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Abstract 

Background Hypertension is a crucial risk factor for developing cardiovascular disease and reducing life expec-
tancy. We aimed to detect DNA methylation (DNAm) variants potentially related to systolic blood pressure (SBP) and 
diastolic blood pressure (DBP) by conducting epigenome-wide association studies in 60 and 59 Chinese monozygotic 
twin pairs, respectively.

Methods Genome-wide DNA methylation profiling in whole blood of twins was performed using Reduced Rep-
resentation Bisulfite Sequencing, yielding 551,447 raw CpGs. Association between DNAm of single CpG and blood 
pressure was tested by applying generalized estimation equation. Differentially methylated regions (DMRs) were 
identified by comb-P approach. Inference about Causation through Examination of Familial Confounding was utilized 
to perform the causal inference. Ontology enrichment analysis was performed using Genomic Regions Enrichment of 
Annotations Tool. Candidate CpGs were quantified using Sequenom MassARRAY platform in a community population. 
Weighted gene co-expression network analysis (WGCNA) was conducted using gene expression data.

Results The median age of twins was 52 years (95% range 40, 66). For SBP, 31 top CpGs (p < 1 ×  10–4) and 8 DMRs 
were identified, with several DMRs within NFATC1, CADM2, IRX1, COL5A1, and LRAT . For DBP, 43 top CpGs (p < 1 ×  10–4) 
and 12 DMRs were identified, with several DMRs within WNT3A, CNOT10, and DAB2IP. Important pathways, such 
as Notch signaling pathway, p53 pathway by glucose deprivation, and Wnt signaling pathway, were significantly 
enriched for SBP and DBP. Causal inference analysis suggested that DNAm at top CpGs within NDE1, MYH11, SRRM1P2, 
and SMPD4 influenced SBP, while SBP influenced DNAm at CpGs within TNK2. DNAm at top CpGs within WNT3A influ-
enced DBP, while DBP influenced DNAm at CpGs within GNA14. Three CpGs mapped to WNT3A and one CpG mapped 
to COL5A1 were validated in a community population, with a hypermethylated and hypomethylated direction in 
hypertension cases, respectively. Gene expression analysis by WGCNA further identified some common genes and 
enrichment terms.

Conclusion We detect many DNAm variants that may be associated with blood pressure in whole blood, particularly 
the loci within WNT3A and COL5A1. Our findings provide new clues to the epigenetic modification underlying hyper-
tension pathogenesis.
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Introduction
Hypertension is a chronic disease condition, and approx-
imately 90% of the cases are considered as essential 
hypertension without a definitive cause. The prevalence 
of hypertension is 28.9%, and the rates of treatment and 
control of hypertension are only 35.3% and 13.4% in 
China. Hypertension has been a considerable risk factor 
for developing cardiovascular disease and reducing life 
expectancy and has become a huge burden on the nation-
wide health system [1, 2].

As a complex phenotype, hypertension is controlled 
by both genetic and environmental factors through the 
interface of epigenetics. At present, the magnitude of 
genetic sources of variance in hypertension has been 
extensively explored. Wu et al. found that blood pressure 
had a moderate heritability with 0.61 for systolic blood 
pressure (SBP) and 0.58 for diastolic blood pressure 
(DBP) in Chinese population [3]. Additionally, genome-
wide association studies (GWASs) have reported some 
genetic variants that were responsible for susceptibil-
ity to blood pressure variation, such as the genetic loci 
within ADRB1, ATP2B1, SOX6, CHIC2, IGFBP3, and 
KCNK3 [4–8]. However, the previous reported genetic 
variants only partially contributed to the pathogenesis of 
hypertension.

In recent years, increasingly strong evidence has sup-
ported the significant role of epigenetic mechanisms 
with altered gene expression in the increased susceptibil-
ity to diseases. Currently, a large number of epigenome-
wide association studies (EWASs) have been conducted 
to explore the underlying association between genomic 
DNA methylation (DNAm) variants and complex traits, 
such as  heart failure [9] and permanent atrial fibrilla-
tion [10]. Meanwhile, accumulating evidence has also 
demonstrated a functional role of DNAm variants in 
the regulation of blood pressure or the development of 
hypertension [11, 12]. However, to date, very few stud-
ies have investigated the blood pressure or hyperten-
sion-related DNAm loci by applying an EWAS approach 
[13–16], and few results are replicated. In addition, the 
causal nature of the association, i.e., if DNAm exerts a 
causal effect on blood pressure or vice versa, is unknown. 
Hence, it is essential to further perform EWAS as well 
as causal inference analysis to investigate the associa-
tion and causal relationship between DNAm and blood 
pressure.

Furthermore, the previous EWASs were most per-
formed using samples from unrelated individuals, where 
the confounding effects from different genetic back-
grounds were not well controlled for. Nowadays, the trait 
or disease-discordant twin design has been a popular and 
powerful tool  for EWAS while controlling for individual 
genetic make-up [17, 18]. In this study based on a sample 

of blood pressure-discordant Chinese monozygotic 
twins, we conducted an EWAS to explore the associa-
tion between the DNAm at CpGs and blood pressure as 
well as their causality and validated the candidate CpGs 
in a community population. Additionally, we further 
integrated the differentially methylated results with gene 
expression data.

Materials and methods
The primary materials and methods of this study were in 
accord with our previously published studies [19–22].

Participants
The sample collection was carried out through the Qing-
dao Twin Registry [23], and details of study recruit-
ment have been previously described [24]. Participants 
who were pregnant and breastfeeding, who suffered 
from cardiovascular disease, stroke and/or tumor, and 
who were regularly taking any medications within one 
month before participation were excluded. Meanwhile, 
participants who were unconscious, unable, or unwill-
ing to cooperate were also dropped. Considering that we 
used trait-discordant monozygotic twin design, the twins 
with intra-pair blood pressure difference ≥ 2  mmHg for 
SBP or intra-pair blood pressure difference ≥ 1  mmHg 
for DBP were separately chosen. A total of 60 SBP-dis-
cordant monozygotic twin pairs and 59 DBP-discordant 
twin pairs were included in the methylation analysis. The 
median of absolute values of intra-pair blood pressure 
difference was 18 mmHg (95% range 2, 55) for SBP and 
10 mmHg (95% range 2, 28) for DBP, respectively. Addi-
tionally, a subsample of 12 monozygotic twin pairs were 
included in the gene expression analysis. All co-twin 
pairs completed a questionnaire and undertook a health 
examination after a 10–12-h overnight fast.

This study was approved by the Regional Ethics Com-
mittee of the Qingdao CDC Institutional Review Boards. 
The ethical principles of the Helsinki Declaration were 
also followed. Prior written informed consent was 
achieved.

Zygosity determination
We first identified potential monozygotic and dizygotic 
twins through sex and ABO blood types. Twins with 
opposite sex and/or different blood types were classified 
as dizygotic twins. Then, the zygosity of twins with same 
sex and blood types was further determined by DNA 
testing using 16 short tandem repeat markers [23, 25, 26].

Measurement of blood pressure
Blood pressure was measured in a sitting position fol-
lowing standard procedure using a mercurial table 
stand model sphygmomanometer. SBP was measured 



Page 3 of 15Wang et al. Clinical Epigenetics           (2023) 15:38  

as Korotkoff phase I (appearance of sound) and DBP as 
Korotkoff phase V (disappearance of sound). Each sub-
ject took three repeated measurements, with at least 
one-minute interval. The mean value of these three 
measurements was calculated and used in subsequent 
analysis. All measurements greater than three standard 
deviations above or below the means were assigned as 
missing values.

Reduced representation bisulfite sequencing (RRBS) data 
preparation
The total DNA extracted from whole blood was used 
in RRBS experiment. Briefly, genomic DNA was first 
digested to generate short fragments. Then the CpG-
rich DNA fragments was bisulfite-converted. Finally, 
the cDNA library was obtained and sequenced. The 
raw methylation data covered 551,447 CpGs across the 
genome of each individual. We mapped the raw sequenc-
ing data to the human GRCh37 by Bismark [27] and then 
imported data to BiSeq to smooth the methylation level 
[28]. We controlled the coverage to 90% quantile and 
dropped CpGs with average methylation β-values less 
than 0.01 or more than 10 missing observations. After 
quality control, a total of 248,262 CpGs for SBP and 
248,955 CpGs for DBP remained for subsequent analyses. 
The methylation β-value was transformed to M-value by 
applying  log2 transformation.

Since total DNA was extracted from whole blood, dif-
ferent methylation profiles of distinct cell-types may 
lead to false discoveries [29]. In our analysis, we applied 
ReFACTor method, a reference-free method to account 
for cell-type heterogeneity, and we used the top five com-
ponents to correct for the cell-type composition effect on 
DNAm [30].

Gene expression data preparation
Briefly, the total mRNA was first extracted from whole 
blood. Subsequently, the RNA-Seq library was con-
structed and sequenced to obtain the sequenced data, 
which was then mapped to the human genome by 
TopHat2 [31]. The gene expression level was evaluated by 
FPKM value through Cufflinks software [32].

Epigenome‑wide association analysis
The association between the DNAm M-value at each 
CpG and SBP or DBP was tested by using generalized 
estimating equation (GEE) approach through the geeglm 
function in R-package geepack, adjusting for age, sex, 
and cell-type composition. Moreover, in order to address 
the paired structure of the twin data, we included a vec-
tor which identified the clusters of twins within a pair 
into the GEE model. To correct for multiple testing, we 
calculated false discovery rate (FDR) [33] and defined 

FDR < 0.05 as genome-wide significance. For CpGs with 
FDR ≥ 0.05, we defined p < 1 ×  10–6 as suggestive signifi-
cance and 1 ×  10–6 ≤ p < 1 ×  10–5 as weaker-than-sugges-
tive significance [34]. The CpGs with p < 1 ×  10–4 were 
reported as top CpGs of this EWAS [35]. The identified 
genomic CpGs (p < 0.05) were annotated to the nearest 
genes by using R-package biomaRt [36, 37].

Causal inference analysis
For the top CpGs (p < 1 ×  10–4), the causal relationship 
with blood pressure was investigated by the Inference 
about Causation through Examination of Familial Con-
founding (ICE FALCON) method which was a regression 
based method for causal inference in association studies 
using twins or family data [38, 39]. In this method, ‘famil-
ial’ meant both genetic and shared environmental fac-
tors in twins, which was essential to make explicit causal 
inference. The GEE model was applied for parameter 
estimation with correction for twin pairing. Estimations 
of βself, βco-twin as well as β’self and β’co-twin were calcu-
lated, where βself was the estimation of overall correlation 
including the causal proportion and family confounding 
proportion, βco-twin estimated only the family confound-
ing proportion of the correlation, and β’self and β’co-twin 
was the estimation of full model. If |βco-twin – β’co-twin| was 
similar to |βself – β’self|, then the association was due to 
family confounding; and if |βco-twin – β’co-twin| was much 
larger than |βself—β’self| (ratio > 1.5), then it indicated a 
causal effect.

Region‑based analysis
We applied the comb-p approach to detect the blood 
pressure-associated differentially methylated regions 
(DMRs) [40]. The significant enriched DMRs were 
determined by Stouffer–Liptak–Kechris (slk) corrected 
p < 0.05.

Ontology enrichments analysis
We submitted the identified CpGs (p < 0.05) to the 
Genomic Regions Enrichment of Annotations Tool 
(GREAT) online to analyze the ontology enrichments 
[41]. Annotation was based on the human GRCh37, and 
the default “basal plus extension” association rule was 
used. The false discovery rate (FDR) < 0.05 was consid-
ered as statistically significant in ontology enrichments 
analysis.

EWAS power estimation
We have recently published a computer simulation study 
on the power of EWAS using twin design [17]. Accord-
ing to this study, if one trait/disease had a heritability (h2) 
of 0.6 and there was a low correlation between environ-
mental factors and DNAm (R2

M,E = 0.1), the sample size 
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required for statistical power to exceed 80% in trait or 
disease-discordant twin design ranged from 22 (when 
the correlation within twin pair due to either shared 
genetic background or common environment, denoted 
as ρε = 0.8) to 63 (when ρε = 0.1) pairs, which was an 
immense improvement over the ordinary case–control 
design. Hence, we speculated that our study based on 
nearly 60 twin pairs would get a statistical power of about 
80%.

We also estimated the correlation between environ-
mental factors (i.e., blood pressure) and DNAm based on 
the top CpGs identified in this EWAS. We tested the cor-
relation between intra-pair blood pressure difference and 
intra-pair DNAm difference of each top CpG in EWAS 
by using partial correlation analysis model, adjusting for 
age and sex. The median of absolute values of partial cor-
relation coefficients was 0.34 (range 0.03, 0.47) for SBP 
and 0.27 (range 0.04, 0.46) for DBP (Additional file  1: 
Table S1), indicating that the R2

M, E of our study was likely 
to be greater than 0.1 and close to 0.3. The heritability of 
SBP and DBP was about 0.60 in the same twin population 
as our study [3]. According to the computer simulation 
study [17], for SBP and DBP with h2 = 0.6 and R2

M, E = 0.3, 
the sample size required for statistical power to exceed 
80% in our twin design would range from 17 (when 
ρε = 0.8) to 25 (when ρε = 0.1) pairs, which were much 
less than 60 pairs. Hence, our study based on nearly 60 
twin pairs would get an enough statistical power.

Quantitative methylation analysis of COL5A1 and WNT3A
We randomly recruited 118 hypertension cases and 
149 health controls from the community to validate the 
CpGs mapped to COL5A1 and WNT3A in EWAS. The 
cases were defined as those with SBP ≥ 140  mmHg and 
DBP ≥ 90  mmHg. The subjects with a history of diabe-
tes, obesity, cancer, stroke, and cardiovascular disease 
were excluded. The participants were interviewed when 
blood samples were taken and stored under − 80  °C for 
DNA methylation analysis. We designed the primers 
for COL5A1 and WNT3A gene to cover the region with 
the most CpGs (p < 0.05) in EWAS. The mass spectra of 
cleavage products were collected using the MALDI-TOF 
mass spectrometry based on the MassARRAY System 
(Bio Miao Biological Technology, Beijing, China), and 
the spectra’s methylation ratio was generated by Mas-
sARRAY EpiTYPER software (Agena Bioscience, San 
Diego, California). The DNAm of CpGs between the two 
independent groups was compared by Wilcoxon rank-
sum test. Binary logistic regression model was applied to 
evaluate the association of each CpG with hypertension 
while adjusting for BMI, triglyceride (TG), and fasting 
blood glucose (FBG). The p < 0.05 was set as statistically 
significant.

Weighted gene co‑expression network analysis (WGCNA)
We conducted the weighted gene co-expression net-
work analysis (WGCNA) [42, 43] to identify the specific 
modules and genes potentially associated with blood 
pressure. Briefly, a weighted adjacency matrix using 
gene expression profile data was established, and then, a 
topological overlap matrix was constructed and used as 
input for hierarchical clustering analysis. Gene modules 
were detected by the dynamic tree cutting algorithm, and 
module eigengenes were correlated with SBP or DBP to 
detect the module of interest. Enrichment analysis was 
conducted for the genes clustered in the specific module 
by DAVID tool [44, 45]. The significant enriched terms 
were identified with p < 0.05 from a modified Fisher’s 
exact test.

Results
Epigenome‑wide association analysis
A total of 60 twin pairs with a median value of 
134.00  mmHg (95% range 102.05, 184.90) for SBP and 
59 twin pairs with a median value of 80.00 mmHg (95% 
range 62.00, 105.03) for DBP were included in the meth-
ylation analysis. The median age of twins was 52  years 
(95% range 40, 66). The other clinical indicators, i.e., 
BMI, serum uric acid, FBG, high-density lipoprotein 
cholesterol (HDLC), low-density lipoprotein cholesterol 
(LDLC), and TG, showed statistically intra-pair corre-
lated, indicating the co-twin design beneficial (Additional 
file 2: Table S2).

The Manhattan plot of EWAS on SBP is shown in Addi-
tional file 3: Fig. S1 (a), and we identified 31 SBP-related 
top CpGs with p < 1 ×  10–4 (Table 1). After correcting for 
multiple testing, no CpG reached genome-wide signifi-
cance as defined by FDR < 0.05. The four strongest asso-
ciations (β = − 0.01, p = 5.76 ×  10–6–9.58 ×  10–6) were 
detected for the CpGs (chr3: 84,330,415–84,330,441 bp) 
located at SRRM1P2, showing weaker-than-suggestive 
significance (1 ×  10–6 ≤ p < 1 ×  10–5). All these top CpGs 
were located at/near 15 genes, including SRRM1P2, 
COL5A1, MIR1268A, NFATC1, NDE1, MYH11, SMPD4, 
TXNL1P1, MIR3147, PIP5K1C, TNK2, CACHD1, 
SLC47A1, etc.

The association between DNAm of 43 top CpGs 
and DBP reached p < 1 ×  10–4 level (Additional file  3: 
Fig. S1 (b) and Table  2). There were four CpGs (chr1: 
228,195,260–228,195,292  bp) within WNT3A and one 
CpG (chr1: 2,391,479  bp) within PLCH2 detected as 
showing genome-wide significance (FDR < 0.05). Seven 
CpGs within SIM1, PLCH2, ATXN7L3B, and LOC646588 
showed weaker-than-suggestive significance with 
1 ×  10–6 ≤ p < 1 ×  10–5. All the top CpGs were located at/
near 16 genes, and there was more than one CpG located 



Page 5 of 15Wang et al. Clinical Epigenetics           (2023) 15:38  

at/near genes ATXN7L3B, DAB2IP, WNT3A, GNA14, 
EYS, KCNT1, LOC646588, MGEA5, PGR, PLCH2, SAE1, 
and SIM1.

We found 21 common CpGs (p < 1 ×  10–3) between 
SBP and DBP, and these CpGs were annotated at genes 
CACNA1B, LARP4B, CSNK1G2, LOC646588, HES4, 
PPIAP45, GPX1, METRNL, ROBO3, and LINC00943.

We also compared previously reported significant 
blood pressure or hypertension-associated differentially 

methylated genes in EWASs [13–15] with our results. 
We defined our genes where CpGs with  p < 0.05 were 
located as supportive to the reported results. The genes 
CDC42BPB, ALDH3B2, DAB2IP, SLC7A5, VPS25, 
SLC43A1, SKOR2, ATXN1, ZMIZ1, and CPT1A for 
SBP and MAN2A2, CFLAR, CPT1A, DAB2IP, SLC7A5, 
PHGDH, SKOR2, and ZMIZ1 for DBP could be repli-
cated (Additional file 4: Table S3).

Table 1 The results of epigenome-wide association study on systolic blood pressure (p < 1 ×  10–4)

NA, not available; FDR, false discovery rate
* The CpG sites annotated to two genes

Chromosome Position (bp) Coefficient p‑value FDR Ensembl gene ID HGNC symbol

chr3 84,330,432  − 0.009 5.756E-06 0.161 ENSG00000242195 SRRM1P2

chr3 84,330,437  − 0.009 7.677E-06 0.161 ENSG00000242195 SRRM1P2

chr3 84,330,415  − 0.009 8.172E-06 0.161 ENSG00000242195 SRRM1P2

chr3 84,330,441  − 0.009 9.579E-06 0.161 ENSG00000242195 SRRM1P2

chr3 84,330,448  − 0.009 1.248E-05 0.161 ENSG00000242195 SRRM1P2

chr17 58,216,280  − 0.008 1.285E-05 0.161 ENSG00000267095 NA

chr7 57,472,878 0.013 1.662E-05 0.196 ENSG00000266168 MIR3147

chr8* 9,260,932  − 0.076 2.635E-05 0.267 ENSG00000254235 NA

ENSG00000254237 NA

chr17 58,216,262  − 0.008 2.687E-05 0.267 ENSG00000267095 NA

chr3 84,330,462  − 0.008 2.873E-05 0.272 ENSG00000242195 SRRM1P2

chr9 137,673,895  − 0.009 2.971E-05 0.272 ENSG00000130635 COL5A1

chr9 137,673,907  − 0.009 3.066E-05 0.272 ENSG00000130635 COL5A1

chr16* 15,814,807  − 0.048 3.425E-05 0.286 ENSG00000072864 NDE1

ENSG00000133392 MYH11

chr13 87,444,790  − 0.011 3.545E-05 0.286 ENSG00000231879 TXNL1P1

chr18 77,269,485 0.011 4.124E-05 0.320 ENSG00000131196 NFATC1

chr9 137,673,888  − 0.009 4.699E-05 0.341 ENSG00000130635 COL5A1

chr13 87,444,783  − 0.011 5.913E-05 0.366 ENSG00000231879 TXNL1P1

chr15 22,545,461 0.007 5.953E-05 0.366 ENSG00000221641 MIR1268A

chr2 130,937,909 0.059 6.043E-05 0.366 ENSG00000136699 SMPD4

chr15 22,545,464 0.007 6.663E-05 0.384 ENSG00000221641 MIR1268A

chr8* 9,260,942  − 0.071 6.811E-05 0.384 ENSG00000254235 NA

ENSG00000254237 NA

chr19 3,670,396 0.010 7.317E-05 0.399 ENSG00000186111 PIP5K1C

chr3 195,609,985 0.050 7.510E-05 0.399 ENSG00000061938 TNK2

chr2 130,937,907 0.055 7.555E-05 0.399 ENSG00000136699 SMPD4

chr1 64,880,619  − 0.108 7.798E-05 0.403 ENSG00000158966 CACHD1

chr17 19,436,923  − 0.028 8.193E-05 0.415 ENSG00000142494 SLC47A1

chr18 77,269,508 0.012 8.697E-05 0.428 ENSG00000131196 NFATC1

chr16* 15,814,759  − 0.056 8.814E-05 0.428 ENSG00000072864 NDE1

ENSG00000133392 MYH11

chr18 77,269,476 0.011 8.970E-05 0.428 ENSG00000131196 NFATC1

chr15 22,545,472 0.008 9.480E-05 0.444 ENSG00000221641 MIR1268A

chr17 62,775,172 0.012 9.845E-05 0.450 ENSG00000215769 ARHGAP27P1-
BPTFP1-
KPNA2P3



Page 6 of 15Wang et al. Clinical Epigenetics           (2023) 15:38 

Table 2 The results of epigenome-wide association study on diastolic blood pressure (p < 1 ×  10–4)

NA, not available; FDR, false discovery rate

Chromosome Position (bp) Coefficient p‑value FDR Ensembl gene ID HGNC symbol

chr1 228,195,277 0.028 5.764E-08 0.010 ENSG00000154342 WNT3A

chr1 228,195,289 0.029 1.291E-07 0.010 ENSG00000154342 WNT3A

chr1 2,391,479  − 0.020 1.540E-07 0.010 ENSG00000149527 PLCH2

chr1 228,195,292 0.029 1.633E-07 0.010 ENSG00000154342 WNT3A

chr1 228,195,260 0.029 2.857E-07 0.014 ENSG00000154342 WNT3A

chr6 100,909,431 0.026 2.450E-06 0.090 ENSG00000112246 SIM1

chr1 2,391,466  − 0.018 2.541E-06 0.090 ENSG00000149527 PLCH2

chr12 74,797,036  − 0.047 4.032E-06 0.125 ENSG00000253719 ATXN7L3B

chr6 100,909,425 0.025 5.889E-06 0.163 ENSG00000112246 SIM1

chr12 74,797,017  − 0.044 7.783E-06 0.185 ENSG00000253719 ATXN7L3B

chr7 25,898,451 0.020 8.166E-06 0.185 ENSG00000223561 LOC646588

chr12 74,797,049  − 0.037 9.188E-06 0.191 ENSG00000253719 ATXN7L3B

chr7 25,898,447 0.020 1.231E-05 0.236 ENSG00000223561 LOC646588

chr17 38,088,968 0.185 1.593E-05 0.257 ENSG00000264968 NA

chr6 66,373,850 0.055 1.624E-05 0.257 ENSG00000188107 EYS

chr12 74,797,053  − 0.035 1.720E-05 0.257 ENSG00000253719 ATXN7L3B

chr9 80,272,835  − 0.068 1.752E-05 0.257 ENSG00000156049 GNA14

chr1 228,195,243 0.029 1.988E-05 0.273 ENSG00000154342 WNT3A

chr9 80,272,842  − 0.066 2.086E-05 0.273 ENSG00000156049 GNA14

chr9 80,272,845  − 0.066 2.338E-05 0.288 ENSG00000156049 GNA14

chr6 66,373,857 0.053 2.469E-05 0.288 ENSG00000188107 EYS

chr9 80,272,847  − 0.065 2.663E-05 0.288 ENSG00000156049 GNA14

chr12 74,797,056  − 0.034 2.825E-05 0.293 ENSG00000253719 ATXN7L3B

chr9 138,637,356  − 0.013 4.158E-05 0.400 ENSG00000107147 KCNT1

chr19 35,324,068 0.168 4.340E-05 0.400 ENSG00000267767 LINC01801

chr19 47,635,288  − 0.021 4.779E-05 0.425 ENSG00000142230 SAE1

chr9 138,637,337  − 0.011 5.604E-05 0.462 ENSG00000107147 KCNT1

chr12 74,796,990  − 0.040 5.764E-05 0.462 ENSG00000253719 ATXN7L3B

chr17 38,088,944 0.171 5.910E-05 0.462 ENSG00000264968 NA

chr9 124,308,134 0.014 6.588E-05 0.462 ENSG00000136848 DAB2IP

chr9 124,308,131 0.014 6.979E-05 0.462 ENSG00000136848 DAB2IP

chr19 47,635,313  − 0.017 7.074E-05 0.462 ENSG00000142230 SAE1

chr5 30,864,593 0.145 7.349E-05 0.462 ENSG00000241668 RPL19P11

chr9 124,308,128 0.014 7.539E-05 0.462 ENSG00000136848 DAB2IP

chr11 100,999,098 0.026 8.179E-05 0.462 ENSG00000082175 PGR

chr16 8,619,841 0.014 8.388E-05 0.462 ENSG00000232258 TMEM114

chr9 124,308,155 0.013 8.503E-05 0.462 ENSG00000136848 DAB2IP

chr10 103,551,798 0.150 8.742E-05 0.462 ENSG00000198408 OGA

chr17 38,088,933 0.169 8.800E-05 0.462 ENSG00000264968 NA

chr11 100,999,104 0.025 8.815E-05 0.462 ENSG00000082175 PGR

chr9 124,308,115 0.014 9.133E-05 0.462 ENSG00000136848 DAB2IP

chr9 124,308,162 0.012 9.381E-05 0.462 ENSG00000136848 DAB2IP

chr10 103,551,806 0.148 9.390E-05 0.462 ENSG00000198408 OGA
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Causal inference analysis
The results of causal inference on the top CpGs 
(p < 1 ×  10–4) with SBP and DBP are provided in 
Table 3. Interestingly, a causal effect of DNAm to SBP 
was clearly supported for 9 CpGs located at/near NDE1 
and MYH11, TXNL1P1, SMPD4, SRRM1P2, TNK2, and 
CACHD1, respectively. Out of these 9 CpGs, a causal 

effect of SBP to DNAm of 4 CpGs located at/near 
TXNL1P1 and SMPD4 was also observed.

As for DBP, the causal effect of DNAm to DBP was 
obviously found for 6 CpGs, with 4 at WNT3A and 2 at 
LOC646588. A causal effect of DBP influencing DNAm 
was also observed for another 8 CpGs, with 4 CpGs at 

Table 4 Results of annotation to differentially methylated regions for systolic blood pressure and diastolic blood pressure

DBP, diastolic blood pressure; SBP, systolic blood pressure

ID Chromosome Start (bp) End (bp) Length Stouffer–Liptak–Kechris 
(slk) corrected p‑value

Ensembl ID Gene symbol

SBP

A chr18 77,269,147 77,269,528 20  < 0.001 ENSG00000131196 NFATC1

B chr3 84,330,387 84,330,523 11 0.001 ENSG00000175161 CADM2

C chr4 155,665,297 155,665,627 16 0.007 ENSG00000121207 LRAT 

D chr13 19,173,908 19,174,405 29 0.009 ENSG00000198033 TUBA3C

E chr12 74,564,341 74,564,858 20 0.010 ENSG00000251138 LOC100507377

F chr1 50,881,821 50,882,443 18 0.025 ENSG00000142700 DMRTA2

G chr16 32,857,318 32,857,950 31 0.031 ENSG00000214617 SLC6A10P

H chr5 3,605,630 3,606,797 44 0.031 ENSG00000170549 IRX1

DBP

A chr1 228,195,226 228,195,293 6  < 0.001 ENSG00000154342 WNT3A

B chr20 21,376,425 21,376,894 28 0.003 ENSG00000125816 NKX2-4

C chr16 8,619,759 8,619,952 10 0.006 ENSG00000232258 TMEM114

D chr14 64,965,186 64,965,446 11 0.009 ENSG00000089775 ZBTB25

E chr3 32,822,274 32,822,412 13 0.012 ENSG00000182973 CNOT10

F chr17 38,088,678 38,088,969 11 0.018 ENSG00000172057 ORMDL3

G chr19 47,933,149 47,933,251 4 0.027 ENSG00000118160 SLC8A2

H chr19 1,465,543 1,467,185 80 0.029 ENSG00000115266 APC2

I chr7 25,898,313 25,898,710 24 0.030 ENSG00000050344 NFE2L3

J chr1 1,872,273 1,872,775 18 0.030 ENSG00000142609 CFAP74

K chr9 124,308,098 124,308,286 11 0.031 ENSG00000136848 DAB2IP

L chr18 14,999,329 15,000,083 47 0.040 ENSG00000180777 ANKRD30B

0.01

0.02

0.03

77269200 77269300 77269400 77269500
BP

C
oe

ffi
ci

en
t

A DMR chr18:77269147−77269528

−0.009

−0.008

−0.007

−0.006

84330420 84330460 84330500
BP

C
oe

ffi
ci

en
t

B DMR chr3:84330387−84330523

0.03

0.04

0.05

0.06

0.07

155665300 155665400 155665500 155665600
BP

C
oe

ffi
ci

en
t

C DMR chr4:155665297−155665627

0.004

0.006

0.008

0.01

19173900 19174000 19174100 19174200 19174300 19174400
BP

C
oe

ffi
ci

en
t

D DMR chr13:19173908−19174405

−0.04

−0.03

−0.02

−0.01

0

0.01

74564400 74564500 74564600 74564700 74564800
BP

C
oe

ffi
ci

en
t

E DMR chr12:74564341−74564858

−0.06

−0.04

−0.02

0

50881800 50882000 50882200 50882400
BP

C
oe

ffi
ci

en
t

F DMR chr1:50881821−50882443

0

0.01

0.02

0.03

32857400 32857600 32857800
BP

C
oe

ffi
ci

en
t

G DMR chr16:32857318−32857950

−0.02

0

0.02

0.04

3605600 3606000 3606400 3606800
BP

C
oe

ffi
ci

en
t

H DMR chr5:3605630−3606797

Fig. 1 Differential methylation patterns from the identified differentially methylated regions for systolic blood pressure. The dots represent 
the CpGs. The x-axis shows the position of CpGs on chromosome and the y-axis shows regression coefficients. BP, base pair; DMR, differentially 
methylated region
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GNA14, 2 CpGs at EYS, 1 CpG at SAE1, and 1 CpG at 
TMEM114, respectively.

Region‑based analysis
A total of 8 DMRs were identified for SBP (Table 4). As 
illustrated in Fig.  1, the methylation levels of 4 DMRs 
(A, C, D, and G) at/near NFATC1, LRAT , TUBA3C, and 
SLC6A10P were positively and 3 DMRs (B, E, and F) at/
near CADM2, LOC100507377, and DMRTA2 negatively 
correlated with SBP, whereas the trend of association 
between one DMR (H) at IRX1 and SBP was uncertain.

Out of the 12 DMRs identified for DBP (Fig. 2; Table 4), 
the methylation level of 6 DMRs (A, C, E, F, K, and L) 
showed positive associations and two DMRs (G and H) 
showed negative associations with DBP. But it was dif-
ficult to determine the trend of association between 4 
DMRs (B, D, I, and J) and DBP. These DMRs were anno-
tated within 12 genes, such as WNT3A, CNOT10, and 
DAB2IP.

Ontology enrichments analysis
Lots of important ontology enrichments potentially asso-
ciated with SBP were found, such as nicotinic acetylcho-
line receptor signaling pathway, p53 pathway by glucose 
deprivation, notch signaling pathway, Hedgehog signaling 
pathway, and PI3 kinase pathway (Table 5). For DBP, the 
ontology enrichments mainly highlighted inflammation 
mediated by chemokine and cytokine signaling pathway, 
notch signaling pathway, angiogenesis, Wnt signaling 
pathway, TGF-beta signaling pathway, etc. (Table 6).

Many common ontology enrichments for SBP and 
DBP were observed, such as nicotinic acetylcholine 
receptor signaling pathway, p53 pathway by glucose 
deprivation, Notch signaling pathway, Hedgehog sign-
aling pathway, and PI3 kinase pathway (Additional 
file 5: Table S4).

We found that 2 pathways (PKA-mediated phospho-
rylation of CREB, regulation of insulin secretion) for 
SBP and 2 pathways (NCAM1 interactions, dorso-ven-
tral axis formation) for DBP were also enriched in our 
previous GWAS of blood pressure in twins [8].

Quantitative methylation analysis of COL5A1 and WNT3A
Eight CpGs (p < 0.05) mapped to COL5A1 in EWAS 
of SBP were quantified using the Sequenom MassAR-
RAY platform. As shown in Additional file 6: Table S5, 
just one CpG (Chr9: 137,673,907) was validated to be 
hypomethylated (β = -0.439, p = 0.048) in hypertension 
cases, and this CpG was also regarded as top signal as 
in Table 1.

Among the 5 CpGs (p < 0.05) mapped to WNT3A in 
EWAS of DBP, 3 were quantified using the Sequenom 
MassARRAY platform. As shown in Additional file  7: 
Table S6, all of the 3 CpGs were validated in the same 
direction as in EWAS and also regarded as top signal 
as in Table  2. Overall, the validation analysis showed 
clear consistency of hypermethylation in 3 CpGs 
within WNT3A associated with DBP in a community 
population.
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Fig. 2 Differential methylation patterns from the identified differentially methylated regions for diastolic blood pressure. The dots represent 
the CpGs. The x-axis shows the position of CpGs on chromosome and the y-axis shows regression coefficients. BP, base pair; DMR, differentially 
methylated region
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Weighted gene co‑expression network analysis (WGCNA) 
and gene expression analysis
We included 12 twin pairs (including 7 male pairs) with a 
median age of 53 years (95% range 43–65), a median SBP 
of 126 mmHg (95% range 94–195), and a median DBP of 
81 mmHg (95% range 64–100) in the analyses.

Additional file 8: Fig. S2 illustrates the genes clustered 
in mediumpurple3 module (including 4,380 genes) were 
both negatively correlated with SBP (r =  − 0.45, p = 0.03) 
and DBP (r =  − 0.45, p = 0.03). Among the genes where 
the top CpGs (p < 1 ×  10–4) and DMRs were annotated 
in methylation analysis, 3 genes (MYH11, NFATC1, and 
PIP5K1C) for SBP and 7 genes (WNT3A, EYS, GNA14, 
SAE1, CNOT10, APC2, and CFAP74) for DBP were also 
clustered in mediumpurple3 module in WGCNA.

The genes in methylation analysis and genes clus-
tered in mediumpurple3 module were involved in some 

common enrichment terms, such as voltage-gated cal-
cium channel activity, NADH dehydrogenase (ubiqui-
none) activity, PPAR signaling pathway, and acetylcholine 
receptor activity (Additional file 9: Table S7).

Discussion
It has been demonstrated that epigenetics plays a cru-
cial part in the development hypertension; hence, look-
ing for the specific DNAm variants potentially associated 
with blood pressure is still a research hotspot [46]. In 
this study, we detected multiple CpGs, genes, DMRs, 
and pathways that could not only elucidate the mecha-
nisms of blood pressure variation but also have impor-
tant implications for the intervention and treatment of 
hypertension.

In our EWAS on SBP, many genes where the top CpGs 
and DMRs were located, such as SRRM1P2, COL5A1, 

Table 5 The top GREAT ontology enrichments for regions potentially related to systolic blood pressure

Ontology database Term name Binom FDR Q‑value Binom region 
fold enrichment

PANTHER pathway Cytoskeletal regulation by Rho GTPase 1.29E-17 2.19

PANTHER pathway Nicotinic acetylcholine receptor signaling pathway 8.79E-14 1.83

PANTHER pathway Metabotropic glutamate receptor group II pathway 5.05E-11 2.01

PANTHER pathway GABA-B receptor II signaling 2.71E-10 1.97

PANTHER pathway p53 pathway by glucose deprivation 6.02E-09 2.57

PANTHER pathway Angiogenesis 1.50E-07 1.35

PANTHER pathway Inflammation mediated by chemokine and cytokine signaling pathway 2.66E-07 1.37

PANTHER pathway Endogenous cannabinoid signaling 2.98E-07 2.05

PANTHER pathway Notch signaling pathway 6.81E-07 1.78

PANTHER pathway Hedgehog signaling pathway 4.77E-06 1.94

PANTHER pathway Thyrotropin-releasing hormone receptor signaling pathway 7.80E-06 1.54

PANTHER pathway Gamma-aminobutyric acid synthesis 8.53E-06 3.62

PANTHER pathway Nicotine pharmacodynamics pathway 1.43E-05 1.82

PANTHER pathway Heterotrimeric G-protein signaling pathway-rod outer segment phototransduction 5.11E-05 1.74

PANTHER pathway Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha-mediated path-
way

7.86E-05 1.29

PANTHER pathway Corticotropin-releasing factor receptor signaling pathway 7.85E-04 1.68

PANTHER pathway Adrenaline and noradrenaline biosynthesis 2.65E-03 1.67

PANTHER pathway Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade 5.49E-03 1.42

PANTHER pathway PI3 kinase pathway 1.32E-02 1.34

PANTHER pathway Histamine H1 receptor-mediated signaling pathway 1.97E-02 1.33

MSigDB pathway Focal adhesion 1.43E-17 1.51

MSigDB pathway Type II diabetes mellitus 2.42E-14 1.95

MSigDB pathway Taurine and hypotaurine metabolism 8.37E-13 3.96

MSigDB pathway RAC1 signaling pathway 1.00E-12 2.05

MSigDB pathway Insulin signaling pathway 8.51E-10 1.49

MSigDB pathway Regulation of RhoA activity 6.87E-09 1.82

MSigDB pathway Arachidonic acid metabolism 7.32E-08 2.01

MSigDB pathway T cell receptor signaling pathway 8.83E-06 1.39

MSigDB pathway mTOR signaling pathway 7.31E-05 1.53

MSigDB pathway VEGF signaling pathway 5.69E-04 1.42
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NFATC1, NDE1, MYH11, SMPD4, LRAT , CADM2, 
IRX1, and TNK2, may play important roles in regulating 
blood pressure. The SNP rs6794880 (chr3:84,402,361) in 
SRRM1P2 was reported to be related to obesity [47], and 
we suspected that this locus might influence the devel-
opment of obesity through regulating the DNAm at one 
CpG (chr3:84,330,462) in SRRM1P2 we identified. More-
over, the association between obesity and hypertension 
has clearly been confirmed [48]. It was indicated that the 
SNPs rs4841895 in COL5A1 [49], rs4799055 in NFATC1 
(from dbGaP database), rs1449386 in CADM2 [50], and 
rs954767 in IRX1 [51] might play a role in blood pressure 
regulation, and we suspected that these loci might influ-
ence the development of hypertension through regulat-
ing the DNAm in these genes. NDE1 gene was involved 
in the signaling pathway by Rho GTPases, which could 
play a critical role in the pathogenesis of hypertension 

[52]. The protein encoded by MYH11 is a smooth mus-
cle myosin in vascular smooth muscle cell (SMC) whose 
principal functions were contraction and regulation of 
blood pressure and blood flow distribution. The DNAm 
variation of MYH11 might influence the function of SMC 
and hence took part in the pathogenesis of hypertension 
[53]. The protein encoded by SMPD4 was a sphingomy-
elinase involved in  sphingolipid metabolism pathway, 
and mounting evidence pointed toward that a derange-
ment of this pathway might trigger the precursor clini-
cal conditions of hypertension and hypertension itself 
[54]. It was found that LRAT  may be a critical biomarker 
of vitamin A deficiency in target organs and may regu-
late blood pressure through affecting renin angioten-
sin system biomarkers [55]. TNK2 gene was involved 
in the oxidative damage response pathway, and it was 
demonstrated that inflammation and oxidative stress 

Table 6 The top GREAT ontology enrichments for regions potentially related to diastolic blood pressure

Ontology database Term name Binom FDR Q‑value Binom region 
fold enrichment

PANTHER pathway Inflammation mediated by chemokine and cytokine signaling pathway 1.42E-12 1.50

PANTHER pathway Thyrotropin-releasing hormone receptor signaling pathway 9.07E-12 1.82

PANTHER pathway Nicotine pharmacodynamics pathway 2.13E-11 2.27

PANTHER pathway Endogenous cannabinoid signaling 2.44E-11 2.35

PANTHER pathway Cytoskeletal regulation by Rho GTPase 2.68E-10 1.83

PANTHER pathway Notch signaling pathway 1.52E-09 1.93

PANTHER pathway Histamine H1 receptor-mediated signaling pathway 2.86E-09 1.82

PANTHER pathway Muscarinic acetylcholine receptor 1 and 3 signaling pathway 6.39E-09 1.64

PANTHER pathway Angiogenesis 4.17E-08 1.35

PANTHER pathway 2-Arachidonoylglycerol biosynthesis 1.35E-07 3.31

PANTHER pathway Nicotinic acetylcholine receptor signaling pathway 7.36E-07 1.52

PANTHER pathway Corticotropin-releasing factor receptor signaling pathway 1.51E-06 1.94

PANTHER pathway p53 pathway by glucose deprivation 2.02E-06 2.21

PANTHER pathway Heterotrimeric G-protein signaling pathway-rod outer segment phototransduction 2.16E-06 1.83

PANTHER pathway Angiotensin II-stimulated signaling through G proteins and beta-arrestin 6.23E-06 1.79

PANTHER pathway Wnt signaling pathway 7.41E-05 1.17

PANTHER pathway GABA-B receptor II signaling 1.80E-04 1.54

PANTHER pathway Blood coagulation 1.64E-03 1.64

PANTHER pathway Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade 5.21E-03 1.40

PANTHER pathway TGF-beta signaling pathway 7.04E-03 1.22

PANTHER pathway Beta3 adrenergic receptor signaling pathway 2.62E-02 1.46

PANTHER pathway PI3 kinase pathway 3.04E-02 1.28

PANTHER pathway FGF signaling pathway 3.54E-02 1.16

PANTHER pathway Hedgehog signaling pathway 3.99E-02 1.40

PANTHER pathway Toll receptor signaling pathway 4.29E-02 1.30

MSigDB pathway Ceramide signaling pathway 1.96E-17 2.27

MSigDB pathway RhoA signaling pathway 1.56E-13 2.05

MSigDB pathway p53 pathway 3.68E-09 1.81

MSigDB pathway VEGF signaling pathway 5.46E-06 1.54

MSigDB pathway Insulin signaling pathway 3.20E-03 1.23
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significantly contributed to the vascular dysfunction and 
renal damage associated with hypertension [56]. How-
ever, the mechanism of other genes, such as TXNL1P1, 
PIP5K1C, MIR3147, and SLC47A1, underlining hyper-
tension requires further investigation.

As for DBP, several interesting genes were also found, 
including DAB2IP, WNT3A, GNA14, KCNT1, PGR, 
PLCH2, SIM1, and CNOT10. It was previously reported 
that the SNPs rs35061590 and rs13290547 in DAB2IP 
might be associated with heart rate [57] and hence might 
influence the pathogenesis of hypertension. WNT3A 
gene was a member of the WNT gene family, and Wnt 
signaling pathway played an emerging role in regulat-
ing blood pressure [58]. The protein encoded by GNA14 
was involved in the regulation of insulin secretion path-
way, and the relationship of insulin, insulin sensitivity, 
and hypertension had been clearly confirmed [59]. It was 
reported that the genetic knockout mouse strain lack-
ing  KNa channels (KCNT1 and KCNT2) showed a mod-
est hypertensive phenotype [60]. The SNP rs61892344 in 
PGR was previously reported to be associated with DBP 
[51]. The protein encoded by PLCH2 was involved in the 
inositol phosphate metabolism pathway, and the inositol 
phosphate production in blood vessels differed in nor-
motensive and spontaneously hypertensive rats [61]. An 
association of SIM1  variants with early-onset obesity in 
children was demonstrated [62], but the association of 
SIM1 with hypertension was currently unknown. The 
CNOT10 gene was probably associated with left ven-
tricular remodeling in hypertension by bioinformatics-
based analysis [63]. Up until now, the association of other 
genes, such as ATXN7L3B, LOC646588, EYS, MGEA5, 
and SAE1, with hypertension had not been extensively 
researched, but they may also serve as candidates to be 
further verified.

There is a particular challenge regarding the causal 
effects in observational epidemiological studies  using 
high-dimensional omics data [64]. Our study provides 
evidence for the causation underlying the blood pres-
sure–DNA methylation association using ICE FAL-
CON method. We found the causal effect that SBP was 
in response to the DNAm at CpGs located at several 
genes. NDE1 and MYH11 were involved in the Rho 
GTPase effectors pathway whose important role in the 
pathogenesis of vasospasm, hypertension, pulmonary 
hypertension, and heart failure had been demonstrated 
[65]. TNK2 was involved in the oxidative damage 
response pathway that could cause vascular dysfunc-
tion and renal damage associated with hypertension 
[56]. As for DBP, clear causal effect from DNAm to DBP 
was found for CpGs within WNT3A and LOC646588. 
WNT3A was involved in Wnt signaling pathway whose 
role in regulating blood pressure had previously been 

reported [58]. However, the mechanism of DNAm vari-
ation response to blood pressure changes was currently 
unclear, and further research was needed.

As additional validation, we quantified candidate 
CpGs mapped to WNT3A and COL5A1 using Seque-
nom MassARRAY platform in a community popula-
tion, and three CpGs mapped to WNT3A and one CpG 
mapped to COL5A1 were successfully validated. As 
additional replication, we also compared previously 
reported results in EWASs with ours. A list of differen-
tially methylated genes could be replicated, especially 
the well-known hypertension-associated gene DAB2IP 
[57]. We also compared the results from methylation 
and gene expression analyses and found a list of com-
mon genes. For SBP, these genes were involved in vari-
ous biological pathways, such as nicotinic acetylcholine 
receptor signaling pathway (MYH11), Wnt signal-
ing pathway (NFATC1), and RhoA signaling pathway 
(PIP5K1C). For DBP, these common genes took part in 
Wnt signaling pathway (WNT3A, APC2, and GNA14), 
ubiquitin proteasome pathway (SAE1), and RNA deg-
radation pathway (CNOT10), etc. Moreover, we also 
found many common enrichment terms, such as volt-
age-gated calcium channel activity [66], NADH dehy-
drogenase (ubiquinone) activity [67], PPAR signaling 
pathway [68], and acetylcholine receptor activity [69], 
for which the relationships with hypertension were 
clear. All of these indicated that the DNAm variants we 
identified Additional file  8 played a significant role in 
the development of hypertension.

Several strengths can be noticed in our study. First, the 
trait or disease-discordant twin design we adopted has 
been revealed as a powerful tool  for detecting the epi-
genetic variation underling complex diseases [18]. Sec-
ond, we also performed causal inference to investigate 
the causation underlying the cross-sectional epigenetic 
associations and found that blood pressure changes had 
a causal effect on the DNAm variants at some CpGs, and 
vice versa. Third, given the various genetic constitutions, 
environmental exposures, and a multitude of lifestyles in 
different ethnic populations worldwide, our findings will 
specifically help elucidate the underlying pathogenesis of 
hypertension in the Chinese population.

Nevertheless, the sample size of the present study 
was relatively limited due to the challenges of recruit-
ing and identifying qualified twins. However, the trait or 
disease-discordant twin design we adopted had greater 
statistical  power  over the traditional cross-sectional or 
case–control design. For blood pressure with a moderate 
heritability, this design would allow for large sample size 
reductions comparing to the traditional designs. Accord-
ing to our previous study [17], this study based on nearly 
60 twin pairs would get a statistical power of about 80%.
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Conclusions
In summary, we found evidence that in peripheral 
blood from middle and old-aged Chinese twins, the 
DNAm at several loci within WNT3A and COL5A1 is 
associated with blood pressure. Additionally, we also 
found evidence that blood pressure has a causal effect 
on peripheral blood DNAm, and vice versa. Our find-
ings provide new clues to the epigenetic modification 
underlying hypertension pathogenesis.
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