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Abstract 

Background:  Heart failure with preserved ejection fraction (HFpEF), affected collectively by genetic and environ-
mental factors, is the common subtype of chronic heart failure. Although the available risk assessment methods for 
HFpEF have achieved some progress, they were based on clinical or genetic features alone. Here, we have developed 
a deep learning framework, HFmeRisk, using both 5 clinical features and 25 DNA methylation loci to predict the early 
risk of HFpEF in the Framingham Heart Study Cohort.

Results:  The framework incorporates Least Absolute Shrinkage and Selection Operator and Extreme Gradient Boost-
ing-based feature selection, as well as a Factorization-Machine based neural network-based recommender system. 
Model discrimination and calibration were assessed using the AUC and Hosmer–Lemeshow test. HFmeRisk, including 
25 CpGs and 5 clinical features, have achieved the AUC of 0.90 (95% confidence interval 0.88–0.92) and Hosmer–
Lemeshow statistic was 6.17 (P = 0.632), which outperformed models with clinical characteristics or DNA methylation 
levels alone, published chronic heart failure risk prediction models and other benchmark machine learning models. 
Out of them, the DNA methylation levels of two CpGs were significantly correlated with the paired transcriptome 
levels (R < −0.3, P < 0.05). Besides, DNA methylation locus in HFmeRisk were associated with intercellular signaling 
and interaction, amino acid metabolism, transport and activation and the clinical variables were all related with the 
mechanism of occurrence of HFpEF. Together, these findings give new evidence into the HFmeRisk model.

Conclusion:  Our study proposes an early risk assessment framework for HFpEF integrating both clinical and epige-
netic features, providing a promising path for clinical decision making.
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Background
Chronic heart failure (CHF), characterized by disorders 
of myocardial energy metabolism and metabolic remode-
ling, is widely studied by society because of its high mor-
bidity and mortality [1]. It is currently widely accepted 
that CHF is classified into three subtypes according to the 
value of left ventricular ejection fraction (LVEF), includ-
ing heart failure with reduced ejection fraction (HFrEF, 
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LVEF ≤ 40%), heart failure with intermediate ejection 
fraction (HFmrEF, LVEF > 40% and LVEF ≤ 50%), and 
heart failure with preserved ejection fraction (HFpEF, 
LVEF > 50%) [2]. Among them, approximately half of 
the patients with CHF belong to HFpEF subtype [3]. In 
a large community-based, longitudinal cohort study of 
28,820 participants with 10-year follow-up, the incidence 
of HFrEF, HFmrEF, and HFpEF was 0.349%, 0.067%, and 
0.269% per year, respectively [4, 5]. The all-cause mor-
tality rates of them were 29.5% (15,220/51,496), 26.8% 
(5402/20,114), and 31.0% (11,681/37,647) in a meta-
analysis, respectively [6]. There are no convincing treat-
ments to reduce morbidity or mortality in patients with 
HFpEF, and only recommendations for management of 
symptoms and comorbidities [7]. Besides, the diagnosis 
of HFpEF is challenging because of the normal ejection 
fraction, which makes it difficult to assess cardiac con-
gestion noninvasively [8, 9]. Therefore, the early predic-
tion of HFpEF may have a beneficial impact on solving 
health management problems related to HFpEF.

Although risk prediction in CHF has been extensively 
studied, there are still inadequacies and limitations. 
Sadiya S. Khan et  al. developed a 10-year risk model 
(included ten clinical risk factors for CHF) but did not 
discuss the pathogenesis and subtypes of CHF, and the 
model lacked the ability to learn implicit feature inter-
actions [10]. Benjamin et al. used epigenome-wide asso-
ciation studies to identify epigenetic susceptibility areas 
associated with CHF but did not consider the clinical 
characteristics of participants and subtypes of CHF [11]. 
Some studies focus on small molecule biomarkers, such 
as natriuretic peptides, microRNAs, inflammatory mol-
ecules, cardiac biomarkers, etc., but integrating multiple 
omics characteristics has received little attention [12]. 
Epigenetic mechanisms of gene expression have been 
reported to contribute to the development of cardiovas-
cular diseases and some epigenetic susceptibility regions 
associated with CHF have been identified, suggesting the 
potential importance of epigenetic markers for CHF risk 
prediction [13]. Considering that cardiovascular diseases 
are regulated by environmental, dietary, and lifestyle fac-
tors, epigenetic markers may be more suitable for risk 
prediction than other omics data (e.g. transcriptom-
ics, proteomics, metabolomics) [14–16]. Recently, DNA 
methylation has become a promising tool for the study 
of biomarkers of various cardiovascular diseases [17, 
18]. However, risk prediction models integrating clinical 
characteristics and omic-features for specific subtype of 
CHF is still lacking. Integrated multiple omics character-
istics can provide better risk prediction [19].

The Framingham Heart Study (FHS) cohort is a popu-
lation-based, multigenerational, and longitudinal cohort 
study to identify common factors that contribute to 

cardiovascular disease (https://​frami​ngham​heart​study.​
org/). It began in 1948 and has undergone six large sam-
pling surveys [20]. The FHS cohort now includes three 
generations of participants (Original cohort, Offspring 
cohort, and third generation cohort) and two minority 
cohorts. The Original cohort of the FHS was recruited 
from inhabitants of Framingham with random individu-
als. Study design was based on sampling participants 
who were free from overt cardiovascular disease. The 
Framingham Offspring Study, composed of the children 
of the Original cohort and the spouses of those children. 
Considering the collection of DNA methylation data, our 
study used the 8th follow-up of the FHS offspring cohort 
to determine which biomarkers might be early predictors 
of HFpEF.

Considering that the interaction between DNA meth-
ylation and clinical features may contribute to the early 
prediction of HFpEF, we proposed an early risk predic-
tion framework for HFpEF by combining multi-omics 
data interactions through end-to-end machine learning 
models. The framework fuses Least Absolute Shrinkage 
and Selection Operator (LASSO) and Extreme Gradient 
Boosting (XGBoost)-based feature selection, and Factor-
ization-Machine based neural network (DeepFM)-based 
recommended system to learn the interactions of non-
linear features automatically [21]. Our prediction model 
provides innovative insights into early risk assessment for 
HFpEF.

Methods
Study population and study design
Participants who were diagnosed as free of CHF at base-
line (the eighth examination cycle, 2005–2008) in FHS 
Offspring cohort, with a clear disease diagnosis within 
8  years (HFpEF or no-CHF), with complete medical 
information, with qualified DNA methylation data were 
eligible for inclusion (Fig. 1).

The early prediction observation window was defined 
as 8  years from baseline. During the 8  years’ follow-up, 
91 HFpEF events occurred and 877 participants did not 
experience heart failure, which is referred to as case–
control status. The whole blood samples for DNA meth-
ylation, gene expression profile and electronic health 
record (EHR) data were measured from FHS offspring 
participants who attended the eighth examination cycle.

Preprocessing of clinical data
Following thresholds were applied to remove incom-
plete and non-significant clinical features in training set: 
missing sample > 20%, two-group comparisons of Chi-
square test/Mann–Whitney U test P > 0.05. When miss-
ing values were less than 20%, missing variables were 
imputed using nearest neighbor averaging method. If the 

https://framinghamheartstudy.org/
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Spearman’s correlation between two clinical features was 
greater than 0.8, the clinical feature with a smaller Spear-
man’s correlation (i.e. less correlated with HFpEF) was 
discarded ("Blood glucose", "Low-density lipoprotein", 
"Waist", "Weight"). Detailed information on the removal 
of clinical features is provided in Materials and Methods 
Section 1 of the Additional file 1. Continuous clinical fea-
tures are normalized by scaling between 0 and 1.

Preprocessing of DNA methylation and gene expression 
data
Using Infinium HumanMethylation450 BeadChip (Illu-
mina), the methylation level of each cytosine-phosphate-
guanine (CpG) locus is represented by the β-value, which 
ranges from 0 (unmethylated) to 1 (fully methylated). 

DNA methylation array was normalized using the beta 
mixture quantile dilation algorithm by ChAMP pack-
age [22]. DNA methylation was corrected by correcting 
for sex using the empirical bayes method by SVA pack-
age. ChAMP was used to remove all probes located in 
chromosome X and Y and SNP-related with default 
parameters. CpG locus missing more than 20% among 
participants were excluded. Differentially methylated 
probes (DMPs) were obtained by a linear model using 
limma package with a criteria of log fold change > thresh-
old (absolute value of fold change plus twice the standard 
deviation, threshold value = 0.035) and adjusted P < 0.05.

In the FHS offspring cohort, whole blood gene expres-
sion profiles were obtained from the Affymetrix Human 
Exon 1.0 ST GeneChip platform. Gene expression 

FHS offspring cohort exam 8

3021 Potentially eligible participants

1469 Eligible participants

1074 Eligible participants

Training set
797 UMN batch

HFpEF = 59, no-CHF = 738

Testing set
171 JHU batch

HFpEF = 32, no-CHF = 139

984 Eligible participants

2 LVEF < 40% 14 LVEF 40% 49% 91 LVEF ≥ 50%

395 Excluded
Unqualified DNA methylation data

1552 Excluded 
64 Participants who were diagnosed with CHF before exam 8
1488 Participants without a clear diagnosis of disease after 8 years

90 Excluded
Participants who lack of medical information

Eligible patients were followed up from the time of exam 8 until the earliest of any
event (patient death or heart failure occurs) or the end of the 8-year
follow-up

no-CHF = 877 Over a follow-up of 8 years, 91 HFpEF events occurred
and 877 participants did not experience heart failure

95 EHR DNA methylation
402,380

25 EHR 318 DMP

Exclusion criteria
• log fold change < threshold  
• adjusted P > 0.05

Exclusion criteria
• missing sample > 20%
• two-group comparisons of chi-square

test/Mann-Whitney U test P > 0.05
• The Pearson correlation between two

clinical features was greater than 0.8, the
clinical feature with a smaller Spearman’s
correlation (i.e. less correlated with HFpEF)

Lasso

80 features

30 features

Xgboost

Training model

DeepFM

Final results

The proportional characteristics of cells in 
whole blood

•

Fig. 1  Overview of study population and study design. FHS Framingham Heart Study, UMN University of Minnesota, JHU Johns Hopkins University, 
CHF chronic heart failure, LVEF Left ventricular ejection fraction, HFpEF heart failure with preserved ejection fraction
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microarray data analysis was implemented through lin-
ear model fit and empirical bayes statistics for subse-
quent calculation of Pearson’s correlations between gene 
expression profiles and DNA methylation for paired 
samples.

Feature selection for the HFmeRisk model
Feature selection was performed in the training set using 
LASSO [23] and XGBoost algorithm [24]. For LASSO, 
the features are filtered according to the area under the 
ROC curve and misclassification error of different num-
ber of features revealed by LASSO, corresponding to 
"type.measure" parameter "auc" and "class" respectively. 
tenfold cross-validation is also used for internal valida-
tion. "Lambda" is the tuning parameter in the LASSO 
model used tenfold cross-validation. The R package “glm-
net” was used to perform the LASSO.

The R package “xgboost” was used to perform the 
XGBoost. After parameter adjustment, we finally set the 
learning rate to 0.5. the minimum loss reduction is 0.5, 
the maximum depth of the tree is 3, the minimum sum of 
the required instance weights (Hessian) of the children is 
2, and the maximum depth of the tree is 3.

Factorization‑machine based neural networks
This study superimposed DNA methylation and EHR fea-
tures to form a unique matrix. DeepFM algorithm was 
used to build an HFpEF risk prediction model. DeepFM 
extracts DNA methylation and EHR features and learns 
the hidden feature combinations behind these features 
[21]. DeepFM jointly trains the overall network in an 
end-to-end manner, ultimately feeding into the sigmoid 
function for the early prediction of HFpEF events.

where ŷ ∈ (0, 1) the predicted HFpEF event, yFM is the 
output of the FM component, and yDNN is the output 
of the deep component. The FM component and deep 
component are factorization machine and feed-forward 
neural network, which are used to learn low-order fea-
ture interactions and high-order feature interactions. The 
output of FM is,

w ∈ Rd and Vi ∈ Rk (k is given) 2. The output of DNN is,

where |H| is the number of hidden layers, a(l) is the out-
put of the embedding layer, W(l) is the model weight, and 
b(l) is the bias of the lth layer.

(1)ŷ = sigmoid
(

yDNN+ yFM
)

,

(2)yFM = �w, x� +
∑d

i=1

∑d

j=i+1

〈

Vi,Vj

〉

xi · xj ,

(3)yDNN = W |H |+1 · a|H | + b|H |+1,

For a given hidden layer in the deep component, we 
implemented a deep neural network with two hidden lay-
ers (256 nodes) using ReLU as the activation function.

"logloss", which measures the error between the input 
and the output, was chosen as the objective function. To 
control overfitting, we added an L2 regularization penalty 
on the activities of the nodes, and the parameter was set 
to 0.0001. To optimize the neural network, we used batch 
normalization and weight decay. The embedding size, 
batch size and decay were set to 8, 300 and 0.9, respec-
tively. To train the DeepFM algorithm, we used Adam as 
the optimization algorithm and the learning rate was set 
to 0.0001, with 400 epochs and 60% dropout. The perfor-
mance of the DeepFM models was assessed using boot-
strapping method. The samples left in the training set 
will be approximately 63.2% of the original data set, and 
the remaining samples (36.8%) are used as the validation 
set [25]. All network models were trained using the Ten-
sorFlow framework with TensorFlow 1.15.0 and Python 
3.7.3. Calibration of the HFmeRisk was evaluated using 
the calibration plot of observed versus predicted risk and 
Hosmer–Lemeshow goodness-of-fit test, where the num-
ber of bins to use to calculate quantiles is 10.

Benchmark model based on machine learning
Nine machine learning algorithms including linear Sup-
port Vector Machine, Bagging, Random Forest, RUS-
Boost, EasyEnsemble, GradientBoosting, XGBoost, 
LogitBoost, and Mixed Logistic Regression, were used to 
perform the comparisons. Model parameters are listed 
in Additional file  1: Materials and Methods Section  2. 
The performance of the benchmark models was assessed 
using bootstrapping method.

We evaluated HFmeRisk and the benchmark model 
using the following criteria: area under the curve (AUC), 
sensitivity, specificity, and accuracy.

Decision curve analysis
To estimate the clinical utility of the HFmeRisk model, 
decision curve analysis (DCA) was performed using the 
R package rmda to calculate the net benefit of the range 
of threshold probabilities in the training and testing sets. 
The threshold probability of DCA is where the expected 
benefit of prediction is equal to the expected benefit of 
avoiding prediction. DCA is a trade-off between false 
positives and false negatives and is mostly used to weigh 
medical intervention strategies and can be used to screen 
for beneficiaries and to evaluate the practice value of the 
model as a whole.

(4)y = f (x) = ReLU(wx + b)
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Biology functional and pathway enrichment analysis
We used the HumanMethylation450 BeadChip array 
annotation file and Enhancer linking by methylation/
expression relationships tool [26] to obtain the genes 
corresponding to the CpGs loci or the nearest genes at 
the intergenic region loci in the HFmeRisk model. Gene-
based pathway enrichment analysis was performed using 
ReactomePA and IPA. Gene ontology and pathway analy-
sis of key CpG using the methylation analysis R package 
missMethyl. Hyper-geometric test was used in gene set 
pathway analysis.

Statistical analyses
Two-group comparisons of categorical and continuous 
variables were performed by using the Chi-square test 
and the Mann–Whitney U test, respectively. The Pear-
son’s correlation between CpG and differentially meth-
ylated genes (DMGs) is driven mainly by case–control 
status. Hypergeometric test was used in gene set path-
way analysis. In biology functional analyses, the P is cal-
culated using a hypergeometric test. All statistical tests 
were 2-sided, and P < 0.05 was considered significant. 
The adjusted P is conducted using Bonferroni corrected. 
All data analysis and visualization were performed using 
R 3.5.0 (http://​www.r-​proje​ct.​org/) and Python 3.7.3 
(https://​www.​python.​org).

Results
Characteristics of the study cohorts
The clinical information and DNA methylation data of 
FHS participants (Offspring Cohort Exam 8) were used 
to develop a HFpEF risk prediction model. After exclud-
ing samples with censoring, with unqualified DNA meth-
ylation, and lack of medical information, a total of 984 
eligible participants were obtained as the final samples 
with complete information over a follow up of 8  years 
(Fig.  1). Among them, 877 participants did not experi-
ence heart failure and 91 HFpEF events occurred. A total 
of 95 EHR variables (the simplified version is shown in 
Table  1, the full version is shown in Additional file  2: 
Table  S1) and 402,380 CpGs were obtained for fur-
ther analyses. Since their DNA methylation data were 
sequenced in University of Minnesota (UMN, 738 no-
CHF and 59 HFpEF) and Johns Hopkins University (JHU, 
139 no-CHF and 32 HFpEF), respectively, which can be 
presumed as dependent datasets, data from UMN batch 
and JHU batch were used as the training set and the test-
ing set (Fig. 1; Table 1). Considering the limited sample 
size, we did not further balance the sample size. In the 
training and testing sets, the median follow-up period 
was 8.69 ± 1.25  years and 8.64 ± 2.05  years, with mean 

participant’s ages of 64.68 ± 8.29 and 70.13 ± 8.91  years, 
and the proportion of male participants were 37.39% and 
70.76%, respectively (Table 1).

Prediction model construction using DeepFM
After data pre-processing, we obtained 318 DMPs and 
25 clinical characteristics (Additional file  2: Table  S2). 
Next, we performed feature selection using LASSO and 
XGBoost algorithms. The LASSO algorithm simulta-
neously performs feature selection and regularization, 
aiming to enhance the predictive accuracy and interpret-
ability of statistical models by selectively putting vari-
ables into the model. The important parameter, lambda, 
contributes to feature selection. We obtained 4 set of fea-
tures according to the value of lambda (lambda.min and 
lambda.1se for calculating AUC and misclassification 
error) and obtained 80 features intersected (Fig.  2a–c). 
The XGBoost algorithm integrates many weak classifiers 
together with regularized boosting technique to form a 
strong classifier. It took 80 features from LASSO and fur-
ther reduced to 30 features, including 5 clinical variables 
and 25 CpG loci, which were next fed into the DeepFM 
model. Five clinical variables (age, diuretic use, body 
mass index (BMI), albuminuria, and serum creatinine) 
accounted for nearly 20% of the contribution, explained 
by the gain index (Fig. 2d). The cg20051875 had the larg-
est gain index, accounting for 13% of the total contribu-
tion. In addition, 25 CpGs accounted for 80% of the total 
contribution, although the contribution of each CpG was 
weak.

Based on the DeepFM method, we developed the 
HFmeRisk model to investigate the feasibility of the 
early-stage risk prediction for HFpEF using 25 DNA 
methylation sites and 5 clinical features. We also tested 
the performance of the DeepFM algorithm using only 5 
clinical features or 25 DNA methylation features alone. 
In the testing set, the AUCs for the HFmeRisk model, the 
model with EHR alone, and the model with CpGs alone 
were 0.90 (95% confidence interval [CI] 0.88–0.92), 0.78 
(95% CI 0.73–0.82), and 0.65 (95% CI 0.62–0.67), respec-
tively (Fig. 3a; Additional file 2: Table S3). Although the 
DNA methylation model achieved a lower AUC, AUC 
was improved when combined with EHR to form the 
HFmeRisk model. In summary, the “EHR + DNA meth-
ylation” model achieved the best AUC in most cases in 
the testing set.

Calibration of the HFmeRisk model is shown in 
Fig.  3b. The Hosmer–Lemeshow statistic was 6.17, with 
P = 0.632, indicating that the HFmeRisk model is well 
calibrated in the testing set.

Similarly, using the decision curve (Fig.  3c), the 
HFmeRisk model also showed a higher net benefit than 
the other models. Decision curve of HFmeRisk model 

http://www.r-project.org/
https://www.python.org
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Table 1  Demographic of participants in the training set and testing set (the simplified version)

Categorical variables and continuous variables with Chi-square test and Mann–Whitney U test were used for two-group comparison

Values are mean ± SD or n (%). P value is the comparison of heart failure patients versus non-heart failure controls

CHF chronic heart failure, HFpEF heart failure with preserved ejection fraction, LDL low density lipoprotein, HDL high density lipoprotein, ACEI angiotensin-converting 
enzyme inhibitor
† Missing sample less than 20%. ‡ Missing sample more than 20%

Training set Testing set

No-CHF (n = 738) HFpEF (n = 59) P value No-CHF (n = 139) HFpEF (n = 32) P value

Male 268 (36.3) 30 (50.8) 0.037 100 (71.9) 21 (65.6) 0.62

Age, years 64.0 ± 7.93 73.3 ± 7.84  < 0.001 68.6 ± 8.48 76.8 ± 7.73  < 0.001

Smoking 63 (8.5) 3 (5.1) 0.496 5 (3.6) 2 (6.2) 0.85

BMI, kg/m2 27.9 ± 5.20 30.1 ± 5.97 0.004 28.4 ± 4.18 30.5 ± 5.92 0.041

Fasting blood glucose, mg/dL† 104 ± 21.8 118 ± 36.7  < 0.001 110 ± 26.7 111 ± 24.8 0.52

LDL cholesterol, mg/dL† 112 ± 30.5 100 ± 23.6 0.011 95.2 ± 29.8 87.4 ± 28.4 0.36

HDL cholesterol, mg/dL 58.6 ± 16.9 52.6 ± 16.5 0.007 53.7 ± 14.4 47.2 ± 16.9 0.0087

Average diastolic blood pressure, mmHg 74.3 ± 9.56 71.3 ± 11.3 0.044 73.2 ± 10.2 64.0 ± 10.6  < 0.001

Average systolic blood pressure, mmHg 127 ± 16.6 137 ± 16.9  < 0.001 130 ± 16.5 133 ± 23.7 0.49

Total cholesterol, mg/dL 194 ± 36.4 177 ± 29.9 0.002 170 ± 34.5 159 ± 44.9 0.089

Triglycerides, mg/dL 116 ± 60.1 122 ± 54.9 0.22 109 ± 56.7 115 ± 94.9 0.63

Creatinine serum, mg/dL† 0.87 ± 0.20 1.13 ± 0.73  < 0.001 0.986 ± 0.24 1.38 ± 1.13 0.069

Creatinine urine, mg/100 mL† 101 ± 60.5 108 ± 56.8 0.25 113 ± 79.4 104 ± 62.3 0.92

Albuminuria urine, mg/L† 11.2 ± 38.5 93.0 ± 255  < 0.001 11.6 ± 21.5 116 ± 240  < 0.001

Hemoglobin A1c, whole blood, % 5.66 ± 0.61 5.99 ± 1.19 0.017 5.79 ± 0.844 6.14 ± 0.96 0.011

C reactive protein, mg/L† 3.24 ± 6.91 3.82 ± 4.19 0.004 2.06 ± 2.02 5.33 ± 9.62 0.0012

Ejection fraction, % † 66.6 ± 5.14 66.1 ± 6.57 0.85 65.6 ± 5.24 67.3 ± 7.44 0.13

Ventricular rate per minute by ECG, beats/min 62.1 ± 10.0 63.5 ± 10.1 0.22 59.7 ± 9.46 59.7 ± 13.0 0.85

Atrial fibrillation 14 (1.9) 6 (10.2)  < 0.001 16 (11.5) 21 (65.6)  < 0.001

Stroke 2 (0.3) 1 (1.7) 0.54 15 (10.8) 7 (21.9) 0.16

Left ventricular hypertrophy† 5 (0.7) 2 (3.4) 0.15 0 (0) 0 (0) –

Atrial enlargement† 8 (1.1) 4 (6.8) 0.003 6 (4.3) 2 (6.2) 1

Coronary heart disease 17 (2.3) 9 (15.3)  < 0.001 45 (32.4) 16 (50.0) 0.095

Myocardial infarction 3 (0.4) 0 (0) 1 24 (17.3) 7 (21.9) 0.72

Right ventricular hypertrophy‡ 0 (0) 0 (0) – 0 (0) 0 (0) –

Aspirin 239 (32.4) 31 (52.5) 0.003 89 (64.0) 21 (65.6) 1

Folic acid 30 (4.1) 6 (10.2) 0.065 11 (7.9) 4 (12.5) 0.631

Statin 220 (29.8) 24 (40.7) 0.11 94 (67.6) 21 (65.6) 0.993

Thiazides 86 (11.7) 9 (15.3) 0.54 22 (15.8) 7 (21.9) 0.575

Diuretics 17 (2.3) 12 (20.3)  < 0.001 4 (2.9) 10 (31.2)  < 0.001

Potassium 21 (2.8) 2 (3.4) 1 2 (1.4) 0 (0) 1

Aldosterone 6 (0.8) 1 (1.7) 1 10 (7.2) 4 (12.5) 0.529

Amiodarone 2 (0.3) 0 (0) 1 0 (0) 0 (0) –

Omega 3 73 (9.9) 4 (6.8) 0.583 24 (17.3) 3 (9.4) 0.404

Vasodilators 6 (0.8) 1 (1.7) 1 10 (7.2) 4 (12.5) 0.529

Co-Q 10 18 (2.4) 1 (1.7) 1 4 (2.9) 1 (3.1) 1

ß-blocker 128 (17.3) 23 (39.0)  < 0.001 61 (43.9) 20 (62.5) 0.0882

Angiotensin II antagonists 41 (5.6) 10 (16.9) 0.002 12 (8.6) 5 (15.6) 0.388

ACEI 133 (18.0) 19 (32.2) 0.013 52 (37.4) 15 (46.9) 0.431

Warfarin 13 (1.8) 3 (5.1) 0.204 4 (2.9) 3 (9.4) 0.239

Clopidogrel 4 (0.5) 1 (1.7) 0.824 9 (6.5) 6 (18.8) 0.062
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is higher than the gray (“All”) and black (“None”) line. 
Patients would benefit more from the prediction of 
HFmeRisk model compared to other schemes (5 EHR 
model and 25 CpGs model) in most ranges.

Evaluation of the HFmeRisk
We evaluated the performance of HFmeRisk from the 
aspect of number of features, effect of age, external data 
verification, comparison with other models, comparison 
with other omics features, and covariate shift between 
training and testing subjects, respectively. To evaluate 
the effect of the number of features on the HFmeRisk 
model, we selected the top 5, top 10 and top 15 features 

for further modeling and found that the number of fea-
tures had a strong effect on the model results (Additional 
file 2: Table S4). These results suggest that the number of 
features in the model cannot be reduced further so as to 
maintain sufficient predictive performance.

Since age is a very critical clinical characteristic in the 
prediction of HFpEF, it is particularly important to assess 
the impact of aging-related CpGs on the HFmeRisk 
model [27, 28]. We used aging-related CpGs reported in 
3 articles [29–31] to validate their predictive power, and 
obtained AUC of 0.655, 0.530, and 0.534 in the testing 
set, respectively (Additional file  1: Materials and Meth-
ods Section 3 and Additional file 2: Table S5), indicating 

Fig. 2  30 features obtained by LASSO and XGBoost algorithms. a AUC with different number of characteristics as revealed by the LASSO model. b 
Misclassification error for different number of features revealed by the LASSO model. In a and b, the grey lines represent the standard error and the 
vertical dotted lines represent optimal values by minimum criteria (left) and the largest value of lambda such that the error is within one standard 
error of the minimum (right). The upper abscissa is the number of non-zero coefficients in the model at this time and the lower abscissa is log 
Lambda, which is the tuning parameter used for tenfold cross-validation in the LASSO model. c The intersection of non-zero coefficients in a and b. 
80 non-zero coefficients are obtained in the LASSO model. d The best model features were ranked based on the gain index in xgboost model. The 
xgboost model further simplified the 80 features from the LASSO model, and finally, 30 valid features were obtained. The gain index represents the 
fractional contribution of each feature to the model based on the total gain of this feature’s splits
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that the 26 age-related CpGs mentioned in Hannum G 
et  al. study appeared to have equal predictive power to 
the 25 CpGs in the HFmeRisk model (AUC = 0.65). How-
ever, we combined 26 age-related CpGs mentioned in 
Hannum G et al. study and 5 clinical features of HFmeR-
isk model (age, diuretic use, BMI, albuminuria, and 
serum creatinine) together and obtained AUC of 0.858 in 
the testing set (Additional file 2: Table S5) which is less 
than that in HFmeRisk model (AUC = 0.90), indicating 
that the HFmeRisk model performed better in the testing 
set from the combined feature perspective. The reason 
may be that the 5 clinical variables we considered already 
included age, although the age-related 26 CpGs and the 
25 CpGs in the HFmeRisk model had comparable predic-
tive power, the age-related CpGs showed no advantage 
when combined with the clinical characteristics (includ-
ing age). Also, using only clinical characteristics (age and 
the remaining four clinical variables) performed worse 
than the HFmeRisk model. After that, we also did a Pear-
son correlation analysis between 25 CpGs and age in the 
training and testing set, and the absolute value of the cor-
relation was less than 0.24 (Additional file  2: Table  S6). 
In addition, when we performed the HFpEF prediction 
using the age feature alone, the AUC is 0.68 (Additional 
file  2: Table  S5), which further confirms that age has 
some predictive power, but it does not predict HFpEF 
well alone.

To evaluate the impact of the sample size of training set 
on the HFmeRisk model, we randomly selected 25%, 50%, 
60%, and 75% of the training set participants and found 
that the results of the testing set performed stably regard-
less of the sample size of the training set, indicating that 
the prediction results were independent of the sample 
size of the training set (Additional file 2: Table S7).

Because DNA methylation  data is not currently avail-
able in prospective cohort populations and the HFmeR-
isk model contains five clinical features, there are 
currently no suitable datasets in public databases that 
could be used as external testing sets. To further illus-
trate the validity of the HFmeRisk model, we evaluated 
the model using 36 patients who had developed HFpEF 
and 2 samples who did not have HFpEF after 8 years in 
the Framingham Heart Study cohort but did not appear 
in the HFmeRisk model, and obtained an AUC of 0.82 
(Additional file 3: Fig. S1). We attempted to demonstrate 
that the predictive power of the HFmeRisk model for 
HFpEF is reliable by evaluating 38 samples.

In addition, we compared the performance of the 
HFmeRisk model with nine benchmark machine learn-
ing models that are currently widely used (Additional 
file  1: Materials and Methods Section  2). Although 
there were slight differences among their AUCs 
(AUC = 0.63–0.83) using the same 30 features, the 

DeepFM model still achieved the best performance 
(AUC = 0.90, Additional file  3: Fig. S2 and Additional 
file  2: Table  S3). We also used the Cox regression 
model, a common model for disease risk prediction, 
for comparison with machine learning model. If the 
variables with P < 0.05 in univariate analysis were used 
for multivariate analysis, the screening of variables 
from the 450  K DNA microarray data works tremen-
dously, so we directly used the 30-dimensional features 
obtained by dimensionality reduction for multivari-
ate analysis of cox regression. The performance of the 
models was compared using the C statistic or AUC, 
and the DeepFM model (AUC = 0.90) performed bet-
ter  than the Cox regression model (C statistic = 0.85). 
Calibration was also assessed by comparing predicted 
and observed risk (Hosmer–Lemeshow P = 0.199). The 
calibration curves for the possibility of 8-year early risk 
prediction of HFpEF displayed obvious concordance 
between the predicted and observed results (Additional 
file 3: Fig. S3).

To assess whether other omics data could also pre-
dict HFpEF, HFmeRisk was compared with other omics 
models (“EHR + RNA” model and “EHR + microRNA” 
model). For “EHR + RNA” model and “EHR + micro-
RNA” model, we used the consistent feature selection 
and modeling approach with the HFmeRisk model (Addi-
tional file  1: Materials and Methods Sections  4 and 5; 
Additional file 3: Fig. S4–S9). The AUC results show that 
the HFmeRisk model combining DNA methylation and 
EHR has the best performance under current conditions 
compared to the "EHR + RNA" model (AUC = 0.784; 
Additional file 3: Fig. S6) and "EHR + microRNA" model 
(AUC = 0.798; Additional file 3: Fig. S9), suggesting that 
DNA methylation is suitable to predict the CHF risk than 
RNA.

To test whether the training subjects and the test-
ing subjects are sufficiently similar in terms of clinical 
parameters, which is equivalent to determine whether a 
covariate shift has occurred, we used adversarial valida-
tion to test whether the distribution of the training and 
testing sets are consistent. If a covariate shift occurs in 
the data,  it is theoretically possible to distinguish the 
training data from the testing data with a higher accu-
racy by a classifier. Here, AUC and Matthews correla-
tion coefficient (MCC) were used to measure the results 
[32]. The general MCC threshold can be set to 0.2, and 
MCC > 0.2 indicates the phenomenon of covariate shift. 
The MCC of training and testing subjects is 0.105 and the 
AUC is 0.514 (Additional file  1: Materials and Methods 
Section 6; Additional file 3: Fig. S10), indicating that no 
covariate shift occurs and the training set and the testing 
set are distributed in the same way.
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HFmeRisk model is superior to the published CHF risk 
prediction model
Furthermore, we compared the performance of the 
HFmeRisk model with that of published CHF risk predic-
tion models. William B. Kannel et al. proposed a 4-year 
risk appraisal model (using 9 EHR features) to assess 
the risk of CHF by gender in the FHS cohort using a 
mixed logistic regression algorithm [33]. Since we use 
the same FHS cohort to build models,  it is  possible to 
evaluate both models simultaneously. Due to data limi-
tations, the reconstructed Willliam’s model contains 
only 79 participants (52 males and 27 females). Detailed 
characteristic information is listed in Additional file  1: 
Materials and Methods Section 7. Ultimately, the AUCs 
for the HFmeRisk model and Willliam’s model were 0.99 
and 0.74 for male, 0.94 and 0.89 for female, respectively 
(Fig.  3d). In the HFmeRisk model, the number of male 
and female participants are different but the AUC results 
are similar, which shows that the model is not sensitive 
to gender. Additionally, adding the gender feature to the 
HFmeRisk model did not get an improvement in the 

testing set (Additional file 2: Table S8). Since our data did 
not include the characteristics of other published articles, 
we directly compared the AUC or C statistic of the two 
published articles. Sadiya S. Khan et al. described 10-year 
risk equations for CHF (using 10 EHR features) with a 
C-statistic of 0.71–0.87 in the validation set, and Edward 
Choi et  al. established an early detection model (using 
58,652,000 medical codes) of CHF with an AUC < 0.88 in 
the testing set [10, 34]. Their AUCs are all less than that 
of HFmeRisk, indicating the superiority of risk prediction 
by both DNA methylation and clinical features.

Biological functions of CpGs involved in HFmeRisk model
Next, we investigated the biological function of the 25 
CpGs in HFmeRisk model. Approximately 2/5 of them 
were located in the promoter region (TSS200, TSS1500, 
5UTR, and 1stExon). Most of the CpG loci were located 
in CpG islands or the “Open sea” and located on 17 
genes and 8 intergenic regions in total (Table 2). Among 
them, the DNA methylation level of cg10083824 and 
cg03233656 significantly negatively associated with 

Table 2  The 25 CpGs associated with HFmeRisk model

Probe Chr Position Closest gene Distance to gene Side UCSC RefGene Group Relation to 
UCSC CpG 
Island

Enhancer

cg00045910 chr10 23,466,070 PTF1A 15,184 R IGR S Shelf NA

cg00495303 chr18 3,771,110 DLGAP1 0 – Body N Shore NA

cg00522231 Chr2 9,549,277 ITGB1BP1 0 – Body Open sea NA

cg03233656 chr2 65,214,625 SLC1A4 0 – TSS1500 N Shore NA

cg03556243 Chr3 114,343,779 ZBTB20 0 – 5’UTR;1stExon;TSS1500 Open sea NA

cg05363438 chr1 224,301,382 FBXO28 0 – TSS1500 N Shore NA

cg05481257 chr2 20,870,211 GDF7 0 – Body Island NA

cg05845376 chr5 140,683,632 SLC25A2 0 – TSS200 Island NA

cg06344265 chr11 120,530,973 GRIK4 0 – TSS200 Open sea NA

cg07041999 chr8 2,178,272 MYOM2  − 64,796 L IGR Open sea NA

cg08101977 chr16 1,231,407 CACNA1H 0 – Body S Shore NA

cg08614290 chr7 158,938,491 VIPR2 0 – TSS1500 Island NA

cg10083824 chr6 34,102,147 GRM4 0 – TSS1500 Open sea NA

cg10556349 chr10 835,070 DIP2C  − 99,386 L IGR Open sea NA

cg11853697 chr20 60,510,235 CDH4 0 – Body N Shore TRUE

cg13352914 chr1 63,760,405 FOXD3 28,323 R IGR Open sea TRUE

cg16781992 chr4 20,985,623 KCNIP4 0 – Body;5’UTR​ Open sea NA

cg17766026 chr10 102,405,781 HIF1AN  − 86,025 L IGR Open sea TRUE

cg20051875 chr12 68,201,286 DYRK2  − 142,099 L IGR Open sea TRUE

cg21024264 chr10 135,341,025 CYP2E1 0 – 1stExon N Shore NA

cg21429551 chr7 30,635,762 GARS 0 – Body S Shore NA

cg23299445 chr15 73,113,226 ADPGK  − 35,038 L IGR Open sea TRUE

cg24205914 chr10 62,761,575 RHOBTB1 0 – TSS1500 Island NA

cg25755428 chr19 13,875,111 MRI1 0 – TSS1500 Island NA

cg27401945 chr10 118,919,088 VAX1  − 21,275 L IGR N Shelf TRUE
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the expression of target genes, GRM4 (R =  −0.38, 
p = 0.0054) and SLC1A4 (R = −0.31, p = 0.025), respec-
tively, in HFpEF participants, while the association 
among normal participants were not obvious (Fig. 3e). 
It implies that the existence of some regulatory role 
of DNA methylation and gene expression. They were 
involved in 16 gene ontology terms (Fig.  4a; Addi-
tional file 2: Table S9) and 10 KEGG pathways (Fig. 4b; 
Additional file  2: Table  S10). Overall, they have key 
functions for intercellular signaling, interaction and 

energy metabolism, and involved in pathways of urea 
cycle (SLC25A2/cg05845376) [35], the synthesis of 
cytochrome enzymes (CYP2E1/cg21024264) [36], the 
amino acid metabolism (MRI1/cg25755428, GRM4/
cg10083824, and GRIK4/cg06344265) [37], the amino 
acid transportation (SLC1A4/cg03233656) [38], the 
activation of the amino acid (GARS/cg21429551) [39] 
(Fig. 4c, d; Additional file 2: Table S11–S12; Additional 
file  3: Fig. S11). Together, these findings give new evi-
dence into the HFmeRisk model.
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Furthermore, we explored the relationship of the genes 
twenty-five CpGs located with disease or trait by inter-
secting with published GWAS results. All these genes 
were reported to be associated with risk factors for heart 
failure such as BMI (GRM4, SLC25A2, and ZBTB20) [40], 
systolic blood pressure (SLC1A4, ZBTB20, and SLC25A2) 
[41], ejection fraction (SLC1A4 and DLGAP1) [42], atrial 
fibrillation (SLC25A2 and SLC1A4) [43], coronary artery 
disease (ZBTB20 and SLC25A2) [44], type 2 diabetes 
(ZBTB20) [45], cardiac Troponin-T levels (DLGAP1) 
[46], diastolic blood pressure (RHOBTB1) [47], gout 
(CYP2E1) [48], implying the scientific validity of CpGs in 
model for CHF risk prediction.

Discussion
In this report, we established and validated the HFpEF 
early risk prediction model HFmeRisk using the FHS 
cohort. HFmeRisk evaluated the early risk prediction of 
HFpEF from an epigenetic perspective (25 CpGs have 
key functions in intercellular signaling, interaction and 
energy metabolism) and environmental exposures per-
spective (age, diuretic use, body mass index, albuminuria, 
and serum creatinine). The HFmeRisk model demon-
strated excellent discriminatory and calibration power 
in the early risk of HFpEF with an AUC of 0.90 (95% CI 
0.89–0.90) and Hosmer–Lemeshow statistic was 6.17, 
with P = 0.632 in the testing set. HFmeRisk leverages the 
recommendation system-based deepFM algorithm and 
feature selection-based lasso and xgboost algorithms, 
and learns the hidden feature combinations behind these 
features to provide innovative insights into early risk 
assessment for HFpEF. The HFmeRisk model provides 
a implications to further facilitate guiding clinical risk 
assessment at the individual level.

It is worth noting that the HFmeRisk model 
(EHR + DNA methylation) outperforms the “EHR only” 
and “DNA methylation only” models, which supports the 
contribution of epigenetics to the early diagnosis model 
of HFpEF, and the addition of epigenetic features allows 
the prediction model to achieve better prediction, con-
firming that DNA methylation provides innovative ideas 
for further research on the development of HFpEF [49].
The HFmeRisk model proposed in this study for the early 
assessment of HFpEF was superior to previously pub-
lished models, e.g. Willliam et  al., Sadiya S. Khan et  al. 
and Edward Choi et al. model [10, 33, 34]. These models 
achieved good predictions from the perspective of focus-
ing on clinical characteristics. However, considering that 
they did not focus on different subtypes, did not focus on 
omics data, and did not consider the interaction between 
different types of features, the HFmeRisk model achieved 
a small breakthrough. We also compared the perfor-
mance of the mixed logistic regression model (from the 

study of William B. Kannel et al.) and the DeepFM model 
of this study. Although the mixed logistic regression 
model performed well in terms of AUC (AUC = 0.83), 
the DeepFM model still achieved the best performance 
(AUC = 0.90).

Additionally, 25 CpGs in the HFmeRisk model have key 
functions related to intercellular signaling, interaction 
and energy metabolism. This may suggest that intercel-
lular signaling, interaction and energy metabolism were 
subjected to epigenetic regulation and were involved 
in driving lesion progression and the development of 
HFpEF. These results may provide clues to pathways 
related to the regulation of heart failure development by 
25 DNA methylation loci. Five clinical variables included 
in the HFmeRisk model, including age, diuretic use, 
BMI, albuminuria, and serum creatinine, were all closely 
related to the heart failure. It is well known that HFpEF 
and age are closely related, the risk of HFpEF increases 
sharply with age [3]. Similarly, through direct and indi-
rect effects, an increase in BMI is strongly associated 
with the development of HFpEF [50]. In addition, ele-
vated blood creatinine levels, usually a sign of chronic 
renal failure, may also cause HFpEF [51]. Albuminuria 
is a significant predictor of worse outcomes and cardio-
vascular hospitalization [52]. The function of CpGs and 
relationship of clinical features with heart failure further 
support the validity of feature selection in our model.

We also obtained the significantly correlation between 
2 CpGs and its DMGs expression levels. Because DNA 
methylation and clinical features can describe disease 
states in different dimensions, they may be internally 
correlated. In addition, Framingham Offspring cohort 
contains not only DNA methylation data, but also RNA 
and microRNA data, and we have done the similar anal-
ysis separately. Both the "EHR + RNA" model and the 
"EHR + microRNA" model showed less good results than 
the HFmeRisk model. MicroRNAs have been reported 
to have some predictive value for HFpEF [53], offering 
attractive potential as epigenetic disease biomarkers. 
Unfortunately, in the present dataset, microRNAs are 
severely missing, otherwise the effect of microRNAs on 
HFpEF early diagnosis model would also be uncovered.

The most important feature of the DeepFM algorithm 
is its ability to learn the hidden feature combinations 
behind the input features. Simple feature stitching can-
not achieve the deep integration of internal features, so 
the DeepFM model is very reasonable for the integration 
of multiomics data. We also showed that the DeepFM 
model performs better than the benchmark machine 
learning models. The bootstrapping method used in this 
study is uniform sampling with put-back from a given 
training set, which provides a good idea for solving the 
small subsample test evaluation problem.
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In addition, a comprehensive evaluation of the HFmeR-
isk model is presented in this paper. The sufficient pre-
dictive performance of HFmeRisk was demonstrated by 
evaluating the number of features, and the sample size 
of the training set. The predictive power of age was dem-
onstrated by testing age-related DNA methylation sites, 
but age-related DNA methylation sites did not give better 
results than HFmeRisk. Adversarial validation was used 
to test whether the distributions of the training and test-
ing sets were consistent to assess whether the training 
and testing subjects were sufficiently similar in terms of 
clinical parameters.

In the future, we will consider both biological mecha-
nism validation and model optimization. In aspect of 
biological mechanism research, we will consider add-
ing other data, such as family information, transcrip-
tomic and genetic data, to find the real reason why DNA 
methylation acts as a predictor from the perspective 
of expression Quantitative Trait Loci and methylation 
Quantitative Trait Loci analyses which will contribute to 
mechanisms of disease pathophysiology, and to provide 
evidence for functional effects for HFpEF and insight 
into genetic mediated epigenetic response mechanisms 
that modulate epigenetic effects in the whole blood and 
risk for HFpEF. We also will focus on epigenomic and 
enhancer-gene remote interactions yields new perspec-
tives on disease-associated loci, which will also be impor-
tant for understanding the dynamic interplay between 
epigenome in HFpEF. Another, considering that mecha-
nisms such as fibrosis and inflammation are involved in 
the development of heart failure, single-cell transcrip-
tome mapping of non-myocytes and leukocytes in the 
heart of adult heart failure patients is obtained using 
single-cell transcriptome sequencing data, which will 
provide theoretical basis for predictive models and new 
therapeutic approaches for HFpEF patients [54]. In 
aspect of model optimization, we consider the inclusion 
of a larger external test sample to improve the credibility 
of the model. In addition, if more samples of other races 
are collected to be able to really propose a correspond-
ing prediction model for different races. In the future, we 
expect to have developed a calculator that will allow clini-
cians to automatically calculate a patient’s risk of HFpEF 
as a reference in the clinical decision making process.

Conclusions
CHF is a severe or advanced manifestation of various 
cardiac conditions with high mortality and readmission 
rates [55]. Therefore, it is important to have individual-
ized risk estimates to assist in further management deci-
sions for HFpEF. Here, we constructed the HFmeRisk 
model starting from the existing markers (DNA methyla-
tion and EHR) to find clues for the occurrence of HFpEF 

from the perspective of pathogenesis, which provides 
some guidance for the early risk prediction of HFpEF. 
These results indicate that DNA methylation and clinical 
features may provide empirical information on the occur-
rence of HFpEF, thus providing a promising path for clin-
ical decision making.

Limitations
Our research still has some limitations. We analyzed 
DNA methylation and RNA expression in whole blood, 
which may differ from the values in heart tissue sam-
ples. However, it is unrealistic to obtain tissue samples 
in the prospective study. In the future, we will consider 
providing proof of consistency between blood and target 
tissue results. The current study does not consider the 
censoring problem, and the censored samples should be 
retained as much as possible. In the future research, we 
will further explore the censoring problem, such as how 
to deal with the censoring problem in machine learning 
modeling, etc. The FHS cohort includes Caucasians and 
a small number of East Asians, and it is unclear whether 
we can reproduce our conclusions in other races. Due to 
the limited sample size of the training and testing sets, 
the reliability of the results is questioned to some extent. 
In addition, there is no suitable external testing set to 
demonstrate the effectiveness of the HFmeRisk model 
due to the difficulty in obtaining DNA methylation data 
for prospective cohorts. We sought to demonstrate that 
the predictive power of the HFmeRisk model for HFpEF 
is reliable using 38 Framingham Heart Study cohort par-
ticipants who did not appear in the HFmeRisk model as 
a simulation test, which also appeared to demonstrate 
sufficient predictive power of HFmeRisk (AUC = 0.82). 
DNA methylation was only collected at exam 8, so we 
were unable to evaluate longitudinal changes. The appli-
cability of DNA methylation arrays in extensive screening 
may be limited by cost. After in-depth characterization 
screening, sequencing may have the greatest advantages 
because it is cost-effective and can be used to calculate 
the risks for other diseases. Compared with clinical char-
acteristics, DNA methylation is less effective in enhanc-
ing the model. For the analysis of DNA methylation, the 
results of differentially methylated region and differen-
tially methylated block analysis can be considered sub-
sequently, and large segments of methylation regions 
are more convincing than single methylation sites. In 
addition, although AUC is currently considered to be a 
standard approach for assessing the accuracy of predic-
tive distribution models, it also has limitations. AUC is 
a trade-off between true positive rate and false positive 
rate, and AUC has limited clinically meaningful to cli-
nicians [56]. Finally, due to small sample size and insuf-
ficient statistical power, we did not analyze additional 
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heart failure subtypes (HFmrEF and HFrEF). But the 
same idea can be put into practice in other diseases, pro-
viding innovative insights to further guide clinical risk 
assessment at the individual level and providing a prom-
ising pathway for clinical decision making.
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