clustering. Kaplan–Meier survival 
curves were created to test the prognostic value of the CR 
subtypes.

The relationship of CR‑related subtypes with methylation 
and TME
The chromatin regulators control epigenetic alteration 
including DNA methylation. The CpG sites with sig-
nificantly different methylation levels between the CR-
related subtypes were screened according to β value using 
“limma” package, and the cutoff criteria were FDR < 0.05. 
TME exerts tremendous influence in tumorigenesis and 
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is associated with prognosis of patients. The TME is 
mainly composed of stromal cells and immune cells. The 
abundance of immune cells, stromal cells, and tumor cells 
was quantified via Estimation of STromal and Immune 
cells in MAlignant Tumors using Expression data (ESTI-
MATE) method by “estimate” package. There are various 
subtypes of immune cells which fulfill different functions. 
Cell-type Identification By Estimating Relative Subsets 
Of RNA Transcripts (CIBERSORT) method was uti-
lized to calculate the abundance of the major subtypes 
of immune cells. Gene set variation analysis (GSVA) was 
executed to investigate which pathways differed between 
the two subtypes with FDR < 0.05 as screening criteria.

Construction of a CR‑associated signature
Further selection of prognostic CRs was carried out 
by Least Absolute Shrinkage and Selection Operator 
(LASSO) Cox regression analysis. Then, multivariate 
Cox regression analysis was used to construct a signature 
based on the CRs selected in LASSO method. CRGI was 
calculated via mRNA levels of CRs and corresponding 
coefficients identified in the multivariate Cox regression 
analysis, and the median value of CRGI was set as the 
division criterion to classify patients into high- and low-
CRGI groups. The relationship between the subtypes and 
CRGI groups was presented by Sankey diagram.

Validation of the prognostic signature
PCA was conducted in the TCGA cohort to confirm the 
capability of the CRs in the signature to discriminate 
between those with different CRGIs. The survival dif-
ference between the high- and low-CRGI groups was 
displayed by Kaplan–Meier survival curves. We also 
calculated the survival percentage of the high- and low-
CRGI groups and the distribution of CRGI between sur-
vivors and nonsurvivors. The exact effect of CRGI on 
survival was assessed by univariate and multivariate Cox 
regression analyses. The predictive capability of CRGI 
was inferred by receiver operating characteristic (ROC) 
curves. To further validate the prognostic value of CRGI, 
PCA and Kaplan–Meier survival analysis were carried 
out in GSE37745 and GSE31210.

TME patterns of the high‑ and low‑CRGI groups
As has been described above, ESTIMATE and CIBER-
SORT algorithms were run to investigate the patterns of 
TME in the high- and low-CRGI groups. Additionally, 
the correlation between CRGI and immune cells was also 
evaluated. Expression of immune checkpoint genes is 
associated with function of immune cells and therapeu-
tic response of immunotherapy. Thus, the relationship 
between the expression of immune checkpoint genes and 
CRGI was assessed.

Construction and assessment of a nomogram
Considering that clinicopathological variables are con-
tributing factors of survival, we developed a nomogram 
consisting of clinicopathological parameters and CRGI to 
improve the predictive precision of CRGI. Clinicians can 
use the points obtained from the nomogram to predict 
survival probability of patients. Calibration curves and 
ROC curves were generated, and C-index and area under 
the curve (AUC) were calculated to evaluate predictive 
capability of the nomogram, CRGI, and other clinical 
variables.

Relationship between CRGI and sensitivity to treatment
The sensitivity of the high- and low-CRGI groups to 
immunotherapy and chemotherapy which are effective 
treatments for LUAD individuals was also predicted. 
Response of the high- and low-CRGI groups to immuno-
therapy and chemotherapy was compared to figure out 
whether CRGI could be a tool for stratification of thera-
peutic benefits. Immunophenoscore (IPS) was developed 
based on expression of immune-related genes, which can 
predict response to CTLA-4 and PD-1 antibodies [14]. 
IPS was positively associated with efficacy to immuno-
therapy [14]. IPS of 20 solid cancers in the TCGA data-
base is provided in The Cancer Immunome Atlas (TCIA) 
(https://​tcia.​at/​home). We collected IPS of the TCGA-
LUAD cohort and compared IPS between the high- and 
low-CRGI groups. Chemotherapeutic agents such as cis-
platin and paclitaxel can achieve satisfactory efficacy in 
patients with LUAD. Half-maximal inhibitory concen-
tration (IC50) of chemotherapeutic agents was acquired 
using “pRRophetic” package to evaluate therapeutic ben-
efits of chemotherapy in the high- and low-CRGI groups.

Clinical specimens and immunohistochemistry (IHC)
We also collected lung adenocarcinoma tissues and 
paired normal lung tissues of 11 patients from Wuhan 
Tongji Hospital for IHC analysis. According to the manu-
facturer’s instructions, immunohistochemical staining of 
NPAS2 was conducted. The specific primary antibodies 
anti-NPAS2 (Invitrogen, PA5-98824) was used for IHC. 
The IHC scores of each patient were calculated to evalu-
ate the NPAS2 protein expression levels based on the 
staining intensity and quantity.

Cell culture and siRNA transfection
The human lung adenocarcinoma cell lines including 
PC-9, A549, HCC827, H1975 and the normal lung epi-
thelial cell line BEAS-2b were stored in the oncology 
laboratory of Tongji Hospital, Wuhan, China. All these 
cells were grown in RPMI-1640 medium containing 10% 
FBS (Gibco, USA) and maintained in the 37 °C incubator 

https://tcia.at/home
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with 5% CO2. The siRNA oligonucleotides (negative 
control siRNA and NPAS2 siRNA) were synthesized by 
GENERAL BIOL (Anhui, China), and siRNA transfection 
was carried out with Lipofectamine 3000 (Invitrogen, 
USA). The siRNA sequences were: si-NC, 5′-UUC​UCC​
GAA​CGU​GUC​ACG​UTT-3′ (Sense) and 5′-ACG​UGA​
CAC​GUU​CGG​AGA​ATT-3′ (Antisense); si-NPAS2#1, 
5′-CCU​CAG​CAC​UAA​AGG​ACA​ATT-3′ (Sense) and 
5′-UUG​UCC​UUU​AGU​GCU​GAG​GTT-3′ (Antisense); 
si-NPAS2#2, 5′-CCA​CCA​AGC​UGA​UGG​CAG​ATT-3′ 
(Sense) and 5′-UCU​GCC​AUC​AGC​UUG​GUG​GTT-3′ 
(Antisense).

Quantitative real‑time PCR (qRT‑PCR)
Total cell RNA was isolated using TRIzol reagent 
(TaKaRa, Japan) and transcribed to cDNA using the 
reverse transcription reagents (Vazyme, China). Then, 
the qRT-PCR was conducted with a Real-Time PCR Sys-
tem (Applied Biosystems 7900HT, USA). The relative 
expression levels of NPAS2 were calculated using the 
2−ΔΔCT method. The primer sequences were listed as fol-
lows: NPAS2-forward, 5′-CAC​AGA​GCA​CCT​CCA​ATC​
ATAG‑3′ and NPAS2-reverse, 5′-GTA​GCA​ACA​CGA​
CTT​CCC​TT‑3′; GAPDH-forward, 5′-GAC​AGT​CAG​
CCG​CAT​CTT​CT‑3′ and GAPDH-reverse, 5′-GCG​CCC​
AAT​ACG​ACC​AAA​TC‑3′.

Western blot
Western blot assay was conducted as previously 
described [15]. Briefly, the extracted protein samples 
were separated by SDS-PAGE and transferred to PVDF 
membranes. Next, the membranes were blocked using 
5% nonfat milk and incubated with specific primary anti-
bodies (GAPDH, 1:5000, 10494-1-AP, Proteintech and 
NPAS2, 1:1000, PA5-98824, Invitrogen). After incuba-
tion overnight at 4 °C, the membranes were washed and 
incubated with secondary antibodies (1:5000, SA00001-
2, Proteintech). Finally, the protein bands were detected 
with the ECL reagent by the G: BOX Chemi X system 
(Syngene, UK).

CCK8 assay
Two thousand to three thousand cells/well were plated 
into 96-well plates. After adherent, the cells were incu-
bated with 100 μl medium containing 10% CCK8 (Med-
Chem Express, USA) each well for 1–2  h at 37  °C. The 
absorbance (450  nm wavelength) was detected with a 
microplate reader (BioTek, Winooski, VT, USA). After 
culturing cells for another 24, 48, and 72 h, these opera-
tions were repeated.

EdU assay
Five thousand cells/well were plated into 96-well plates. 
After overnight attachment, different reagents were 
added successively according to the instructions of EdU 
kit (Meilunbio, China). The EdU-positive cells were 
detected using a fluorescence microscope (Leica).

Colony formation assay
Cells were seeded in 6-well plates (500 cells/well) and 
cultured for 10  days. Then, colonies were fixed (4% 
formaldehyde), stained (0.1% crystal violet), photo-
graphed, and counted.

Wound healing assay
Cells were plated into 12-well plates and cultured to con-
fluence. Then, cells were scratched with 200  μl pipette 
tips and cultured in medium containing 1% FBS. At 0 h 
and 48 h, wound closure was observed and micrographs 
were captured with an optical microscope (Nikon).

Transwell assays
Transwell assays were performed using the 24-well 
transwell chambers (8-μm pores, NEST Biotechnology). 
For invasion assay, the upper chambers were precoated 
with 50  μl diluted Matrigel (1:8) and maintained in 
37 °C incubator overnight. 50,000 cells in 200 μl serum-
free medium were placed into the upper chambers, and 
600  μl medium containing 20% FBS was placed into 
the lower chambers. After culture for another 24  h or 
48 h, the nonmigrated cells were removed using cotton 
swabs and the migratory cells across the aperture were 
fixed (4% paraformaldehyde), stained (0.1% crystal vio-
let), photographed, and counted.

Animal experiments
According to the target sequences of si-NC and si-
NPAS2#1, we constructed the shRNA lentivirus vectors 
and transfected into A549 cells with polybrene. The 
male BALB/c nude mice (five weeks old) were used to 
construct xenograft model by subcutaneously injecting 
NC and sh-NPAS2 A549 cells (5 × 106) into the right 
axilla of each mouse. The tumor volumes were meas-
ured with the formula: tumor volume (mm3) = 1/2 
(length × width2). At the experimental endpoint, the 
mice were killed, and the xenograft tumors were sepa-
rated and fixed for further IHC analyses. The primary 
antibodies were listed as follows: NPAS2 (Invitrogen, 
PA5-98824), Ki-67 (Abcam, ab15580).

Statistical analysis
The analyses performed in our study were exe-
cuted via R software (version 4.1.0) and GraphPad 
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8.0. Assessment of differences between two groups 
was made by the Wilcoxon test or Student’s t test. In 
Kaplan–Meier survival analysis, log-rank test was uti-
lized to compare the survival time of different groups. 
Correlation between numeric variables was identified 
by Spearman correlation analysis. p value < 0.05 was 
considered statistically significant.

Results
Identification of prognostic CRs
The workflow of this study is presented in Fig. 1. A total 
of 535 LUAD and 59 para-tumoral lung samples from 
TCGA were included in the differential expression anal-
ysis which identified 117 dysregulated CRs in LUAD, 
including 21 downregulated CRs and 96 upregulated 
CRs (Fig. 2A). Among all the dysregulated CRs, 46 CRs 
were identified as contributing factors of overall sur-
vival (Fig. 2B). Somatic mutations of the prognostic CRs 
occurred in 37.79% of the LUAD samples with PRDM9 
had the highest mutation frequencies (Fig.  2C). Addi-
tionally, CNV of the prognostic CRs can be observed in 
LUAD samples (Fig. 2D).

Characterization of LUAD subtypes based on prognostic 
CRs
A total of 800 LUAD samples were subjected to con-
sensus clustering based on expression of 46 CRs, and 2 

discrete subtypes were identified in consensus cluster-
ing (Fig.  3A). There are 318 cases in C1 and 482 cases 
in C2. PCA confirmed that prognostic CRs can separate 
C1 from C2 (Fig.  3B). Cluster 1 showed significant sur-
vival advantage over cluster 2 and had lower expression 
of most of the prognostic CRs than cluster 2 (Fig. 3C,  D). 
A total of 3827 differentially methylated sites were iden-
tified between the high- and low-CRGI groups, suggest-
ing that patients with different CRGI had different DNA 
methylation levels. The most significant sites in differ-
ential methylation analysis were displayed in heatmap 
(Additional file  3: Fig. S1). Cluster 1 had higher abun-
dance of stromal cells and immune cells and lower tumor 
purity than cluster 2 (Fig. 4A–D). Immune cell including 
plasma cells, monocytes, dendritic cells, and mast cells 
are more abundant in cluster 1 (Fig. 4E). Pathways such 
as bladder cancer, pancreatic cancer, and p53 signal-
ing pathway are activated in cluster 2, while asthma, cell 
adhesion molecules cams, complement, and coagulation 
cascades are activated in cluster 1 (Fig. 4F).

Construction of a signature based on CRs
Given that the prognostic CRs can distinguish LUAD 
individuals with favorable survival from those with poor 
survival, we constructed a signature based on prognos-
tic CRs to predict survival for patients with LUAD. A 
signature made up of 6 prognostic CRs (MOCS, PBK, 

Fig. 1  Workflow of this study
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CBX3, A1CF, NPAS2, and CTCFL) was developed by 
stepwise LASSO and multivariate Cox regression analy-
ses (Additional file 4: Fig. S2A–C). Among the CRs in the 

signature, MOCS1 was tumor suppressor gene affecting 
survival positively, while the other genes were oncogenes 
whose high expression was associated with poor survival 

Fig. 2  Expression and genome landscape of prognostic CRs. A Expression of differentially expressed CRs between LUAD and peritumoral tissues. 
B Forest plot showing effect of 46 prognostic CRs on survival. C Somatic mutation landscape of 46 prognostic CRs. D CNV frequencies of 46 
prognostic CRs
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(Additional file  4: Fig. S2C). CRGI was computed using 
expression level of CRs and coefficients in the signature, 
and LUAD samples were classified into high-CRGI group 
and low-CRGI group (Additional file 5: Table S3). Most 
of the patients in the cluster 1 were classified into the 
low-CRGI group, and the low-CRGI group accounted for 
a high percentage of the living patients (Additional file 4: 
Fig. S2D), corresponding to the results that cluster 1 had 
lower CRGI than cluster 2 (Additional file 4: Fig. S2E).

Validation of the prognostic signature
Multiple analyses were conducted in the TCGA-LUAD 
dataset to show the prognostic value of CRGI. The high-
CRGI group can be separated from the low-CRGI group 
by the expression of the CRs in the signature (Fig.  5A). 

Increased CRGI can be observed in nonsurvivors com-
pared with survivors (p < 0.001) (Fig.  5B). Furthermore, 
CRGI is a risk factor of survival whose effect on survival 
is independent of the clinicopathological variables [haz-
ard ratio (HR) = 1.641, 95% confidence interval (CI): 
1.467–1.836, p < 0.001] (Fig. 5C, D). The AUCs at 1, 3, and 
5 years were 0.740, 0.692, and 0.690, respectively (Fig. 5E). 
The prognostic value of CRGI was further examined in 
GSE37745 and GSE31210. Low CRGI was associated 
with survival advantage in both GSE37745 (p < 0.001) and 
GSE31210 (p = 0.0076) (Additional file  6: Fig. S3A, B). 
Different expression patterns of the CRs in the signature 
can be observed between the high- and low-CRGI groups 
in both GSE37745 and GSE31210 (Additional file 6: Fig. 
S3C, D). Cell cycle is fundamental biological process, and 

Fig. 3  Identification of two subtypes of LUAD. A Two subtypes identified by consensus clustering. B PCA plot showing distribution of the two 
subtypes based on 46 prognostic CRs. C Survival difference between the two subtypes. D Differential expression of 46 prognostic CRs between two 
subtypes
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Fig. 4  TME patterns and related-pathways of the two subtypes. A–D Differences in ESTIMATE score, tumor purity, immune score, and stromal 
score between the two subtypes. E Differences in immune cell subtypes between the two subtypes. F Differences in pathways between the two 
subtypes
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cell cycle-related genes are significant contributing factor 
of prognosis of patients with cancer [16, 17]. Some CRs in 
our model have been reported to be involved in cell cycle 
including PBK [18], CBX3 [19–21], and NPAS2 [22]. To 
clarify whether the prognostic value of CRGI depended 
on cell cycle-related genes, we removed these genes and 
re-validate the prognostic value of CRGI. Analyses of 
survival and TME suggested that CRGI was still a predic-
tor of outcome and immune infiltration (Additional files 
7 and 8: Figs. S4, S5).

Differences in TME between the high‑ and low‑CRGI groups
Compared those with the high CRGI, LUAD samples 
with low CRGI had higher abundance of immune cells 

and stromal cells (Fig. 6A). Additionally, CRGI was nega-
tively associated with immune cells such as the mast cells, 
eosinophils, activated NK cells, monocytes, and CD4+ 
memory cells and positively associated with neutrophils 
and macrophages (Fig.  6B). The CRs in the prognostic 
signature were also correlated with immune infiltration 
(Fig.  6B). Differential expression of immune checkpoint 
genes such as PD-L1, LAMA3, IFNG, GZMB, and CD28 
can be observed between the high- and low-CRGI groups 
(Fig. 6C).

Construction and validation of a nomogram
A nomogram which consisted of CRGI and clinico-
pathological variables was constructed and validated in 

Fig. 5  The prognostic value of CRGI in the TCGA dataset. A PCA plot showing distribution of the high- and low-CRGI groups. B Survival difference 
between the high- and low-CRGI groups. C Univariate Cox regression of CRGI and clinicopathological variables. D Multivariate Cox regression of 
CRGI and clinicopathological variables. E ROC curves of CRGI in survival prediction
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TCGA, GSE37745, GSE31210, and GSE50081 (Fig. 7A). 
The high consistency between predicted survival and 
actual survival was presented via the calibration curves 
(Fig.  7B–E). The results of C-index illustrated that the 
predictive accuracy of CRGI and clinicopathologi-
cal parameters was enhanced by incorporating them 
into a nomogram (Fig.  7B–E). High accuracy of the 
nomogram was also observed from the ROC curves, 

indicating that the nomogram is a reliable tool for sur-
vival prediction (Fig. 7B–E).

CRGI was associated with response to antitumor treatment
The low-CRGI group showed higher IPS which repre-
sents immunogenicity in “CTLA4− PD1−” (p < 0.001), 
“CTLA4− PD1+” (p = 0.025), “CTLA4+ PD1−” (p < 0.001), 
and “CTLA4+ PD1+” (p = 0.025) groups (Additional file 9: 

Fig. 6  Correlation between CRGI and TME. A Differences in ESTIMATE score, tumor purity, immune score, and stromal score between high- and 
low-CRGI groups. B Correlation between CRGI and infiltration of immune cells. C Differences in expression of immune checkpoint between 
high- and low-CRGI groups
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Fig. 7  Development and validation of a nomogram. A Nomogram based on CRGI and clinicopathological parameters. B Calibration curves, 
C-index, and ROC curves of the nomogram in survival prediction in the TCGA. C Calibration curves, C-index, and ROC curves of the nomogram in 
survival prediction in GSE37745. D Calibration curves, C-index, and ROC curves of the nomogram in survival prediction in GSE31210. E Calibration 
curves, C-index, and ROC curves of the nomogram in survival prediction in GSE50081
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Fig. S6A), indicating that better efficacy of anti-CTLA-4 
treatment and anti-PD-1 treatment may be achieved in 
the low-CRGI group. IC50 values of docetaxel, paclitaxel, 
and cisplatin are lower in the high-CRGI group com-
pared with the low-CRGI group (p < 0.001) (Additional 
file 9: Fig. S6B), which suggests that the high-CRGI group 
are more sensitive to these chemotherapeutic agents. 
CRGI is not only a survival predictor but also a stratifica-
tion tool for making optimal treatment.

NPAS2 is highly expressed and predicts poor prognosis 
in LUAD
NPAS2 is the most significant contributing factor of sur-
vival in multivariate Cox regression analysis among all 
the signature genes. Therefore, we further investigated 
the mRNA expression levels and prognostic values of 
NPAS2 and found that NPAS2 is upregulated in LUAD 
tissues compared to normal lung tissues and predicts 
shorter OS (Fig.  8A–E). Furthermore, we also validated 
the high expression of NPAS2 in LUAD at protein lev-
els by using own clinical samples based on IHC staining 
(Fig. 8F, G).

Knockdown of NPAS2 dampened malignant behaviors 
of LUAD cells
The oncogenic properties of NPAS2 have been demon-
strated in various cancers like hepatocellular carcinoma 
and thyroid carcinoma, but the role of NPAS2 in LUAD 
remains unexplored. In this study, we first investigated 
the mRNA expression of NPAS2 in BEAS-2b, a normal 
lung epithelial cell line, and four LUAD cell lines (A549, 
PC-9, HCC827, and H1975) via qRT-PCR, indicating 
that NPAS2 expression was significantly elevated in all 
LUAD cells compared with BEAS-2b (Fig.  9A). Due to 
the highest expression of NPAS2 in A549 and PC-9 cells, 
they were selected for further experiments with siRNA 
knocking down. The mRNA and protein level of NPAS2 
was remarkably suppressed by si-NPAS2#1 and si-
NPAS2#2 in both A549 and PC-9 cells (Fig. 9B–D). The 
effect of NPAS2 on LUAD cells proliferation was evalu-
ated by CCK8, EdU, and colony formation assays. The 
CCK8 assays indicated that NPAS2 knockdown impaired 
cell viability of A549 and PC-9 cells (Fig. 9E, F), and the 
results of EdU assay showed that inhibiting NPAS2 dra-
matically reduced the proportion of EdU-positive cells 
(Fig.  9G, H). Additionally, colony formation ability of 
LUAD cells was remarkably attenuated after NPAS2 
loss (Fig. 9I, J). Collectively, these results suggested that 
NPAS2 knockdown dramatically suppressed LUAD cells 
proliferation in vitro.

Next, to assess the effect of inhibiting NPAS2 on migra-
tion and invasion, wound healing and transwell assays 
were conducted in vitro. In wound healing assays, A549 

and PC-9 cells with NPAS2 suppressed migrated more 
slowly compared to the control group (Fig. 10A, B). Addi-
tionally, the A549 and PC-9 cells with NPAS2 knock-
down exhibited weaker migration and invasive abilities 
in transwell assays (Fig.  10C–F). All the above results 
suggest that NPAS2 is a cancer driver gene in LUAD, and 
that inhibition of NPAS2 suppresses malignant progres-
sion of LUAD cells.

NPAS2 knockdown suppresses tumor growth of LUAD in vivo
To further determine the oncogenic role of NPAS2 in 
LUAD in  vivo, we construct xenograft model by sub-
cutaneously injecting NC and sh-NPAS2 A549 cells 
in BALB/c nude mice. As we expected, we found that 
NPAS2 knockdown significantly inhibited tumor growth, 
and the tumor volume and weight of the NPAS2 knock-
down group were notably smaller than the NC group 
(Fig.  11A–C). Further IHC staining confirmed that 
NPAS2 was down-expressing in the tumor tissues of 
NPAS2 knockdown group. Besides, the Ki-67 expression 
level was also significantly less than NC group (Fig. 11D, 
E). Collectively, these results demonstrated that NPAS2 
could promote tumor growth of LUAD in vivo and func-
tion as an oncogene of LUAD.

Discussion
High malignancy and poor outcome of LUAD make it 
necessary to explore more robust prognostic indica-
tors. Chromatin regulators are key molecules that affect 
numerous biological processes and malignant progres-
sion. In this study, we characterized two subtypes of 
LUAD based on expression of CRs which had signifi-
cantly different prognosis and TME. Compared with the 
cluster 2, the cluster 1 had better survival, lower tumor 
purity, and higher infiltration degree of immune cells. 
Considering the prognostic value of CR subtypes, we 
construct a CR-based indicator to predict survival and 
TME for LUAD individuals.

Six key CRs were selected to develop a signature which 
was used to calculate CRGI. The survival probability of 
LUAD individuals decreased with the increase in CRGI 
in multiple LUAD datasets, suggesting that CRGI is a 
remarkable risk factor for patients with LUAD. The neg-
ative effect of CRGI on survival is independent of clin-
icopathological parameters, and the effect of CRGI on 
survival is more significant than the clinicopathologi-
cal parameters. Therefore, CRGI had the potential to be 
alternative or complement to clinical parameters.

All the genes in the signature were oncogenes except 
MOCS1 whose increased expression was associated with 
favorable prognosis. NPAS2 is a circadian clock gene and 
has been reported to be a crucial regulator of tumorigen-
esis and immune infiltration. NPAS2 was identified as an 
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oncogene in hepatocellular carcinoma and was related to 
infiltration of immune cells [23]. In accordance with our 
findings, increased expression of NPAS2 has been sug-
gested to indicate poor survival in lung cancer [24, 25]. 
NPAS2 was overexpressed in anaplastic thyroid carci-
noma and facilitated malignant progression [26]. The 

oncogenic properties of NPAS2 were associated with its 
role in promoting the Warburg effect [27]. In our study, 
NPAS2 was demonstrated to prompt malignant progres-
sion of LUAD via a series of in vitro experiments, which 
was consistent with the bioinformatic findings and pre-
cious studies. MOCS1 was essential for synthesis of 

Fig. 8  NPAS2 is overexpressed and associated with poor prognosis in LUAD. A–B The mRNA expression of NPAS2 in TCGA-LUAD and GSE31210 
datasets. C–E Kaplan–Meier curves of LUAD patients based on the optimal cutoff in TCGA-LUAD, GSE37745, and GSE31210 datasets. F–G 
Representative images of IHC staining of NPAS2 protein and the comparison of IHC score in normal lung and LUAD tissues
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Fig. 9  Knockdown of NPAS2 impeded proliferative activity of LUAD cells. A Expression of NPAS2 in BEAS-2b, A549, PC-9, HCC827, and H1975 
cells. B–D Efficacy of siRNAs in suppressing expression of NPAS2 in A549 and PC-9 cells. E–F OD values of A549 and PC-9 cells in CCK8 assay after 
knockdown of NPAS2. G–H Proliferative activity of A549 and PC-9 cells in EdU assay after knockdown of NPAS2. I–J Colony formation assay for A549 
and PC-9 cells after knockdown of NPAS2. *p < 0.05, ** p < 0.01, *** p < 0.001
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molybdenum cofactor, and gene mutation of MOCS1 was 
associated with molybdenum cofactor deficiency [28–
30]. Upregulation of MOCS1 was reported in patients 
with higher arterial stiffness [31]. However, the role of 
MOCS1 in oncogenesis has not been studied. Our study 
identified the prognostic role of MOCS1 in lung cancer 
for the first time. A1CF, also known as APOBEC1 com-
plementation factor, regulates various cellular processes 
and exerts a carcinogenic role in renal cell carcinoma, 
endometrial cancer, and glioma through RNA editing 

function [32–34]. Inhibition of A1CF dampens the malig-
nant behaviors of cancer cell [32]. Although CTCFL is not 
expressed in normal tissues except testis and embryonic 
stem cells [35, 36], increased expression of CTCFL could 
be observed in various carcinomas and was correlated 
with malignant behaviors and drug resistance [37–40]. 
CTCFL can induce expression of oncogenes and promote 
oncogenic properties of carcinomas such as gastric can-
cer and ovarian cancer [41–43]. Upregulation of CTCFL 
is required for resistance to ALK inhibition in cancer 

Fig. 10  Knockdown of NPAS2 impeded migration and invasion capacities of LUAD cells. A–B Migration ability of A549 and PC9 cells in wound 
healing assay after knockdown of NPAS2. C–F Migration and invasion abilities of A549 and PC-9 cells in transwell assays after knockdown of NPAS2. 
*p < 0.05, ** p < 0.01, *** p < 0.001
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cells via promoting chromatin interactions [37]. CTCFL 
can also serve as a promising target of immunotherapy to 
improve prognosis of breast cancer patients [44]. PBK is 
upregulated in hepatocellular carcinoma which is a risk 
factor of survival and associated with antitumor immu-
nity in hepatocellular carcinoma [45, 46]. Additionally, 
PBK promotes metastasis and resistance to oxaliplatin by 
regulating pathways such as ETV4-uPAR and PTEN in 
hepatocellular carcinoma [47, 48]. The prognostic value 
of PBK in prediction of survival and antitumor immunity 
was also proved in colorectal cancer [49–51]. Therefore, 
the prognostic CRs identified in our study also exert fun-
damental role in various cancers and have potential to be 
reliable survival predictor and therapeutic targets.

Clinicopathological variables are frequently used and 
effective parameters to predict prognosis of cancer in 
clinical practice. Therefore, CRGI and clinicopathologi-
cal variables were incorporated to establish a nomogram, 
and survival probability of patients with LUAD could be 
estimated accurately according to the points obtained 
in nomogram. The nomogram had the highest C-index 
among all the predictors, which demonstrates that 
combining CRGI and clinicopathological variable can 
improve predictive ability of single parameter and that 

the nomogram we established is a reliable and simple tool 
to predict survival.

CRGI was associated with components of TME, includ-
ing immune cell and stromal cell. Additionally, expression 
of immune checkpoint differs between LUAD samples 
with different CRGIs. The high-CRGI group had higher 
IPS than the low-CRGI group, suggesting that those with 
high CRGI are more suitable for immune checkpoint 
inhibitors. Although the low-CRGI group are more likely 
to respond to immunotherapy, the high-CRGI group are 
more sensitive to chemotherapy such as docetaxel, pacli-
taxel, and cisplatin since the high-CRGI group had higher 
IC50 values than the low-CRGI group. Thus, CRGI is 
not only a predictor of survival but also a useful tool for 
treatment selection for patients with LUAD.

In conclusion, this study characterized two CR-related 
subtypes of LUAD which had varying prognosis and 
TME. We also constructed a signature based on CRs 
which was used to calculate an index termed CRGI to 
predict survival, TME, and sensitivity to immunotherapy 
and chemotherapy for LUAD, contributing to making 
personal treatment plans for LUAD individuals. Addi-
tionally, a nomogram with high predictive accuracy was 
established as a simple tool for survival prediction in 

Fig. 11  Knockdown of NPAS2 inhibited the growth of A549 cells in vivo. A Gross appearance of tumor xenografts in NC and sh-NPAS2 groups. 
n = 5. B Tumor growth curve of two groups. C The tumor weights on day 24 of each group. D–E HE staining and IHC staining of NPAS2 and Ki-67 in 
the tumor tissues. *p < 0.05, **p < 0.01, ***p < 0.001
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LUAD. Our study aids in understanding CRs in LUAD 
and exploring novel prognostic predictor for patients 
with LUAD.
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