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Abstract 

Background  Immune cell proportions can be used to detect pathophysiological states and are also critical covari-
ates in genomic analyses. The complete blood count (CBC) is the most common method of immune cell proportion 
estimation, but immune cell proportions can also be estimated using whole-genome DNA methylation (DNAm). 
Although the concordance of CBC and DNAm estimations has been validated in various adult and clinical popula-
tions, less is known about the concordance of existing estimators among stress-exposed individuals. As early life 
adversity and acute psychosocial stress have both been associated with unique DNAm alterations, the concordance 
of CBC and DNAm immune cell proportion needs to be validated in various states of stress.

Results  We report the correlation and concordance between CBC and DNAm estimates of immune cell propor-
tions using the Illumina EPIC DNAm array within two unique studies: Study 1, a high-risk pediatric cohort of children 
oversampled for exposure to maltreatment (N = 365, age 8 to 14 years), and Study 2, a sample of young adults who 
have participated in an acute laboratory stressor with four pre- and post-stress measurements (N = 28, number of 
observations = 100). Comparing CBC and DNAm proportions across both studies, estimates of neutrophils (r = 0.948, 
p < 0.001), lymphocytes (r = 0.916, p < 0.001), and eosinophils (r = 0.933, p < 0.001) were highly correlated, while 
monocyte estimates were moderately correlated (r = 0.766, p < 0.001) and basophil estimates were weakly correlated 
(r = 0.189, p < 0.001). In Study 1, we observed significant deviations in raw values between the two approaches for 
some immune cell subtypes; however, the observed differences were not significantly predicted by exposure to child 
maltreatment. In Study 2, while significant changes in immune cell proportions were observed in response to acute 
psychosocial stress for both CBC and DNAm estimates, the observed changes were similar for both approaches.

Conclusions  Although significant differences in immune cell proportion estimates between CBC and DNAm exist, as 
well as stress-induced changes in immune cell proportions, neither child maltreatment nor acute psychosocial stress 
alters the concordance of CBC and DNAm estimation methods. These results suggest that the agreement between 
CBC and DNAm estimators of immune cell proportions is robust to exposure to child maltreatment and acute psycho-
social stress.
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Background
Blood proportions of immune cells, such as monocytes, 
lymphocytes, and granulocytes, are tightly regulated 
in healthy individuals [1]. Deviations from normative 
immune cell proportions can be used to predict and 
monitor the progression of many diseases and conditions 
including chronic inflammation, viral infections, arterial 
disease, coronary heart disease, gastroenteritis, endo-
crine disorders, leukemia, and lymphoma [2–6]. Thus, it 
is critical to accurately measure the proportion of circu-
lating immune cell subtypes for both diagnosis and moni-
toring of disease progress [7, 8].

Beyond clinical implications, it is critical to accurately 
measure immune cell proportions for basic research 
investigating connections between environmental/psy-
chosocial exposures and health. Molecular profiles of 
whole blood, such as gene expression (9), DNA methyla-
tion (DNAm) [10], and telomere length [11], are often 
derived by averaging the measurement of these molecu-
lar features across a heterogeneous mixture of immune 
cell subtypes within each blood sample. However, 
each immune cell subtype has different functions and 
molecular signatures (e.g., methylation patterns, gene 
expression, telomere length distribution), and thus, the 
resulting molecular profiles of whole blood are depend-
ent upon the immune cell proportions of the sample [10, 
12]. The variability of immune cell proportions—whether 
due to stress or other factors—across biological sam-
ples has implications for the accuracy and reliability of 
genomic studies. For example, controlling for immune 
cell proportions in epigenome-wide association studies 
(EWAS) can lead to improved biological interpretability, 
whereas not accounting for immune cell proportions in 
EWAS can lead to false positive results [13–15].

The complete blood count (CBC) is the most widely 
used clinical test for determining immune cell propor-
tions [6, 16] and analyzes major immune cell compo-
nents via flow cytometry sorting. Despite its ubiquitous 
application in clinical practice, the CBC method has 
some disadvantages in population research settings. 
The application of flow cytometry to determine CBC 
estimates requires the collection of blood which is 
often difficult to obtain, especially in pediatric cohorts. 
Additionally, CBC tests must be performed within 
24 h of sample collection and cannot be performed on 
stored (e.g., dried or frozen) samples. In contrast to 
CBC estimators, molecular profiles can be reliably gen-
erated from dried or frozen blood samples, as well as 

from noninvasive saliva or buccal swab samples. These 
alternative molecular methods for detecting immune 
cell proportions are of considerable interest for a broad 
range of research fields.

One alternative method for estimating immune cell 
proportions is the use of whole-genome DNAm data. 
Because of the unique pattern of methylation inherent in 
each cell type, methylation signals at specific 5’-cytosine-
phosphate-guanine-3’ (CpG) sites can be used to estimate 
immune cell proportions [17–19]. Houseman and col-
leagues developed the first statistical algorithm for esti-
mating immune cell proportions using CpG probes from 
the Illumina 27 k DNAm array [20, 21], which was later 
updated by constructing reference sets for the Illumina 
450 k DNAm array [14, 22–25]. Salas and colleagues pro-
vided an updated algorithm and a reference set specifi-
cally tailored to the Illumina EPIC DNAm array [26–28]. 
Each iteration of immune cell estimators was designed 
to make estimations with greater accuracy than previous 
versions. More recently, Salas and colleagues released a 
revised reference set for the Illumina EPIC DNAm array 
enabling estimation of a much larger variety of immune 
cell subtypes than previously possible [29]. Although the 
accuracy of some of these reference sets and algorithms 
has been validated in various clinical populations (e.g., 
patients with head and neck cancer, ovarian cancer, down 
syndrome, and obesity) [20], in cord blood [30], and in 
older adults [14], to our knowledge, no work has been 
done to determine the effects of exposure to child mal-
treatment (CM), as well as acute psychosocial stress, 
on the concordance of CBC and DNAm estimates of 
immune cell proportions.

Exposure to early life adversity (ELA), such as CM, 
has been shown to alter the DNAm profiles of indi-
vidual genes such as NR3C1, BDNF, PRF1, SLC6A4, 
OXTR, COMT, AVP, and CRF [31–37], as well as alter 
the DNAm profiles of immune cells [38–41]. Moreo-
ver, the effects of CM and other adverse environmen-
tal exposures on DNAm profiles could extend beyond 
candidate genes and introduce DNAm alterations on a 
genome-wide scale [42, 43]. These alterations could influ-
ence the concordance of CBC and DNAm estimations of 
immune cell proportions if such alterations overlap with 
the CpG sites of established DNAm algorithms used to 
discriminate between immune cell subtypes. Therefore, 
it is important to validate the concordance of CBC and 
DNAm methods for estimating immune cell proportions 
in individuals who have experienced CM.
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Beyond CM, changes in DNAm profiles in response 
to acute psychosocial stress could also alter the con-
cordance of CBC and DNAm methods for estimat-
ing immune cell proportions. Evidence suggests that 
immune cell DNAm levels within promoter regions 
of stress-related genes respond to acute psychosocial 
stress [44, 45]. It is unknown whether these altera-
tions persist after the acute stressor has subsided, 
and whether or not additional areas of the methyl-
ome are impacted by acute stress. In addition, DNAm 
levels in rats and mice are reported to be sensitive to 
acute stress in various brain regions such as the hip-
pocampus, cortex, and periaqueductal gray area [46, 
47]. Given the observed correlations between brain 
and blood cell methylomes [48, 49], it is plausible that 
similar changes in DNAm levels of immune cells could 
be occurring. Changes in DNAm profiles of immune 
cells in response to acute psychosocial stress can have 
implications for study designs in which biological sam-
ples are collected before, during, and following stress-
ful events.

This study aims to assess the concordance of CBC 
and DNAm methods for estimating immune cell pro-
portions in blood when implemented 1) cross-section-
ally in children who have been investigated for CM, and 
2) in four repeated samples of young adults undergo-
ing an acute psychosocial stressor. We hypothesized 
that CM and acute psychosocial stress would alter 
the concordance between CBC and DNAm methods 
for estimating immune cell proportions, with lower 
concordance under conditions of stress. To test our 
hypotheses, we compared CBC and DNAm estimates of 
immune cell proportions in two studies. In Study 1, we 
included children from the ongoing Child Health Study 
(CHS), a large multidisciplinary study designed to pro-
vide prospective, longitudinal data on the health and 
development of children with and without a history of 
investigations for CM (physical and sexual abuse, and 
neglect). Study 1 was used to determine the effects of 
CM on the concordance of CBC and DNAm methods 
for estimating immune cell proportions. In Study 2, we 
used a sample of healthy young adults exposed to the 
Trier Social Stress Test (TSST), a laboratory stressor 
shown to promote robust sympathetic and adrenal 
stress responses [50] and elicit changes in immune cell 
proportions within individuals across time [51]. Study 2 
was used to determine the effects of acute psychosocial 
stress on the concordance between CBC and DNAm 
methods of estimating immune cell proportions. We 
used the Illumina EPIC DNAm method of estimating 
immune cell proportions [29] and provide supplemen-
tary analyses using the previous Illumina EPIC DNAm 
iteration [26–28].

Results
Study 1: Testing the impact of child maltreatment 
on the concordance between CBC and DNAm estimates 
of immune cell proportions
Study 1 was designed such that it included both individu-
als with a history of CM investigations (for sexual abuse, 
physical abuse, or neglect) who were oversampled, and 
non-exposed individuals without a history of CM inves-
tigations, resulting in a total N = 365 (N = 307 youth with 
a maltreatment history and N = 58 comparison youth). 
Tests for demographic differences by CM status dem-
onstrated that the CM group had, older age (p = 0.035), 
higher BMI (p = 0.002), more advanced pubertal stage 
(p < 0.001), and lower household income (p < 0.001) (see 
Table 1 for complete demographic comparisons).

There were no statistically significant differences in 
mean values of CBC or DNAm estimates of all immune 
cell subtypes when comparing CM and comparison 
groups (Table  1). Across all participants, CBC and 
DNAm estimates of immune cell proportions were highly 
correlated with one another for each cell type, with the 
exception of basophils (Pearson’s correlation: neutrophils: 
r = 0.948, p < 0.001; lymphocytes: r = 0.974, p < 0.001; 
monocytes: r = 0.782, p < 0.001; eosinophils: r = 0.933, 
p < 0.001; basophils: r = 0.189, p < 0.001; Additional file 2: 
Table  S1). Excluding zero observations of basophils for 
CBC and DNAm estimates increased the correlation 
for basophils (r = 0.380, p < 0.001). Figure  1 shows CBC 
estimates plotted as a function of DNAm estimates with 
a 45-degree identity reference line and stratified by CM 
status. Distributions of CBC and DNAm estimates for 
each cell type are shown in Additional file 1: Figure S1.

We next examined the agreement between CBC 
and DNAm estimates among each cell type using the 
Bland–Altman method. Neutrophil CBC and DNAm 
estimates were significantly different from one another 
(β = -1.52, p < 0.001) with DNAm estimates being, on 
average, 1.52% lower than CBC estimates (Fig.  2A). 
Lymphocyte CBC and DNAm estimates were also 
significantly different from one another (β = -0.28, 
p = 0.014), with DNAm estimates, on average, being 
0.28% lower than CBC estimates (Fig. 2B). In contrast, 
monocyte and eosinophil CBC and DNAm estimates 
did not show significant differences from one another 
(monocytes: β = 0.07, p = 0.28; eosinophils: β = -0.06, 
p = 0.46; Fig.  2C, D). Basophil CBC and DNAm esti-
mates were significantly different from one another 
(β = -0.41, p < 0.001), with DNAm estimates being, on 
average, 0.41% lower than CBC estimates (Fig.  2E). 
The data dispersion for all immune cell subtypes was 
varied, with neutrophils having the largest range (20%-
80%) in observations and basophils having the small-
est range (0%-2.5%). Additionally, all cell types had a 
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similar dispersion of differences between CBC and 
DNAm estimates other than basophils, which had the 
greatest number of observations outside the upper and 
lower limits of agreement.

Immune cell proportion difference scores [DNAm 
estimate − CBC estimate] were regressed onto CM 
status and covariates (Table  2). Although lympho-
cytes showed a significant difference in the Bland–Alt-
man analysis, only neutrophils (β = -1.77, p < 0.001) 
and basophils (β = -0.37, p < 0.001) showed significant 
intercepts in our regression analysis, meaning that 
only these two cell types had significant differences 
between DNAm and CBC estimates after accounting 
for covariates. CM status was not a significant predic-
tor of differences in CBC and DNAm estimates for all 
immune cell subtypes (neutrophils: β = -0.02, p = 0.96; 
lymphocytes: β = 0.06, p = 0.85; monocytes: β = -0.14, 
p = 0.43; eosinophils: β = 0.04, p = 0.85; basophils: 
β = -0.06, p = 0.43; Table 2).

Study 2: Testing the impact of acute psychosocial stress 
on the concordance between CBC and DNAm estimates 
of immune cell proportions
Study 2 participants ranged in age from 18–24  years 
(mean age = 21.3, SD = 1.3), had an average BMI of 
24.2 (SD = 3.7), and were primarily female (64.3%). This 
study was designed to test the impact of ELA, and thus 
approximately half of the study participants recruited 
reported exposure to multiple adverse events in early 
life (N = 13 ELA exposure young adults and N = 15 con-
trol young adults). Four repeated blood samples were 
collected before and after an acute laboratory stressor 
(see Methods). Since study 2 involved DNAm estimates 
generated using DNA extracted from peripheral blood 
mononuclear cells (PBMCs), we conducted comparisons 
only between estimates of lymphocytes and monocytes. 
Full demographic statistics for Study 2, including CBC 
and DNAm estimates for each time-point, are shown in 
Table 3.

Table 1  Study 1 Descriptive statistics

Bold entries indicate a significance level of p < 0.05

p values are given as a result of t tests or Chi-square tests between control and maltreatment groups

Comparison (N = 58) CM History (N = 307) Total (N = 365) p value
Mean (SD)/Count (%)

Sex

 Male 28 (48.3%) 158 (51.5%) 186 (51.0%) 0.762

 Female 30 (51.7%) 149 (48.5%) 179 (49.0%)

Age (years) 11.11 (1.4) 11.53 (1.4) 11.47 (1.4) 0.035
BMI 19.93 (4.9) 22.27 (5.9) 21.89 (5.8) 0.002
Puberty Status 2.08 (0.9) 2.58 (1.0) 2.50 (1.0)  < 0.001
Income $10,000/year 5.74 (3.8) 3.37 (3.1) 3.75 (3.3)  < 0.001
Race

 White 45 (77.6%) 210 (68.4%) 255 (69.9%) 0.214

 Not white 13 (22.4%) 97 (31.6%) 110 (30.1%)

Ethnicity

 Hispanic 3 (5.2%) 48 (15.6%) 51 (14.0%) 0.057

 Non-Hispanic 55 (94.8%) 259 (84.4%) 314 (86.0%)

CBC proportions

 Neutrophils 48.97 (9.6) 49.07 (9.9) 49.05 (9.8) 0.941

 Lymphocytes 38.75 (8.8) 38.56 (9.0) 38.59 (9.0) 0.879

 Monocytes 7.57 (2.1) 7.57 (1.9) 7.57 (1.9) 0.985

 Eosinophils 4.13 (3.3) 4.16 (3.7) 4.16 (3.6) 0.936

 Basophils 0.54 (0.4) 0.55 (0.4) 0.55 (0.4) 0.863

DNAm proportions

 Neutrophils 47.45 (10.9) 47.55 (10.2) 47.53 (10.3) 0.948

 Lymphocytes 38.43 (9.9) 38.29 (9.3) 38.31 (9.3) 0.920

 Monocytes 7.63 (2.1) 7.64 (1.8) 7.64 (1.9) 0.979

 Eosinophils 4.16 (3.6) 4.09 (4.2) 4.10 (4.1) 0.899

 Basophils 0.14 (0.4) 0.15 (0.3) 0.15 (0.4) 0.935
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Across all time-points and individuals, both mono-
cytes and lymphocytes had a Pearson correlation coeffi-
cient of 0.78 (p < 0.001). When compared to time 1 (i.e., 
30 min pre-stress), time 4 (i.e., 240 min post-stress) had 
significantly lower CBC (β = -3.24, p < 0.001) and DNAm 

estimates (β = -2.22, p = 0.02) for monocyte propor-
tions. Additionally, compared to time 1, time 4 had sig-
nificantly higher CBC (β = 3.24, p < 0.001) and DNAm 
estimates of lymphocyte proportions (β = 2.22, p = 0.02), 
highlighting significant changes in PBMC immune cell 

Fig. 1  Study 1 CBC estimates of immune cell proportions are displayed on the y-axis and DNAm estimates are displayed on the x-axis. A 45-degree 
reference line is shown to display the trajectory of perfect concordance between CBC and DNAm estimates

Fig. 2  Study 1: Bland–Altman plots of neutrophils, lymphocytes, monocytes, eosinophils, and basophils. Differences (y-axis) are defined as [DNAm 
estimates − CBC estimates]. Positive observed biases indicate DNAm estimates overestimating CBC estimates, and negative observed biases 
indicate DNAm estimates underestimating CBC estimates



Page 6 of 13Apsley et al. Clinical Epigenetics           (2023) 15:33 

Table 2  Study 1 Multivariate linear regression results

Models were constructed with difference scores (DNAm estimate − CBC estimate) as the outcome, CM as the predictor, and all demographic variables as covariates

Bold entries indicate a significance level of p < 0.05

* p < 0.05. ** p < 0.01. *** p < 0.001

Neutrophils Lymphocytes Monocytes Eosinophils Basophils

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Intercept  − 1.770*** 0.50  − 0.222 0.32 0.323 0.18  − 0.121 0.23  − 0.369*** 0.07
CM history  − 0.024 0.49 0.062 0.32  − 0.142 0.18 0.042 0.22  − 0.058 0.07

Sex 0.276 0.35  − 0.301 0.21  − 0.151 0.12  − 0.050 0.15  − 0.014 0.05

Age 0.147 0.16  − 0.028 0.10  − 0.124* 0.06 0.009 0.07  − 0.077** 0.02
Income 0.029 0.06  − 0.017 0.04  − 0.014 0.02 0.001 0.03  − 0.009 0.01

BMI 0.006 0.03 0.018 0.02 0.004 0.01  − 0.040** 0.01 0.005 0.00

Pubertal stage 0.177 0.23  − 0.207 0.15 0.202* 0.08  − 0.080 0.10 0.105** 0.03
Race  − 0.067 0.40  − 0.009 0.26 0.549*** 0.15  − 0.207 0.18 0.122* 0.06
Ethnicity  − 0.716 0.51 0.296 0.33 0.068 0.19 0.037 0.23  − 0.101 0.07

Table 3  Study 2 Descriptive statistics

Demographic statistics Immune cell 
proportion 
statistics

Total (N = 28) Time 1 (N = 27) Time 2 (N = 26) Time 3 (N = 24) Time 4 (N = 23)

Mean (SD)/Count (%) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Sex CBC proportions

 Male 10 (35.7%)  Monocytes 22.88 (5.7) 22.74 (6.4) 22.69 (6.1) 19.52 (4.5)

 Female 18 (64.3%)  Lymphocytes 77.12 (5.7) 77.26 (6.4) 77.31 (6.1) 80.48 (4.5)

Age (years) 21.3 (1.3) DNAm proportions

BMI 24.2 (3.7)  Monocytes 23.72 (6.0) 22.91 (6.0) 22.62 (7.2) 20.98 (4.7)

Race  Lymphocytes 76.28 (6.0) 76.28 (6.0) 77.38 (7.2) 79.02 (4.7)

 White 19 (67.9%)

 Not white 9 (32.1%)

Group status

 ELA 13 (46.4%)

 Controls 15 (53.6%)

proportions in response to acute stress for both CBC and 
DNAm estimates. Figure 3 shows CBC estimates plotted 
as a function of DNAm estimates with a 45-degree iden-
tity reference line and stratified by time-point. Distribu-
tions of CBC and DNAm estimates for each cell type are 
shown in Additional file 1: Figure S2.

We next examined the concordance between CBC and 
DNAm estimates for monocytes and lymphocytes using 
a repeated-measures Bland–Altman method. Monocyte 
CBC and DNAm estimates were not significantly dif-
ferent from one another (β = 0.59, p = 0.14) (Fig.  4A). 
Lymphocyte CBC and DNAm estimates were also not 
significantly different from one another (β = -0.59, 
p = 0.14) (Fig. 4B).

When regressing immune cell proportion difference 
scores [DNAm estimate − CBC estimate] onto time-point 

and covariates, time-point (i.e., pre- and post-stress) was 
not a significant predictor of difference scores for lympho-
cytes or monocytes (see Additional file 2: Table S2 for post 
hoc pairwise comparisons of time-points). Further, neither 
of the predicted intercepts for difference scores in mono-
cytes and lymphocytes were significantly different from 
zero (monocytes: β = 1.16, p = 0.14; lymphocytes: β = -1.16, 
p = 0.14), indicating that there were no significant differ-
ences in DNAm and CBC estimate measurements across 
time-points. Additionally, ELA status was not a significant 
predictor of differences between DNAm and CBC esti-
mates of immune cell proportions (monocytes: β = 2.52, 
p = 0.09; lymphocytes β = -2.52, p = 0.09), indicating that 
ELA status was not a confounding variable on the concord-
ance between DNAm and CBC measurements over time 
(see Table 4 for full multilevel regression results).
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Discussion
This study assessed the concordance between CBC and 
DNAm estimates of immune cell proportions using the 
recent Illumina EPIC DNAm method [29] in the context 
of CM and acute psychosocial stress. In Study 1, DNAm 
estimates were significantly correlated with CBC values 
for all immune cells. The lower correlation coefficients in 
monocyte and basophil estimates may be due to the lim-
ited range of these cell type proportions in comparison 

with neutrophils, lymphocytes, and eosinophils [52]. 
Using Bland–Altman analysis, DNAm estimates of both 
neutrophils and basophils were significantly lower than 
CBC estimates, though CM did not significantly explain 
any variation between estimation methods. DNAm 
estimates of lymphocytes, monocytes, and eosinophils 
showed no significant deviations from CBC estimates. In 
Study 2, DNAm estimates were significantly correlated 
with CBC values for both lymphocytes and monocytes. 

Fig. 3  Study 2: CBC estimates of immune cell proportions are displayed on the y-axis and DNAm estimates are displayed on the x-axis. A 45-degree 
reference line is shown to display the trajectory of perfect concordance between CBC and DNAm estimates. See Additional file 2: Table S2 for 
statistical tests of differences between time-point concordances

Fig. 4  Study 2: Bland–Altman plots of monocytes and lymphocytes. Differences (y-axis) are defined as [DNAm estimates − CBC estimates]. Positive 
observed biases indicate DNAm estimates overestimating CBC estimates, and negative observed biases indicate DNAm estimates underestimating 
CBC estimates
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Additionally, using Bland–Altman analysis, DNAm and 
CBC estimates were not significantly different from one 
another for both monocytes and lymphocytes. While the 
acute stress manipulation caused significant changes in 
both monocyte and lymphocyte proportions over time 
across both approaches, it did not explain any variation 
in difference scores between CBC and DNAm estimates. 
Furthermore, in an exploratory analysis, ELA status did 
not impact the concordance of CBC and DNAm esti-
mates for either lymphocytes or monocytes over time.

Previous studies investigating the concordance 
between DNAm and CBC estimates of immune cell pro-
portions have been conducted in limited populations 
(e.g., patients with cancer, Down syndrome, obesity) [20] 
or niche tissues such as cord blood. Houseman and col-
leagues reported median difference scores between CBC 
and DNAm estimates to be 6.5% for neutrophils and 1.1% 
for monocytes when using their initial DNAm estimation 
library. Lymphocyte subset values ranged from 0.1–2.1% 
[20]. Importantly, the directionality of these results can-
not be interpreted because the errors were reported as 
absolute values. Using the Houseman et al. DNAm esti-
mation libraries, Koestler and colleagues reported the 
correlations of CBC and DNAm estimates to be around 
0.60 for both lymphocytes and monocytes in PBMC 
samples [53], which is in line with our findings. Further, 
work by Accomando and colleagues [21] reported cor-
relations between all immune cell subtypes when using 

the Houseman et al. DNAm estimation libraries, similar 
to our findings. However, Bland–Altman plots from this 
study exhibited negligible mean bias in immune cell sub-
type proportions.

Although prior work exists validating the original 
Houseman reference library, little research has been done 
to validate the concordance of CBC and DNAm estimates 
of immune cell proportions using the first EPIC array 
library generated by Salas and colleagues [26]. Salas and 
colleagues reported all lymphocyte cell subsets having 
DNAm estimates higher (> 1.25%) than CBC estimates. 
Monocyte values showed a similar trend with the median 
difference being less than 1% and neutrophils showed 
an opposite trend, with DNAm estimates being around 
1.5% lower than CBC estimates. Each of these values are 
comparable to and in the same direction as the differ-
ences seen in Study 1 results when using the first EPIC 
array library for DNAm estimates, with the exception 
of neutrophils, which had a similar effect size but in the 
opposite direction (see Additional file 2: Tables S3–S7 for 
results of our analysis using the first EPIC array library 
generated by Salas and colleagues [26]).

To the best of the authors’ knowledge, there have 
been no previous studies assessing the concordance of 
CBC and DNAm estimates of immune cell proportions 
in a sample of maltreated children or in adults within 
the context of acute psychosocial stress. Further, this is 
the first study, to our knowledge, validating the recently 
released “FlowSorted.BloodExtended.EPIC” library [29] 
(see Methods). Study 1 provided a unique sample for 
testing the impact of CM on the concordance between 
CBC and DNAm estimates of immune cell proportions 
in a pediatric cohort. The experimental design employed 
by Study 2 allowed us to probe stress-induced temporal 
effects on the concordance of CBC and DNAm estimates 
of immune cell proportions. Additionally, repeated meas-
urements of immune cell proportions in Study 2 were 
obtained over a 5 h time-window in response to an acute 
laboratory stressor, enabling us to detect the presence 
of temporal effects [54] of acute psychosocial stress on 
the concordance of immune cell proportion estimates. 
Contrary to expectations, we did not observe significant 
effects of CM or acute psychosocial stress on the con-
cordance of CBC and DNAm immune cell estimates.

This study is not without limitations. For both stud-
ies, accurately comparing CBC and DNAm estimates of 
immune cell proportions is contingent on the assumption 
that whole blood immune cell proportions are equiva-
lent in different blood tubes collected from the same 
venipuncture of an individual. Although most studies on 
the reliability of CBC estimates operate under the same 
premise [55–58], it is nevertheless still an assumption. 
In addition, all experiences of CM were grouped into 

Table 4  Study 2 multilevel modeling results

Immune cell difference scores for monocytes and lymphocytes were modeled 
as a function of acute stress time-point with sex, age, BMI, ethnicity, and early 
life adversity status as covariates. Monocyte estimates were reported normally 
and lymphocyte estimates are reported in parentheses. Random effects for 
individuals were included for the intercept only

Bold entries indicate a significance level of p < 0.05

* p < 0.05

Fixed effects: monocytes (lymphocytes)

Estimate SE

Intercept 1.156 (− 1.156) 0.78

Sex 0.351 (− 0.351) 1.14

Age  − 1.113* (1.113*) 0.46
BMI 0.313 (− 0.313) 0.19

Ethnicity 2.474* (− 2.474*) 1.14
Early life adversity 2.519 (− 2.519) 1.40

Time 2  − 0.474 (0.474) 0.94

Time 3  − 0.381 (0.381) 0.96

Time 4 0.936 (− 0.936) 0.97

Random effects

 Residual variance 11.52

 Individual-level vari-
ance

2.63
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one category which does not acknowledge the heteroge-
neity of biological effects resulting from differing age of 
first CM incident, type of CM, and severity of CM [59]. 
Future studies should examine the impact of detailed CM 
classification on the concordance of CBC and DNAm 
estimates. A limitation of Study 2 was the small sample 
size, larger studies with sufficient power are needed to 
more fully identify differences in immune cell estimates 
in response to acute psychosocial stress. Another limita-
tion from Study 2 was the assumption that all individuals 
experienced a comparable increase in psychosocial stress 
from baseline to follow-up time-points during the acute 
stress procedure. Additionally, our exploratory analysis of 
the impact of ELA on CBC and DNAm estimate differ-
ence scores could have been improved by using a larger 
sample of ELA and control individuals.

The null effects of CM and acute psychosocial stress on 
the concordance of CBC and DNAm estimates of immune 
cell proportions may be due in part to minimal overlap 
between CpG sites altered by exposure to stress and the 
libraries of CpG sites used in DNAm estimators. Alterna-
tively, alterations in DNAm patterns induced by CM or 
acute psychosocial stress at CpG sites overlapping with sites 
used in DNAm estimators of immune cell proportions may 
not be substantial enough to alter these estimates in a sig-
nificant way. Future studies should explore whether specific 
CpG sites used in DNAm estimations of immune cell pro-
portions overlap with other common CpG sites associated 
with physical or mental disorders. Additionally, future work 
should also be performed to test potential DNAm changes 
that take place in response to acute psychosocial stress over 
an extended period of time. Finally, we also recommend 
that more clinically practical methods [8, 60] of estimat-
ing immune cell proportions be tested for their accuracy in 
populations of individuals that have experienced CM and in 
individuals that have experienced acute psychosocial stress.

Conclusions
Although significant differences in raw value estima-
tion between CBC and DNAm exist for some immune 
cell proportions, CM and acute psychosocial stress did 
not alter the existing concordance of CBC and DNAm 
estimations of immune cell proportions. These findings 
extend previous research and suggest that study designs 
which include individuals with an exposure to adverse 
events, as well as study designs employing acute stress 
paradigms can rely on existing DNAm methods to esti-
mate proportions of immune cell subtypes.

Methods
Study 1: Participants and procedures
Study 1 participants were members of the CHS [61], 
a large multidisciplinary study designed to provide 

prospective, longitudinal data on the health and develop-
ment of children with and without a history of maltreat-
ment. The CHS is currently recruiting a large state-wide 
cohort of children recently investigated for CM and non-
maltreated comparison children. The goals of the CHS 
are to elucidate the multiple etiological processes, as well 
as mediators and moderators, believed to play a role in 
the onset and maintenance of adverse health outcomes 
among survivors of CM, and to better inform interven-
tion opportunities to reverse the negative consequences 
of CM.

Recruitment for the CHS is ongoing. Children with a 
recent (< 12 months) report of CM exposure are identi-
fied in collaboration with Pennsylvania’s Statewide Child 
Welfare Information System (CWIS). Subjects with 
recent involvement in the CWIS are invited to partici-
pate in the study through home mailings and phone con-
tact by study coordinators. Eligibility criteria include: 1) 
aged 8 to 13  years, 2) subject of a CWIS maltreatment 
report (i.e., an allegation is made and investigated) and 
agreement for participation within 12  months of CWIS 
involvement, and 3) agreement of participation by a non-
abusing caregiver. Non-maltreated comparison children 
are recruited via targeted advertisements in the same 
Pennsylvania counties as children with a history of CM 
investigations. Eligibility for participation includes: 1) no 
previous CWIS reports or contact, and 2) demographic 
similarity to a maltreatment participant. After recruit-
ment, participating families are invited to visit the Center 
for Healthy Children at The Pennsylvania State Univer-
sity for a full day of assessments and biospecimen collec-
tion. Approval from The Pennsylvania State University 
Institutional Review Board was granted, and informed 
assent (child) or consent (caregiver) was obtained from 
all participants.

Families of participants arrived at the Center for 
Healthy Children at 7:30 a.m. After an introduction to 
the study, youth underwent a physical exam followed by 
fasting whole blood collection in 10 mL and 4 mL EDTA 
tubes via antecubital venipuncture by a trained phleboto-
mist. Blood samples collected in 4 mL EDTA tubes were 
sent to Quest Diagnostics for CBC analyses within 24 h 
of collection. Genomic DNA was extracted from whole 
blood using a semi-automated approach (QIASymphony, 
Qiagen). Whole-genome DNAm levels were analyzed 
using the Illumina Infinium EPIC array.

Demographic information for each participant was col-
lected by survey. Body mass index (BMI) was obtained 
via a trained staff member collecting weight and height 
information from each participant and then calculating 
their standard weight to height-squared ratio. Pubertal 
stage was assessed by a trained staff member by taking an 
average of self-reported Tanner pubertal status measures 
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of breast growth and pubic hair growth [62]. Total house-
hold income before taxes was self-reported by caregiv-
ers using a 0–11 Likert scale (0 = Under $10,000/year, 
1 = $10,000-$19,999/year… 11 = More than $120,000/
year). Race was caregiver-reported and collapsed into a 
binary variable where “White” was coded as zero and all 
other races were coded as one. This was done to ensure 
a large enough sample size in each category to detect 
statistically significant effects of race. Ethnicity was car-
egiver-reported as either “Hispanic” or “Non-Hispanic”.

Cross-sectional data reported in Study 1 were drawn 
from the baseline (i.e., Time 1) assessment of currently 
enrolled CHS participants. Although recruitment for this 
cohort study is ongoing with a target enrollment of 700 
children, an initial subset of 439 participants were avail-
able for the purpose of these analyses. Of the 439 par-
ticipants who had completed Time 1 assessments, 435 
consented to anthropometric measurements and 401 
consented to and successfully completed blood draws (1 
caregiver refusal, 33 participant refusals, 4 attempted but 
incomplete). The first batch for DNAm analysis consti-
tuted 286 total samples and 275 samples survived DNAm 
QC measures (see DNAm Quality Control and Immune 
Cell Proportion Estimations subsection). A second batch, 
including 126 samples, was submitted for DNAm analy-
sis, of which all samples survived DNAm QC measures. 
Both batches combined amounted to a total of 401 indi-
viduals. Of these 401 samples, 36 were excluded from the 
current analyses due to failed/missing CBC tests or other 
missing covariates, making our final analytic sample a 
total of 365 participants. No demographic differences 
were present between groups included and excluded 
from the analysis, with the exception of BMI and puber-
tal status (BMI being higher in the included group and 
pubertal status being lower; p < 0.05).

Study 2: Participants and procedures
Study 2 was comprised of a sample of 28 healthy indi-
viduals aged 18 to 25 years. Participants were recruited 
by word of mouth and advertisements on campus bul-
letin boards. During a visit to The Pennsylvania State 
University’s Clinical Research Center, participants were 
subjected to the Trier Social Stress Test (TSST) fol-
lowed by a 4-h post-test sampling and questionnaire 
period. Testing for each participant began at 11:00am 
and ended by 4:15 pm. Blood was drawn at four differ-
ent points during this time period (30  min before the 
TSST and 30, 90, and 240 min post-TSST). Participants 
were given specific instructions to refrain from exces-
sive physical activity on the day of the testing, consum-
ing alcohol for 12 h before their arrival, and eating and 
drinking (besides water) for 2 h prior to the testing ses-
sion. The TSST was scheduled to begin at 12:00 pm to 

minimize the effects of circadian changes in cortisol. 
Detailed information on study procedures, including 
details on the TSST, has been reported previously [63].

The original motivation for this data collection was 
to examine differences in gene expression due to ELA 
status. For the purpose of the current investigation, we 
combined data from all participants, including those 
who had experienced ELA and controls. Exploratory 
analyses in Study 2 further examined differences in 
DNAm estimates of immune cell proportions by ELA 
status. ELA status of participants was assessed by a 
trained clinical interviewer during a phone interview 
using the Stressful Life Events Screening Questionnaire 
[64], as described previously [63]. BMI was obtained 
by collecting weight and height information from each 
participant and then calculating their standard weight 
to height-squared ratio. Ethnicity was self-reported as 
either “Hispanic” or “Non-Hispanic”.

Whole blood samples were repeatedly collected via 
an IV catheter into the antecubital vein. Blood samples 
collected in 4 mL EDTA tubes were sent to Quest Diag-
nostics for CBC analysis within 24  h. Blood samples 
collected in 10 mL EDTA tubes were immediately centri-
fuged for 10 min at 1500 g prior to collection of plasma. 
Peripheral blood mononuclear cells (PBMCs) were then 
isolated through density-gradient centrifugation using 
Ficoll. A small fraction of granulocytes in PBMC samples 
may have been retained (mean remaining granulocyte 
composition was 1.6% according to DNAm estimates) 
during processing. DNA was extracted from PBMCs 
using QIAmp mini kit (Qiagen) and sent to the Genome 
Sciences Core at The Pennsylvania State University for 
whole-genome DNAm analysis.

DNAm quality control and immune cell proportion 
estimations
For both studies, DNA was bisulfite converted and pro-
cessed by either McGill University (Study 1) or the 
Genome Sciences Core at The Pennsylvania State Univer-
sity (Study 2). DNAm levels were probed using the Illu-
mina Infinium EPIC array [26]. EPIC array idat imaging 
files were converted to DNAm M and β value matrices 
with the minfi [65] package using R statistical software (R 
v4.1.2). All samples that had an average probe detection 
p value > 0.05 were excluded from our analyses. Sample 
normalization was performed according to recommen-
dations by Salas and colleagues using the noob nor-
malization method (which has been shown to decrease 
technical variation between batches [66]) in the minfi 
package [29] and DNAm estimates of blood cell propor-
tions were computed using the ProjectCellType_CP func-
tion in the FlowSorted.Blood.EPIC package, which is 
equivalent to the ProjectCellType function in minfi. The 
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“FlowSorted.BloodExtended.EPIC” library [29] was used 
as reference data for blood cell proportion estimates in 
both studies.

Modeling CBC and DNAm estimates
The results from CBC tests and the DNAm estimates 
of immune cell proportions do not report the same cat-
egories of immune cell subtypes. CBC tests report neu-
trophils, lymphocytes, monocytes, eosinophils, and 
basophils whereas the recent Salas et al. DNAm estimates 
[29] provide a much larger subset of lymphocytes such as 
memory and naïve CD4T, CD8T, and B-cells, as well as 
natural killer (NK) cells and regulatory T-cells. All granu-
locytes (neutrophils, eosinophils, and basophils) were 
modeled in Study 1, whereas only PBMCs (composed 
only of monocytes and lymphocytes) were used in Study 
2. The following formulae were used to compare the dif-
fering cell type reports from CBC and DNAm estimates:

Statistical analysis
Study 1
In Study 1, Pearson correlation coefficients were calcu-
lated to test the association between CBC and DNAm 
estimates of immune cell proportions. Bland–Altman 
analyses [67, 68] were then performed to test for the con-
cordance between each cell type’s CBC and DNAm esti-
mates. Briefly, Bland–Altman analysis is a widely used 
statistical method to test the agreement between two 
types of measurement constructs, usually one of which 
is considered the “gold standard”. The mean of the two 
measurements is plotted on the x-axis and their differ-
ence is plotted on the y-axis. Usually, these analyses also 
include information on the mean difference between 
measurements and what are called the Limits of Agree-
ment (95% confidence intervals on the mean difference 

CBCNeutrophils ↔ DNAmNeutrophils

CBCLymphocytes ↔ DNAmNaiveB−Cells

+ DNAmMemoryB−Cells + DNAmRegulatoryT−Cells

+ DNAmNK−Cell + DNAmNaiveCD4T

+ DNAmMemoryCD4T + DNAmNaiveCD8T

+ DNAmMemoryCD8T

CBCMonocytes ↔ DNAmMonocytes

CBCEosinophils ↔ DNAmEosinophils

CBCBasophils ↔ DNAmBasophils

between methods). (See [67, 68] For a more in-depth 
treatment of Bland–Altman analysis).

Multivariate linear regression was used to test whether 
the presence of CM significantly altered the concordance 
of CBC and DNAm estimates of immune cell propor-
tions. The difference between CBC and DNAm estimates 
[DNAm estimate − CBC estimate] was treated as the 
outcome and CM was treated as a predictor. Additional 
covariates included age, sex, BMI, household income, 
average Tanner measurements for pubertal stage, race, 
and ethnicity. Although income was assessed as a cat-
egorical variable, it was treated as continuous. “White” 
and “non-Hispanic” racial and ethnic categorizations 
were treated as reference groups due to the fact that 
they were the largest groups in the sample. Continuous 
covariates were sample-mean centered and dichotomous 
covariates (0 or 1) were coded as − 0.5 or 0.5 to allow for 
easier interpretation of regression estimates for the sam-
ple mean.

Study 2
In Study 2, correlation coefficients were calculated to test 
the association between CBC and DNAm estimates of 
immune cell proportions. A repeated-measures Bland–
Altman analysis [69] for each cell type’s CBC and DNAm 
estimates was used to test for the concordance of these 
values, as described in Study 1.

Due to the repeated-measures study design, a multi-
level modeling framework was used to test whether acute 
psychosocial stress significantly altered the concordance 
of CBC and DNAm estimates of immune cell propor-
tions. The difference between CBC and DNAm estimates 
of cell proportions [DNAm estimate − CBC estimate] was 
treated as the outcome and the time-point was treated as 
the predictor to determine if there was significant vari-
ation in difference scores across time-points. Individual 
random effects were included for the model intercept 
and additional covariates included sex, age, BMI, ethnic-
ity, and ELA status. All variables, other than time-point, 
were mean centered as described for Study 1.
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