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Abstract 

Introduction:  Statins are lipid-lowering drugs and starting treatment has been associated with DNA methylation 
changes at genes related to lipid metabolism. However, the longitudinal pattern of how statins affect DNA methyla-
tion in relation to lipid levels has not been well investigated.

Methods:  We conducted an epigenetic association study in a longitudinal Swedish twin sample in previously 
reported lipid-related CpGs (cg10177197, cg17901584 and cg27243685). First, we applied a mixed-effect model to 
assess the association between blood lipids (total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-
density lipoprotein cholesterol (HDL), total triglyceride (TG)) and DNA methylation. Then, we performed a piecewise 
latent linear–linear growth curve model (LGCM) to explore the long-term changing pattern of lipids and methylation 
in response to statin treatment. Finally, we used a bivariate autoregressive latent trajectory model with structured 
residuals (ALT-SR) to analyze the cross-lagged effects in different lipid-CpG pairs in statin users and non-users.

Results:  We replicated the associations between TC, LDL, HDL and DNA methylation level in cg17901584 and 
cg27243685 (P values ranged from 4.70E−12 to 1.84E−04). From the piecewise LGCM, we showed that TC and LDL 
significantly decreased in statin users before treatment started and then remained stable. For non-statin users, we 
only found a slightly significant decreasing trend for TC and TG. We observed a similar dynamic pattern for methyla-
tion levels at cg27243685 and cg17901584. Before statin initiation, cg27243685 showed a significantly increasing 
trend and cg17901584 a decreasing trend, but post-treatment, there were no additional changes. From the ALT-SR 
model, we found TG levels to be significantly associated with the DNA methylation level of cg27243685 at the next 
measurement in statin users (estimate = 0.383, 95% CI: 0.173, 0.594, P value < 0.001).

Conclusions:  Longitudinal blood lipid and DNA methylation levels change after statin treatment initiation, where the 
latter is mostly a response to alterations in lipid levels and not vice versa.

Keywords:  DNA methylation, Blood lipids, Statin treatment

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
DNA methylation is an epigenetic mechanism that 
involves the addition of a methyl group to the 5’-posi-
tion of a cytosine and regulates gene expression without 
changing the DNA sequence. DNA methylation is com-
monly found in gene promoters containing numerous 

cytosine followed by guanine dinucleotides (CpGs). The 
process can be a response to environmental and life-
style exposures, and may be involved in the mechanisms 
contributing to disease, such as cardiovascular disease 
(CVD) [1].

Elevated levels of blood lipids are important risk factors 
for CVD. Previous epigenome-wide association studies 
(EWAS) showed an association between elevated blood 
lipids and methylation at CpGs in genes involved in lipid 
metabolism, such as the 24-dehydrocholesterol reduc-
tase (DHCR24) and ATP-binding cassette member-1 
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subfamily G (ABCG1) genes [2–4]. Statins are drugs 
that effectively lower circulating lipid levels and protect 
against CVD. A prior epigenetic study showed that statin 
use is associated with DNA methylation levels at certain 
CpGs in the genome, particularly in the above-mentioned 
genes [5]. However, the longitudinal pattern of DNA 
methylation changes in response to statin therapy has not 
been clarified, particularly the direction of effects, if lipid 
changes come first, or if methylation changes come first 
under the statin treatment.

Here, we conducted a CpG-based epigenetic associa-
tion study in a longitudinal Swedish twin sample to (1) 
replicate the association between blood lipids and DNA 
methylation of candidate CpGs, (2) evaluate the effect of 
statin treatment on the longitudinal trend of blood lipids, 
(3) examine the influence of statin treatment on DNA 
methylation changes in selected CpGs, and (4) explore 
the co-varying dynamic pattern over time of blood lipids 
and DNA methylation levels of these CpGs in response to 
statin therapy. The scheme of the study design is shown 
in Fig. 1.

Methods
Study population
The study population included individuals from the 
Swedish Adoption/Twin Study of Aging (SATSA), a 
sub-study of the Swedish Twin Registry (STR). Details 

on the study design, sample characteristics, and meth-
ods of data collection have been described in previous 
publications [6–8]. Briefly, SATSA, launched in 1984, 
has overall 2018 participants and includes 10 waves of 
repeated measurements of various aspects of aging-
related information from Swedish twin pairs [6]. In 
each wave, the individuals were examined using a com-
prehensive questionnaire survey to collect participants’ 
information concerning their working environment and 
health-related behaviors. In addition, in-person testing 
(IPT) was performed with health examinations, struc-
tured cognitive tests, and blood sample collection in a 
subsample of the SATSA cohort [9]. The naming con-
vention was “IPT” with a number (for example, first IPT 
was IPT1). IPT1 was performed in 1986 to 1988, and 
then every third year, a new IPT was conducted. After 
IPT8 the interval was every second year. A total of ten 
IPTs were conducted through 2014. IPT4 was excluded 
because it was implemented only through telephone 
survey. For the inclusion and exclusion of IPT samples, 
briefly, participants in IPT1 were those who responded 
to questionnaire 1 and were above 50  years old at the 
start of IPT1. From IPT2 to IPT5, participants included 
those who had taken part in the previous IPT and new 
twins who had recently turned 50 years old. From IPT6 
and onwards, there were no new twins added, only lon-
gitudinal followed-up (Fig. 1).

Fig. 1  The scheme of study design. This figure describes how the study sample generated (below part) and the statistical analysis plan (up part). 
The study sample is a sub-sample of SATSA population who participated in in-person testing (IPT) from the first IPT (IPT1, 1986–1988) to the last 
one (IPT10, 2012–2014). Participants in IPT1 were those who responded to questionnaire 1 and were above 50 years old at the start of IPT1. From 
IPT2 to IPT5, participants included those who had taken part in the previous IPT and new twins who had recently turned 50 years old. From IPT6 
and onwards, there were no new twins added, only longitudinal followed-up (Arrows from IPT5 to IPT10 represent only following-up and no new 
twins added). DNA methylation was measured in participants attending at least one of these IPTs (IPT3, IPT5, IPT6, IPT8, IPT9, IPT10). Based on the 
samples with DNA measurements in SATSA, we conducted a CpG-based epigenetic association study in a longitudinal Swedish twin sample to 
test the effect of statin treatment on the longitudinal trend of blood lipids and on the longitudinal changes of DNA methylation in selected CpGs, 
and to explore the long-term co-varying pattern of blood lipids and DNA methylation levels of these CpGs in response to statin therapy. SATSA: the 
Swedish Adoption/Twin Study of Aging; IPT: in-person testing
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Totally, 861 individuals have participated in at least 
one wave of IPT in the SATSA cohort. DNA methyla-
tion was measured in 536 individuals attending at least 
one of these IPTs (IPT3, IPT5, IPT6, IPT8, IPT9, IPT10). 
After excluding one individual’s samples used for qual-
ity control of different DNA methylation chip assays, 535 
individuals corresponding to 1399 samples with up to six 
DNA methylation measurements were included in the 
present study (Fig. 1). Of 535 participants, there were 83 
MZ twin pairs, 155 DZ twin pairs and 59 singletons. Sin-
gleton was defined as those individuals in the cohort who 
only have his/her own information but we do not have 
information about his/her twin. All participants provided 
informed consent, and ethics approval for this study was 
given by the Regional Ethics Board at Karolinska Insti-
tutet, Stockholm, Sweden.

Definition and measurement of lipids and statin use
Serum was extracted from whole blood and stored at 
− 70 °C for the estimation of lipid profiles. Total triglyc-
eride (TG) and total cholesterol (TC) levels were meas-
ured by the enzymatic calorimetric method at all IPTs 
except IPT4. High-density lipoprotein cholesterol (HDL) 
was measured by the precipitation method at IPT1 and 
homogeneous assays were used in later IPTs [10]. Outli-
ers were removed as described in a previous study [11]. 
Low-density lipoprotein cholesterol (LDL) was tested 
only at IPT7-10; therefore, we used the Friedewald 
equation [12] “LDL = TC—HDL—TG/5” to impute the 
missing values of LDL. The correlation between LDL 
measured and LDL calculated was 98.8%, demonstrat-
ing the high quality of imputation. In general, Friedewald 
equation is not valid for TG levels greater than 400 mg/
dL (equal to 4.52 by multiplying by 0.0113 to convert 
to millimoles per liter (mmol/L)) and direct measure-
ment of LDL is preferred in this situation. We have 1.5% 
(21/1399) of samples with TG higher than 400  mg/dL; 
however, their direct LDL measurements were missing, 
we hence still chose to use calculated LDL for TG levels 
higher than 400 mg/dL, but sensitivity analyses were fur-
ther performed by excluding those 21 participants. All 
lipid values are expressed in mmol/L.

Information on statin use was obtained from self-
reported records in IPTs and from data linked from the 
Swedish Prescribed Drug Register available from 2005 
and onwards. In our dataset, the most commonly used 
statin was simvastatin, which accounted for approxi-
mately 77% of all statin use. Atorvastatin is the second 
commonly used statin, followed by Rosuvastatin, Pravas-
tatin and Fluvastatin. We defined “statin users” as indi-
viduals with at least one record of taking any types of 
statin therapy and coded it as 1. Likewise, “non-statin 
users” were coded as 0.

DNA methylation measurements
Blood samples for DNA methylation testing were col-
lected from a subsample of SATSA participants [7, 8]. 
DNA was extracted from peripheral blood and then 
treated with bisulfite using the EZ-96 DNA MagPrep 
methylation kit (Zymo Research, Irvine & Tustin, Califor-
nia, USA). Using bisulfite-converted DNA, methylation 
of DNA was quantified by the Infinium HumanMethyla-
tion450 BeadChip (Illumina, Inc., San Diego, California, 
USA) or Infinium Methylation EPIC BeadChip assays 
(Illumina, Inc.). Methylation data were harmonized 
using a preprocessing pipeline including quality control, 
normalization and adjustment for cell counts and batch 
effects, as described in previous studies [7, 8]. Finally, 
255,356 CpGs from both arrays remained in the analy-
sis, and repeated measurements of DNA methylation 
were distributed over IPT3, IPT5, IPT6, IPT8, IPT9, and 
IPT10. Beta values ranging between 0 and 1 were used as 
DNA methylation levels.

For the selection of statin-associated CpGs, five can-
didate CpGs were chosen from Ochoa-Rosales et  al. 
[5]. The first two, cg17901584 and cg10177197, are 
located in the DHCR24 gene that encodes an enzyme 
involved in cholesterol biosynthesis, oxidative stress 
response, neuroprotection, anti-apoptosis and anti-
inflammatory activities [13]. The other two, cg06500161 
and cg27243685, are located in the ABCG1 gene that 
encodes a protein that plays an important role in the pro-
cess of reverse cholesterol transport [14]. The last one, 
cg05119988, is located in sterol-C4-methyl oxidase–like 
gene that encodes enzyme to catalyze the demethylation 
of C4-methylsterols in the cholesterol synthesis pathway. 
However, cg06500161 and cg05119988 were excluded 
from our analysis because they failed to pass the quality 
control procedure.

Statistical analysis
To replicate the longitudinal association between blood 
lipids and DNA methylation in selected CpGs (aim 1), 
we used a linear mixed effect model. DNA methylation 
level was used as a dependent variable and lipid level as 
an independent variable. Age (repeated measurement, 
continuous variable), sex (binary variable, women/men 
coded as 1/0), and smoking (repeated measurement; 
non-smoker, ex-smoker and current smoker coded as 1, 2 
and 3, respectively) were covariates. Individual ID nested 
within twin pair ID was entered as a random effect, other 
variables were fixed effects.

For aim 2 and 3, examining the statin effect on the 
longitudinal changes of blood lipids and DNA methyla-
tion, a piecewise latent linear–linear growth curve model 
(LGCM) was used. Details on the model are presented 
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in Additional file  1: Methods, Figure S1, and Tables 
S1-S2. Briefly, the piecewise LGCM was constructed in 
the framework of a structural equation model (SEM), 
and in our study it was composed of two separate lin-
ear segments that were connected by a knot (or change 
point), here defined as the IPT of starting statin use. The 
piecewise LGCM has three latent variables: one inter-
cept measuring the individual lipid (or methylation) level 
at the knot and two slopes (denoted as Pre_slope and 
Post_slope, respectively) measuring the changing rate of 
lipids (or DNA methylation) over time before and after 
statin therapy for each individual. The piecewise LGCM 
was established separately for statin users and non-users. 
Of note, non-statin users did not have a change point 
and the piecewise LGCM was reduced to one phase with 
only two latent variables (intercept and Pre_slope). We 
included sex, baseline age, and statin use as time-inde-
pendent covariates in the regression equation of latent 
intercepts and slopes, as we assumed that these covari-
ates would have associations with these latent variables 
[5, 7, 8, 15]. However, statin use only had associations 
with Pre_slopes.

To fulfill aim 4, to examine the co-varying dynamic pat-
terns of blood lipids and DNA methylation levels across 
multiple time points in response to statin treatment, we 
used a bivariate autoregressive latent trajectory model 
with structured residuals (ALT-SR model) stratified by 
status of statin therapy. We used the same ALT-SR model 
as in our previous research [16]. More details are found 
in Additional file  1: Method and Figure S2. Briefly, the 
ALT-SR model is also established in the frame of SEM 
and composed of two parts: the autoregressive model 
(AR) and the linear latent growth curve model (LGM). 
The LGM was established first by the latent intercept and 
the latent slope, which had the same interpretation as in 
the piecewise LGCM. The AR model measured the co-
varying pattern of DNA methylation and lipids over time 
and was then established based on two regression paths: 
the autoregressive path measuring the within-person 
changes of DNA methylation or lipids over time, and the 
cross-lagged path measuring the predicted effect of DNA 
methylation at one time point on the within-person lipid 
level at the adjacent later time point, and/or vice versa. 
The ALT-SR was constructed separately in statin users 
and non-users, and differences between the coefficients 
from separate ALT-SR were used to assess the statin 
effect on the co-varying dynamic patterns of blood lipids 
and DNA methylation levels over time. Sex and baseline 
age were included as time-independent covariates.

The Bonferroni method was applied to control for mul-
tiple comparisons based on the numbers of independ-
ent tests. In the piecewise LGCM and ALT-SR model, 
three indices and their thresholds were used to indicate 

a well-fit model: chi-square value (P value > 0.05), root-
mean-square error of approximation (RMSEA) (< 0.06), 
and comparative fit index (CFI) (> 0.95) [17]. Sensitivity 
analyses for all the aims were conducted by excluding 
samples with TG levels greater than 400 mg/dL to assess 
the impact of imputation of missing measurement of 
LDL.

All analyses were performed with R software (4.0.5). 
The Lavaan package (0.6–9) was used to fit the piecewise 
LGCM and ALT-SR model. Onyx software [18] was used 
to create the diagrams in Additional file 1: Figure S1 and 
Figure S2.

Results
Characteristics of the study sample
A total of 535 participants in SATSA with repeated 
measurements of DNA methylation and lipid levels were 
included in the analysis. The characteristics of the study 
sample are shown in Table  1. Among the 535 partici-
pants, 95 (18.0%) were statin users; of these, 43 (45.3%) 
started to use statins at IPT8, 20 (21.1%) started to use 
statins at IPT6, and 13.7% (13/95) and 10.5% (10/95) 
started to use statins at IPT5 and IPT9, respectively. Of 
note, three individuals were excluded from the analysis 
of the piecewise LGCM, as their data from the starting 

Table 1  Characteristics of the study population

Baseline values of age, smoker, TC, LDL, HDL and TG are shown. TC, LDL, HDL 
and TG are shown as median (interquartile range) because of their skewed 
distribution. MZ: monozygotic twins; DZ: dizygotic twins; IPT: in-person testing; 
TC: total cholesterol, LDL: low-density lipoprotein cholesterol; HDL: high-density 
lipoprotein cholesterol; TG: total triglyceride; SD: standard deviation; IQR: 
interquartile range

Variables N or Mean (median) value

N of individuals 535 (59 singletons, 83 MZ 
twin pairs, 155 DZ twin 
pairs)

Age (years), mean (SD) 68.2 (9.5)

Female (%) 313 (58.5)

Smoker (%) 94 (17.6)

TC (mmol/L), median (IQR) 6.1 (5.4–6.9)

LDL (mmol/L), median (IQR) 4.1 (3.6–4.8)

HDL (mmol/L), median (IQR) 1.4 (1.2–1.7)

TG (mmol/L), median (IQR) 1.3 (0.9–1.9)

Statin user (%) 95 (18.0)

Starting wave of statin use (%)

 IPT3 1 (1.1)

 IPT5 13 (13.7)

 IPT6 20 (21.1)

 IPT8 43 (45.3)

 IPT9 10 (10.5)

 IPT10 5 (5.3)

 Missing 3 (3.2)
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wave was missing. Correlations for MZ and DZ’s lipid 
and methylation levels are shown in Additional file  1: 
Table  S3. Numbers of repeated measurements of blood 
lipids and DNA methylation at different IPTs are shown 
in Additional file 1: Table S4.

Association between DNA methylation in candidate CpGs 
and blood lipids
We selected previously reported lipid-related CpGs 
as candidate CpGs (cg10177197, cg17901584 and 
cg27243685). In the mixed effect models (Table  2), 
cg17901584 annotated to DHCR24 were positively asso-
ciated with TC, LDL and HDL, whereas cg27243685 
annotated to ABCG1 were negatively associated with 
TC, LDL and HDL, and no significant associations were 
found for the two CpGs with TG. We did not find signifi-
cant associations for cg10177197 with any of the lipids.

Effect of statin therapy on the longitudinal trend of blood 
lipid levels
In the piecewise LGCM, we observed that TC and LDL 
in statin users significantly decreased from the first IPT 
until the time point when participants started to use 
statins (Pre_slope of TC for men: − 0.567, P < 0.001, for 
women: − 0.536, P < 0.001; Pre_slope of LDL for men: 
− 0.532, P < 0.001, for women: − 0.507, P < 0.001) and 
then did not change significantly in the phase after statin 
initiation (Post_slope of TC for men: − 0.094, P = 0.470, 
for women: 0.123, P = 0.442; Post_slope of LDL for men: 
− 0.053, P = 0.600, for women: 0.125, P = 0.378). TG 
did not show any significantly declining or rising trend 
either before or after statin therapy. For non-statin users, 
we found a statistically significant decreasing trend for 
TC both in men (Pre_slope: − 0.084, P = 0.002) and in 

women (Pre_slope: − 0.053, P = 0.007), while only in 
women for TG (Pre_slope: − 0.040, P = 0.005) (Figs. 2, 3).

The TC level at the knot (intercept) was significantly 
different between sexes (estimate: 0.522, P < 0.001) and 
between statin users and non-users (estimate: − 0.816, 
P < 0.001). The linear slope for TC before statin use dif-
fered significantly across different ages (estimate: − 0.007, 
P < 0.001) and was steeper in statin users compared to 
non-users (estimate: − 0.483, P < 0.001). The slope after 
statin initiation did not associate with age and sex. Simi-
lar patterns of associations between intercept, Pre_slope 
and Post_slope with covariates were found for LDL. We 
did not find any significant associations between inter-
cept, slopes and covariates for TG. The piecewise model 
had the best fit for TG following the criteria of CFI and 
RMSEA. The piecewise model did not converge for HDL; 
therefore, the result was not shown (Table 3).

Effect of statin therapy on the longitudinal trend of DNA 
methylation in candidate CpGs
In statin users, we found a statistically significant increas-
ing trend for DNA methylation level of cg27243685 
before statin use (Pre_slope for men: 0.096, P < 0.001, and 
for women: 0.066, P = 0.002) and a decreasing trend for 
cg17901584 in women (Pre_slope: − 0.146, P = 0.012). No 
increasing or declining trend was found after statin ini-
tiation for the three CpGs. For non-statin users, we only 
observed significantly decreasing changes of DNA meth-
ylation levels over time for cg17901584 in female twins 
(Pre_slope: − 0.067, P = 0.003) (Figs. 4, 5).

DNA methylation level at the knot differed signifi-
cantly between sexes for cg17901584 (estimate: − 0.230, 
P = 0.006) and cg27243685 (estimate: − 0.120, P = 0.001). 
Moreover, age (estimate: − 0.005, P = 0.009) and statin 

Table 2  Associations between blood lipids and DNA methylation from the mixed effect models

Age, sex and smoking were adjusted for as covariates. The Bonferroni adjusted significance level was set to 0.013 (0.05/4). TC: total cholesterol, LDL: low-density 
lipoprotein cholesterol; HDL: high-density lipoprotein cholesterol; TG: total triglyceride; CI: confidence interval

Dependent variables Independent variables Estimate 95% CI P value

cg10177197 TC − 0.001 − 0.003, 0.001 0.263

LDL − 0.003 − 0.005, 0.000 0.023

HDL − 0.007 − 0.014, 0.000 0.051

TG 0.004 0.001, 0.006 0.015

cg17901584 TC 0.016 0.011, 0.020 4.70E−12

LDL 0.014 0.009, 0.020 3.35E−07

HDL 0.038 0.023, 0.054 2.46E−06

TG − 0.002 − 0.008, 0.005 0.631

cg27243685 TC − 0.005 − 0.008, − 0.003 1.28E−06

LDL − 0.004 − 0.007, − 0.002 6.93E−04

HDL − 0.013 − 0.020, − 0.006 1.84E−04

TG 0.003 0.000, 0.006 0.031



Page 6 of 14Qin et al. Clinical Epigenetics          (2022) 14:153 

use (estimate: 0.153, P < 0.001) had different methyla-
tion level for cg27243685. The slope before statin use was 
associated with sex for cg10177197 (estimate: 0.042, 
P = 0.006) and cg17901584 (estimate: − 0.080, P = 0.012), 
while associated with statin use for cg27243685 (esti-
mate: 0.079, P = 0.001). We did not find any significant 
associations between Post_slope and covariates for the 
three CpGs. The piecewise model had the best fit for 
cg17901584, and was only moderately good for the other 
CpGs (Table 4).

Effect of statin therapy on the co‑varying pattern of blood 
lipid levels and DNA methylation in candidate CpGs
From the ALT-SR model using complete samples with 
men and women combined, we only observed that TG 

at IPT5 was significantly associated with DNA methyla-
tion level on cg27243685 at IPT6 in statin users (esti-
mate = 0.383, P < 0.001). We did not find any other 
significant cross-lagged effects between lipid levels and 
methylation at CpGs. Detailed results from the cross-
lagged effect model are shown in Additional file  1: 
Table S5.

Sensitivity analyses
The models from sensitivity analyses of piecewise 
LGCM did not converge for cg10177197. The remain-
ing results from sensitivity analyses were consistent 
with those from the primary analyses (Additional file 1: 
Tables S6-S9, Additional file 1: Figures S3-S6).

Fig. 2  Longitudinal trajectory of serum lipids levels in response to statin treatment in Swedish male twins. This figure shows the longitudinal 
trajectory of serum lipids in response to statin therapy in Swedish male twins either in raw data or estimated from piecewise latent growth curve 
model (LGCM). The left part shows the longitudinal trend of raw lipid levels, where the yellow color represents the longitudinal trend of blood lipid 
for non-statin users and the purple line represents for statin users. The middle part is the longitudinal trend of predicted lipid levels derived from 
piecewise LGCM, similarly, the pink line represents the trend for non-statin users and the blue line is for statin users. Additional tables on the right 
list the estimates and P values of intercepts and slopes of predicted trajectories in the middle part for both statin users and non-users
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Discussion
Our study has confirmed that statin treatment shows 
long-term efficacy in reducing lipid levels. Moreo-
ver, statin therapy is also associated with changes in 
DNA methylation levels at specific CpGs (for exam-
ple, cg27243685 in the ABCG1 gene), where the drug 
effect altered lipid levels which thereafter altered DNA 
methylation levels. We further analyzed the co-varying 
relationships between blood lipids, DNA methylation 
and statins using a longitudinal twin sample. Although 
results were mostly non-significant, we identified an 
association between TG levels and DNA methylation 
at a later follow-up in statin users. The findings from 
sensitivity analyses were consistent with those from 
the primary analyses and lead to similar conclusions 
about the statin effect. This study provides the first 

comprehensive assessment of the long-term patterns 
of change in lipid profiles and DNA methylation in 
response to statin therapy. It is important for a better 
understanding of the direction of effect, which changes 
come first, lipid or methylation, under the statin treat-
ment. Moreover, it is important from a clinical perspec-
tive, for example, in what way DNA methylation could 
be used in future clinical practice.

In our analysis, we found significant associations 
between methylation level in cg17901584 and cg27243685 
and blood lipids (TC, LDL and HDL), and some of the 
associations even reached suggestive genome-level sig-
nificance [19]. Our results are to the most part in agree-
ment with previous EWAS [2, 3, 20]. For example, the 
Rotterdam Study (n = 725 in the discovery population 
and n = 760 in the replication population) found that 

Fig. 3  Longitudinal trajectory of serum lipids levels in response to statin treatment in Swedish female twins. This figure shows the longitudinal 
trajectory of serum lipids in response to statin therapy in Swedish female twins. The left three sub-figures show the longitudinal trend of raw 
lipid levels, where yellow lines represent the trend for non-statin users and the purple lines are for statin users. The middle sub-figures show the 
longitudinal trend of predicted lipid levels estimated from piecewise latent growth curve model (LGCM), where the purple lines represent the trend 
for non-statin users and the blue lines are for statin users. Tables on the right list the estimates of predicted trajectories (intercepts and slopes) and 
their P values for statin users and non-users
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cg17901584 was positively associated with HDL and nega-
tively associated with TG [2]. The other EWAS with larger 
sample size found several CpGs associated with lipid lev-
els, which included cg17901584 and cg27243685 and have 
the same direction of the associations as we found [3, 20]. 
In our study, we also observed positive associations for 
DNA methylation levels in cg17901584 with HDL, and 
observed negative associations between cg27243685 and 
this lipid. cg17901584 is located at the TSS1500 (200–1500 
bases upstream of transcription start site) of the DHCR24 
gene, and cg27243685 is located at the 5’UTR(untranslated 
region) or gene body of the ABCG1 gene. The DHCR24 
gene encodes for the enzyme 3-hydroxysterol-24 

reductase, which is involved in multiple pathways of pro-
ducing cholesterol. The ABCG1 gene encodes a protein 
which belongs to the superfamily of ATP-binding cassette 
(ABC) transporters and is involved in the reverse choles-
terol transport pathway that efflux cholesterol to HDL. 
Therefore, associations between methylation in these genes 
and lipids are plausible. Other studies found that HDL was 
negatively associated with cg27243685, and this CpG was 
also negatively associated with ABCG1 expression [3, 21]. 
Carolina Ochoa-Rosales et  al. not only found a negative 
association between cg27243685 and ABCG1 expression 
[5], but also observed a positive association between meth-
ylation of cg17901584 and ABCG1 expression. Therefore, 

Fig. 4  Longitudinal trajectory of DNA methylation levels in response to statin treatment in Swedish male twins. This figure shows the longitudinal 
trajectory of DNA methylation levels in response to statin therapy either in raw data (left part) or in predicted data estimated from piecewise latent 
growth curve model (middle part) in Swedish male twins. Yellow and purple lines shown in the left part of figure represent the longitudinal trend 
of raw DNA methylation levels for non-statin users and statin users, respectively. Similarly, pink and blue lines in the middle part represent the 
longitudinal trend of predicted DNA methylation levels derived from piecewise latent growth curve model for non-statin users and statin users. 
Tables on the right show estimates and P values of the intercepts and slopes of the predicted trajectories in statin users and non-users
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the different associations with ABCG1 expression for the 
two CpGs may partly explain their opposite associations 
with lipids. Furthermore, from the perspective of biologi-
cal mechanism, higher TG, LDL or TC levels and lower 
HDL might lead to the changes of DNA methylation that 
is associated with the expression of lipid associated genes 
and ultimately impact the lipid transport and metabolism. 
These findings suggest a role for epigenetics, that the cho-
lesterol inhibits its own synthesis via the epigenetic path-
way [22]. In terms of the complex feature of the epigenetic 
landscape, more studies are needed.

Moreover, we observed that statin users showed a 
steeper decline in TC and LDL levels compared to non-
statin users. We also observed that statin therapy sub-
stantially decreased TC and LDL levels during the early 

phase after the initiation of statins, while the lipid levels 
remained stable during the follow-up time, which were 
similar to findings in previous studies [23–25]. The effect 
of statin use on the dynamic pattern of DNA methyla-
tion levels of the candidate CpGs was not as straightfor-
ward as the effect on blood lipids. For example, we only 
observed significant decreasing trends in the phase of 
pre-statin for cg17901584 in females and for cg27243685 
in both female and male twins. Nonetheless, from esti-
mates shown in Figs.  4–5 and comparing estimates to 
lipid trajectories in Figs.  2–3, we still observe that the 
absolute value of Post_slope for DNA methylation was 
overall larger than the value of Pre_slope, implying a 
“lagged” drug effect on the DNA methylation level of 
these CpGs.

Fig. 5  Longitudinal trajectory of DNA methylation levels in response to statin treatment in Swedish female twins. The figure shows the longitudinal 
trend of raw DNA methylation levels (left), the longitudinal trend of predicted DNA methylation levels derived from piecewise latent growth curve 
model (middle) for Swedish female twins. Yellow and purple lines represent the raw DNA methylation levels for non-statin users and statin users, 
respectively. Pink and blue lines represent the predicted DNA methylation levels for non-statin users and statin users, respectively. Tables show the 
estimates and P values of intercepts and slopes of the predicted trajectories (shown in middle sub-figures) in statin users and non-users
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To further scrutinize the directionality between blood 
lipids and methylation changes, the ALT-SR model 
was used to assess 84 cross-lagged effects of all lipid-
CpG combinations (Additional file  1: Table  S5). Then, 
in statin users we found TG levels to be associated with 
cg27243685 methylation levels in the following IPT after 
Bonferroni adjustment, indicating a possible temporal 
dynamics between blood lipids and DNA methylation. 
Additional cross-lagged effects were approaching bor-
derline significance, for example, HDL at IPT8 and 
cg10177197 at IPT9 (P = 0.007) and cg27243685 at IPT6 
and TG at IPT8 (P = 0.016), all in non-statin users. Previ-
ous studies have found inconsistent results regarding the 
direction in the causal pathway between lipids and DNA 
methylation. One EWAS study performed a stepwise 
Mendelian randomization analysis in 3,296 Dutch samples 
and found that blood lipids determined the methylation of 
genes related to lipid metabolism, and not vice versa [21]. 
In contrast, a bidirectional longitudinal association study 
with two years of follow-up time demonstrated significant 
cross-lagged effects between epigenetic age at an earlier 
time point and lipid levels at a later time point [26]. Our 
previous study conducted in the same cohort, using dif-
ferent CpGs and sub-samples, showed that the main type 
of cross-lagged effects go from DNA methylation of CVD 
related CpGs to lipids changes [16]. The inconsistency 
between studies may be caused by different reasons: dif-
ferent populations under study, sample sizes and selection 
of CpGs. For example, the CpGs used in this study were 
associated with blood lipids and statin use, which are dif-
ferent from the CpGs in our prior study selected for their 
association with CVD [16]. In addition, we used sub-sam-
ples (statin users and non-users) to do stratified ALT-SR 
analysis in this study, compared to the full sample used in 
the prior study. To summarize, the relationship between 
lipids and DNA methylation levels is complex. A recent 
large-scale genome-wide DNA methylation quantitative 
trait locus analysis may give some explanations [27]. The 
authors noted that it was difficult to determine the causal 
pathway between any specific CpG site and a trait. They 
concluded that it is likely due to common genetic variants 
influencing DNA methylation and traits independently, 
rather than by methylation being a mediator. In addition, 
the authors suggested that associations found in some 
previously reported EWAS were probably due to reverse 
causation, that the disease alters DNA methylation but 
not vice versa.

The key strength of this study is the rich sample char-
acteristics and long duration. This study is based on a 
longitudinal twin cohort with nearly 30 years of follow-
up time including repeated measurements of DNA 
methylation data. Hence, we could study the long-term 
covarying association between DNA methylation and 

blood lipids and explore the causal links therein. Twin 
studies represent a special type of epidemiological stud-
ies and they have certain assumptions that may chal-
lenge the validity of the results if they are not satisfied. 
Nonetheless, overall, results from twin cohorts can be 
generalizable to a wider population [28, 29]. The study 
also has several limitations. First, the sample size of the 
study was relatively small to fit the piecewise LGCM and 
ALT-SR model, especially for statin users, which is only 
18% of the total sample. Moreover, the follow-up pattern 
of participants was diverse, which led to a large amount 
of missing data. Despite the limitations, some of the cur-
rent results were still comparable to the results of previ-
ous studies. For example, we confirmed the findings from 
large EWAS for lipids [2, 3] (Table 2) and for statin use 
[5] (Additional file 1: Table S10). Second, we defined sta-
tin use in a simple way, i.e., non-statin/statin users. How-
ever, blood lipid levels are affected by adherence to statin 
use and different statin sub-types [30], and thus DNA 
methylation level may also be impacted. In the cohort, 12 
participants changed their statin usage during the follow-
up period and this might influence the results. Hence, 
we performed a sensitivity analysis by excluding those 
12 participants. However, the piecewise LGCM mod-
els did not converge any more for TC, LDL, cg10177197 
and cg27243685. The remaining results showed small dif-
ferences from the results using the full data (results not 
shown). Finally, DNA methylation level is highly vari-
ant in a cell-specific or tissue-specific manner. We only 
have leukocyte DNA methylation from blood; therefore, 
the major findings based on genomic DNA methylation 
extracted from peripheral blood might be insufficient 
and future studies are needed.

Conclusion
Our study sheds light on the potential effects of statin 
use on DNA methylation at three lipid-related candidate 
CpGs and on lipids, especially the longitudinal chang-
ing patterns. Further studies with larger sample sizes and 
with a multidisciplinary approach are warranted to high-
light the epigenetic role in statin use.

Supplementary information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​022-​01375-8.

Additional file 1. Figure S1: Piecewise latent linear-linear growth curve 
model. This is a schematic diagram depicting the piecewise latent 
linear-linear growth curve model. The observed variables are shown as 
rectangles and latent variables as circles; the double-headed arrows 
represent variance or covariance of variables and single-headed arrows 
represent regression effects with the variable at the tail of the arrow 
having causal effect on the variable at the head. The regression effects are 
also called paths, directional effects and factor loadings, with the latter 
specifying the regression coefficients linking latent variables and observed 

https://doi.org/10.1186/s13148-022-01375-8
https://doi.org/10.1186/s13148-022-01375-8
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variables. Tzero: the lipids (or DNA methylation) level at the time (denoted 
as in-person testing (IPT) in our study) of start to use statin. Tminus1-
Tminus7: the lipids (or DNA methylation) level before statin treatment, and 
the suffix numbers of Tminus are determined by how many folds of the 
time interval deviating to Tzero. Tplus1-Tplus7: the lipids (or DNA 
methylation) level after statin treatment, and the suffix numbers have the 
same definition as that in Tminus. Intercept: the individual lipid (or DNA 
methylation) level at Tzero. Pre-slope: the changing rate of lipids (or DNA 
methylation) over time before the changing point for each individual. 
Post-slope: the changing rate of lipids (or DNA methylation) over time 
after the changing point for each individual. The factor loadings from the 
latent intercept to Tminus and Tplus variables are all set to 1. The factor 
loadings from latent “Pre_slope” are set as -7 to -1 for Tminus7 to Tminus1 
and were equal to 0 for all Tplus variables. The factor loadings from the 
“Post_slope” to Tminus variables are all set as 0 but are set as 1 to 7 for 
Tplus1 to Tplus7, respectively. Baseline age, sex, and statin use are 
included as time-independent covariates as we assumed that these 
variables would have associations with latent intercept and slopes. Figure 
S2: Bivariate autoregressive latent trajectory model with structured 
residuals.  This is a schematic diagram depicting the bivariate autoregres-
sive latent trajectory model with structured residuals (ALT-SR). The 
observed variables are shown as rectangles (in purple) and latent variables 
as circles (in green); the double-headed arrows represent variance or 
covariance of variables and single-headed arrows represent regression 
effects with the variable at the tail of the arrow having causal effect on the 
variable at the head. The regression effects are also called paths, 
directional effects and factor loadings, with the latter specifying the 
regression coefficients linking latent variables and observed variables. The 
ALT-SR model is composed of the autoregressive model (AR) and the 
linear latent growth curve model (LGM). The LGM (the up and bottom 
parts) is established first by the latent intercept (mval.i and lipid.i in green 
circles) and the latent slope (mval.s and lipid.s in green circles) for DNA 
methylation and blood lipids, respectively. After that, AR (the middle part) 
is established by two paths: autoregressive path (red arrows) and 
cross-lagged path (blue arrows). mval.IPT3 to mval.IPT9: the observed 
variables measuring DNA methylation level at different time points for one 
specific CpG site. lipid.IPT3 to lipid.IPT9: the manifest variables measuring 
level of one specific blood lipids at different time points. mval.i and mval.s: 
latent intercept and slope for the DNA methylation trajectory. lipid.i and 
lipid.s: latent intercept and slope for the blood lipid trajectory. e.mval.IPT3 
to e.mval.IPT9: latent residuals of DNA methylation at different time points. 
e.lipid.IPT3 to e.lipid.IPT9: latent residuals of blood lipid at different time 
points. The factor loadings from mval.i to mval.IPTs at different time points 
are all equal to 1, and the factor loadings from mval.s to these manifest 
variables are set as 0, 2, 3, 5 and 6 at IPT3, IPT5, IPT6, IPT8 and IPT9, 
respectively. The factor loadings for latent intercept and slope for blood 
lipids are set the same as that for DNA methylation. The factor loadings 
from residuals variables to manifest variables are all set as 1 (not shown in 
figure). Red arrows: autoregressive paths measuring the within-person 
changes of DNA methylation or blood lipids over time. Blue arrows: the 
cross-lagged paths measuring the predicting effect of DNA methylation at 
one time point on the within-person lipid level at the adjacent later time 
point, and/or vice versa. Dashed arrows: regression path from covariates 
to latent intercepts and slopes, and three variables (baseline age, sex, and 
statin use) are included as time-independent covariates.  Figure S3: 
Sensitivity analysis of longitudinal trajectory of serum lipids levels in 
response to statin treatment in Swedish male twins by excluding samples 
with TG levels greater than 400 mg/dL.  This figure shows the longitudinal 
trajectory of serum lipids in response to statin therapy in Swedish male 
twins either in raw data or estimated from piecewise latent growth curve 
model (LGCM) after excluding samples with TG levels greater than 400 
mg/dL. The left part shows the longitudinal trend of raw lipid levels, where 
the yellow color represents the longitudinal trend of blood lipid for 
non-statin users and the purple line represents for statin users. The middle 
part is the longitudinal trend of predicted lipid levels derived from 
piecewise LGCM. Similarly, the pink line represents the trend for non-statin 
users and the blue line is for statin users. Additional tables on the right list 
the estimates and P values of intercepts and slopes of predicted 
trajectories in the middle part for both statin users and non-users. TG: total 

triglyceride. Figure S4: Sensitivity analysis of longitudinal trajectory of 
serum lipids levels in response to statin treatment in Swedish female twins 
by excluding samples with TG levels greater than 400 mg/dL.  This figure 
shows the longitudinal trajectory of serum lipids in response to statin 
therapy in Swedish female twins either in raw data or estimated from 
piecewise latent growth curve model (LGCM) after excluding individuals 
with TG levels greater than 400 mg/dL. The left part shows the longitudi-
nal trend of raw lipid levels, where the yellow color represents the 
longitudinal trend of blood lipid for non-statin users and the purple line 
represents for statin users. The middle part is the longitudinal trend of 
predicted lipid levels derived from piecewise LGCM, similarly, the pink line 
represents the trend for non-statin users and the blue line is for statin 
users. Additional tables on the right list the estimates and P values of 
intercepts and slopes of predicted trajectories in the middle part for both 
statin users and non-users. TG: total triglyceride.  Figure S5: Sensitivity 
analysis of longitudinal trajectory of DNA methylation levels in response to 
statin treatment in Swedish male twins by excluding samples with TG 
levels greater than 400 mg/dL. The figure shows the longitudinal trend of 
raw DNA methylation levels (left), and the longitudinal trend of predicted 
DNA methylation levels derived from piecewise latent growth curve 
model (middle) for Swedish male twins after excluding samples with TG 
levels greater than 400 mg/dL. Yellow and purple lines represent the raw 
DNA methylation levels for non-statin users and statin users, respectively. 
Pink and blue lines represent the predicted DNA methylation levels for 
non-statin users and statin users, respectively. Tables show the estimates 
and P values of intercepts and slopes of the predicted trajectories (shown 
in middle sub-figures) in statin users and non-users. TG: total triglyceride. 
Figure S6: Sensitivity analysis of longitudinal trajectory of DNA 
methylation levels in response to statin treatment in Swedish female twins 
by excluding samples with TG levels greater than 400 mg/dL. The figure 
shows the longitudinal trend of raw DNA methylation levels (left), and the 
longitudinal trend of predicted DNA methylation levels derived from 
piecewise latent growth curve model (middle) for Swedish female twins 
after excluding samples with TG levels greater than 400 mg/dL. Yellow and 
purple lines represent the raw DNA methylation levels for non-statin users 
and statin users, respectively. Pink and blue lines represent the predicted 
DNA methylation levels for non-statin users and statin users, respectively. 
Tables show the estimates and P values of intercepts and slopes of the 
predicted trajectories (shown in middle sub-figures) in statin users and 
non-users. TG: total triglyceride.
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