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Abstract 

Epigenetic (“above genetics”) modifications can alter the gene expression without altering the DNA sequence. Aber-
rant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding 
RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological 
malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic 
modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clini-
cal investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
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Background
Carcinogenesis is a complex process that involves both 
genetic and epigenetic changes, leading to the transfor-
mation of normal cells into malignant cells. The aberrant 
genetic and epigenetic alterations are the hallmark of 
cancer. Epigenetic modifications are responsible for cellu-
lar plasticity, differentiation and reprogramming without 
altering the underlying DNA sequence of the organism 
[1]. Normal cell development depends on regulated tran-
scription of critical proteins, and individual cells within 
specific tissues and organs maintain their unique bio-
logical functions based on heritable and evolutionary 
differences in the DNA packaging. Histone proteins (two 
copies of histones H2A, H2B, H3 and H4) wrap around 
147 base pairs of DNA to form a nucleosome. Nucle-
osomes are further compacted by additional proteins 
to form chromatin. Epigenetic modifications, including 
acetylation and methylation (histone marks), can alter 
DNA accessibility and chromatin structure and regulate 

gene transcription activation or silencing. Acetylated 
histones are less compact, thereby enabling gene tran-
scription by making the DNA more accessible to RNA 
polymerase and the transcriptional machinery. On the 
other end, methylated histones can be either repressive 
or activating, depending on the site and degree of meth-
ylation. Methylation of histone H3 at lysine 4, 36 and 79 
is generally considered as an activation mark, whereas 
methylations on histone H3 lysine 9, 27 are linked to 
transcriptional repression [2]. In general, enzymes that 
add acetyl or methyl groups to the histone or DNA are 
referred to as “writers”, whereas enzymes that remove 
histone marks are called “erasers”. Proteins that recognize 
histone and DNA modifications are the chromatin “read-
ers” [1].

The complex balance of normal and abnormal epige-
netic regulation is an area of intense interest in cancer 
research, including therapeutic development in cancer 
[3]. This article will illustrate aberrant changes in DNA 
methylation, histone acetylation and histone methyla-
tion (summarized in Fig.  1) in cancer, discuss the epi-
genetic agents in both hematological malignancies and 
solid tumors, and highlight the recent novel combination 
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strategies, such as with immune checkpoint inhibitors 
and hormonal therapies, in solid tumors.

Main text
Therapeutics targeting the cancer epigenome
Therapeutics targeting the cancer epigenome can be 

Fig. 1 The epigenetic readers, writers and erasers. (a) Histone proteins wrap around DNA to form a nucleosome, which are then compacted 
to form chromatins and further into chromosomes. HATs add acetyl groups and HDACs remove acetyl groups from histone lysine residues. The 
acetylated histones are considered as “open chromatin”, enabling gene transcription, whereas deacetylated histones are “closed chromatin” and 
associated with gene silencing. BET proteins recognize acetylated histones and are involved with transcriptional activation by recruiting other 
proteins. In comparison with histone acetylation, histone methylation can be either repressive or activating, depending on the site and degree 
of methylation. Different histone methyltransferases are specific to modify the lysine or arginine residues. LSD1 demethylates either the active 
mark of H3K4 or the repressive mark of H3K9, in a context-dependent manner. EZH2 methylates H3K27 and promotes transcription silencing. 
DOT1L methylates H3K79, which is an activation mark. At the DNA level, DNMTs methylate and convert cytosine to 5-methylcytosine (5mC), and 
TETs remove methyl groups on DNA. Mutations in genes encoding enzymes in the cellular metabolism can alter the epigenetic landscape. This 
is exemplified by IDH1/2 that metabolize isocitrate to α-KG. IDH1/2 mutations (gain-of-function) result in further processing of α-KG to 2-HG 
(“oncometabolite”), which inhibits TETs and leads to reduced DNA demethylation (increased DNA methylation state). b A multiprotein complex 
(consisting METTL3, METTL14 and other subunits) methylates adenosine base at the nitrogen-6 position and forms  m6A in the messenger 
RNA.  m6A modification is reversible and it can be erased by ALKBH5 and FTO.  m6A reader proteins can regulate the metabolism of mRNA. For 
example, YTHDF2 binds to  m6A and targets mRNA degradation. HAT histone acetyltransferase, HDAC histone deacetylase, BET bromodomain and 
extra-terminal motif proteins, LSD1 lysine-specific histone demethylase 1, EZH2 enhancer of zeste homolog 2, DOT1L disruptor of telomeric silencing 
1 like, DNMT DNA methyltransferase, TET ten-eleven translocation, IDH isocitrate dehydrogenase, α-KG α-ketoglutarate, 2-HG 2-hydroxyglutarate, 
m6A  N6-methyladenosine, METTL3 methyltransferase-like protein 3, METTL14 methyltransferase-like protein 14, ALKBH5 alkB homolog 5, FTO fat-mass 
and obesity associated protein



Page 3 of 27Jin et al. Clin Epigenet           (2021) 13:83  

grouped into two major categories: broad spectrum 
reprogrammers and narrowed spectrum reprogrammers 
[4]. An argument can be made for the potential effec-
tiveness of both broad and targeted epigenetic therapies. 
Broad-spectrum reprogrammers include the inhibitors 
of DNA methyltransferase (DNMT), histone deacetylase 
(HDAC) and the bromodomain and extra-terminal motif 
proteins (BETs). These drugs cause genome-wide cancer-
specific gene expression alterations. In contrast, nar-
rowed spectrum epigenetic modifying agents targeting 
lysine-specific histone demethylase 1 (LSD1), enhancer 
of zeste homolog 2 (EZH2), DOT1-like histone lysine 
methyltransferase (DOT1L), to achieve precise inhibition 
of epigenetic regulatory proteins.

Broad spectrum reprogrammers
DNMT (DNA methyltransferase—“writer”) inhibitors
DNA methylation affects the transcription of genes with-
out altering the DNA sequence. In eukaryotic DNA, 
cytosine is methylated and then converted into 5-methyl-
cytosine by DNMTs [5]. Hypermethylation of specific 
regions, such as the CpG islands of tumor suppressor 
genes, plays an important role in carcinogenesis for many 
types of cancers [6–8]. There are 3 primary DNMTs—
DNMT1, DNMT3A and DNMT3B [9–11]. DNMT1 is 
predominantly involved in maintaining the preexistent 
methylation pattern during DNA replication. DNMT3A 
and DNMT3B are involved in facilitating de novo DNA 
methylations at loci that were previously unmethylated 
[12]. Tumorigenesis often involves an interplay among 
all 3 DNMTs [13–16]. DNMT inhibitors act as cytidine 
analogs and induce loss of DNA methylation. There are 
two main classes of hypomethylating agents, the nucleo-
side analogs (such as 5-azacitidine that incorporates into 
DNA and RNA and 5-aza-2′-deoxycytidine, or decit-
abine, that incorporates into DNA) and the anti-sense 
DNA methyltransferase inhibitors (such as MG98) that 
do not require incorporation into DNA. The ability of 
azacitidine to be incorporated into DNA and RNA can 
lead to broad biological effects in resting and dividing 
cells [17]. DNMT inhibitors have shown to be particu-
larly effective in targeting DNA methylation in leukemic 
cells [18, 19].

HDAC (histone deacetylase—“eraser”) inhibitors
Histone modification occurs via acetylation of lysine 
residues. Two families of enzymes, histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs), oper-
ate in an opposing manner. HATs acetylate lysines within 
the amino-terminal tails of histone proteins, resulting in 
relaxation of chromatin structure and facilitating gene 
activation. Conversely, HDACs remove acetyl groups 
from hyperacetylated histones and make the chromatin 

condensed and transcriptionally silent. There are four 
classes of HDAC enzymes based on their structures and 
functions: class I (HDAC 1–3 and 8), IIa (HDAC 4, 5, 7, 
9), IIb (HDAC 6, 10), III (Sir-2 related—SIRT1-7) and IV 
(HDAC 11) [20, 21]. Class I HDAC proteins are mainly 
localized in the nucleus, whereas class II HDACs are 
expressed in a more tissue-restricted manner [22]. Shar-
ing significant homology with both Class I and Class 
II HDACs, class IV HDAC does not possess a nuclear 
localization signal and its function is largely unknown 
[23]. HDACs are key elements in the regulation of gene 
expression, differentiation and development, and the 
maintenance of cellular homeostasis. HDAC inhibition 
causes global gene upregulation (potential oncosuppres-
sors) and leads to arrest of tumor cell growth, apoptosis 
and anti-angiogenesis [24, 25]. In addition, HDAC facili-
tates the binding of elongation factors to acetylated pro-
moters and enhancers for efficient elongation. Therefore, 
HDAC inhibitors block gene elongation and inhibit gene 
expression, especially in highly expressed genes (onco-
genes) [26]. Many HDAC inhibitors are non-specific and 
can be used to inhibit multiple isoforms of HDACs.

BET (bromodomain and extra‑terminal motif proteins—
“reader”) inhibitors
BET proteins are known to recognize acetylated lysine 
in chromatin [27]. The BET family of proteins include 
BRD2, BRD3, BRD4, and the testes-specific BRDT [28, 
29]. Bromodomains can specifically bind acetylated lysine 
residues of histone proteins, and are involved with his-
tone modifications, chromatin remodeling and transcrip-
tional activation via recruitment of other proteins [30, 
31]. BRD2 and BRD3 facilitate the passage of RNA Pol II 
to elongate the DNA transcripts through hyperacetylated 
nucleosomes [32]. BRD4 enhances the recruitment of 
positive transcription elongation factor b (P-TEFb), lead-
ing to the release of Pol II from a pause in transcription 
elongation in the promoter-proximal region [33]. In par-
ticular, aberrant BRD4 expression contributes to carcino-
genesis by mediating hyperacetylation of the chromatin 
associated with cell proliferation-promoting genes [34]. 
Suppression of BRD4 led to anti-leukemic effects in acute 
myeloid leukemia (AML) mouse models and revealed a 
potential epigenetic target for AML [35]. In addition, 
BRD4 and BET proteins also regulate enhancer (a short 
region of DNA that can be bound by transcription factors 
to enhance the transcription of a particular gene) func-
tion and, in particular, large clusters of enhancers (super-
enhancers), which drive oncogene expression, such as 
BCL-2 and c-MYC [36, 37]. Interestingly, the pathogenic 
fusion product of NUT (nuclear protein in testis) with 
BRD4 or BRD3 (BRD4-NUT or BRD3-NUT) causes 
NUT midline carcinoma (NMC), which is a rare but 
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poorly differentiated and highly aggressive cancer of the 
squamous cell lineage that arises in midline structures 
[38]. BET bromodomain blockade using small-molecule 
inhibitors leads to selective repression of the transcrip-
tional network driven by c-MYC [39].

METTL3 (methyltransferase like‑3—“writer”) inhibitors
In addition to the epigenetic modifications on either 
DNA or histones, methylation is also observed in eukary-
otic RNAs, including messenger RNA (mRNA), micro-
RNA (miRNA) and long non-coding RNA (lncRNA), 
etc. Methylation modification impacts RNA processing, 
nuclear export, translation initiation and degradation 
[40]. In particular,  N6-methyladenosine  (m6A) modifi-
cation of mRNA is most abundant, which occurs in two 
consensus sequence motifs including G(m6A)C primarily 
and A(m6A)C to a lesser extent [41, 42].  m6A is installed 
by a multiprotein writer complex that consists of methyl-
transferase-like protein 3 (METTL3), methyltransferase-
like protein 14 (METTL14) and other accessory subunits. 
 m6A modification is reversible and it can be erased by 
ALKBH5 (alkB homolog 5) [43] and FTO (fat-mass and 
obesity associated protein) proteins (Fig. 1) [44]. In addi-
tion, METTL3 and METTL14 are also identified as key 
actors of adenosine methylation of miRNAs [45, 46], 
whereas FTO is recognized as a key actor of adenosine 
demethylation of miRNAs [47].  m6A reader proteins 
can specifically bind to  m6A transcripts and regulate the 
metabolism of mRNA [48]. For example, YTHDF2 (YTH 
domain family 2) binds to  m6A in mRNA and targets 
mRNA degradation, whereas YTHDF1, YTHDF3, and 
eukaryotic initiation factor 3 (eIF3) promote translation 
of mRNA transcripts [49]. METTL3 has been found to 
be upregulated with increased  m6A levels in cancer com-
pared with those in normal tissues, suggesting a potential 
oncogenic role in different cancer types including AML, 
renal cell carcinoma, non-small cell lung cancer (NSCLC) 
and gastric cancer [50–53]. The studies show that loss 
of either METTL14 or METTL3 in AML cell lines and 
primary leukemic blasts led to induction of differentia-
tion [50, 54]. In addition, METTL3 has been associated 
with multiple cell signaling pathways, including tumo-
rigenesis, proliferation, invasion, migration, cell cycle, 
differentiation and cell viability [55]. Currently, multiple 
METTL3 inhibitors are under investigation in both AML 
and solid tumors, with pending clinical trials in the near 
future [56].

Besides the role of METTL3 in  m6A modification 
on mRNAs and miRNAs, recent study suggested that 
DNMT3A methylates miRNA at cytosine residues 
and inhibits the formation of miRNA/mRNA duplex, 
leading to the loss of their repressive function in gene 
expression [57]. Therefore, using demethylating agent to 

block miRNA methylation may broaden its therapeutic 
potentials.

Narrowed spectrum reprogrammers
LSD1 (histone demethylase—“eraser”) inhibitors
LSD1 (lysine-specific histone demethylase 1, also known 
as KDM1A) is the first discovered histone lysine demeth-
ylase with the ability to erase the mono-methyl and di-
methyl chromatin marks on histone H3, predominantly 
at lysines 4 and 9 (H3K4 and H3K9) [58–60]. It can also 
demethylate non-histone proteins, including DNMT1 
and TP53 [59]. Moreover, LSD1 is a multifunctional sub-
unit of both repressive and activating histone-modifying 
complexes and can therefore act as both a transcriptional 
repressor or activator in a context-dependent manner 
[61]. LSD1 regulates the balance between self-renewal 
and differentiation of stem cells, and LSD1 inhibition in 
mixed lineage leukemia (MLL)-rearranged leukemia has 
been shown to downregulate expression of some leuke-
mia associated genes and cause apoptosis and cell dif-
ferentiation [62]. In addition, LSD1 is overexpressed in 
various solid tumors including prostate, breast, lung and 
colorectal cancers, and neuroblastoma [63–67]. Pharma-
cological inhibition of LSD1 leads to inhibition of prolif-
eration, differentiation, invasion, and migration in  vitro 
and in vivo [68]. Thus, LSD1 inhibitors might be promis-
ing potential therapeutic options in a variety of cancers. 
Recently, it has been demonstrated that the effects of 
LSD1 inhibitors are particularly robust for small cell lung 
cancer (SCLC) through promotion of  differentiation of 
tumor-enriched stem-like cells [69].

EZH2 (histone methyltransferase—“writer”) inhibitors
Several families of histone methyltransferases (HMT) 
that catalyze the methylation of specific lysine residues 
in histones H3 and H4 have been identified [70]. Unlike 
other histone modifications, which simply specify active 
or repressed chromatin states, histone lysine methyla-
tions confer active or repressive transcription depend-
ing on their positions and methylation states [71]. EZH2 
(enhancer of zeste homolog 2), a histone methyltrans-
ferase and a catalytic component of polycomb repressive 
complex 2 (PRC2), catalyzes tri-methylation of histone 
H3 at lysine 27 (H3K27me3) to promote transcription 
silencing [72, 73]. Through modulating critical gene 
expression, EZH2 promotes cell survival, proliferation, 
epithelial-to-mesenchymal transition (EMT), invasion, 
and drug resistance of cancer cells [74]. EZH2 is acti-
vated by mutations (gain-of-function) in lymphoma [75], 
and EZH2 overexpression is associated with aggressive-
ness and worse clinical outcome in several solid tumors, 
including prostate, breast, bladder, and endometrial 
cancers, and melanoma [76–78]. The use of an EZH2 
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inhibitor demonstrated selective killing effect in cell lines 
carrying EZH2 activating mutations [79]. Several stud-
ies also identified a PRC2-independent function of EZH2 
in transcriptional activation, involving transcription of 
androgen receptor (AR), estrogen receptor (ER) and Wnt 
signaling [80–83]).

DOT1L (histone methyltransferase—“writer”) inhibitors
Disruptor of telomeric silencing 1 (DOT1) is a novel 
class of HMT that was first identified to dysregulate 
gene silencing near telomeres in yeast [84]. DOT1-
like (DOT1L) is the only known methyltransferase that 
deposits mono-, di-, and trimethyl marks on histone 
H3 lysine 79 (H3K79) in mammals. It participates in 
the regulation of transcription, differentiation and pro-
liferation of normal cells. DOT1L has been shown to 
be critical for transformation by MLL fusion proteins 
in AML [85, 86]. Preclinical models demonstrate that 
MLL-driven leukemia is particularly sensitive to inhibi-
tion of DOT1L activity, and DOT1L inhibitors have been 
shown to specifically reduce H3K79 methylation marks 
and expression of MLL-fusions target genes in leuke-
mic cells [87]. In addition, a recent study demonstrated 
the role of DOT1L in breast cancers that do not harbor 
a MLL translocation. DOT1L plays an important role in 
the initiation and progression of breast cancer by target-
ing the gene expression of EMT-promoting factors, sug-
gesting DOT1L to be a therapeutic target for aggressive 
breast cancer [88]. While the pre-clinical studies showed 
promising activity of DOT1L inhibitors, the phase I study 
of DOTlL inhibitor, pinometostat, in adult and pediatric 
patients with relapsed or refractory leukemia demon-
strated limited clinical response [89, 90].

IDH (isocitrate dehydrogenase) inhibitors
Mutations in genes encoding enzymes of the tricarbox-
ylic acid (TCA) cycle can disrupt cell metabolism and 
alter the epigenetic landscape. For example, IDH1/2 
enzymes metabolize isocitrate to α-ketoglutarate (α-KG) 
in the TCA cycle. α-KG serves as a co-factor for α-KG-
dependent dioxygenases, including the ten-eleven 
translocation (TET) family of DNA demethylases and 
Jumonji family of histone demethylases. TET family of 
DNA methylases act on methylated DNA sequences, 
convert 5-methylcytosine (5mC) to 5-hydroxymethylcy-
tosine (5hmC), 5-formylcytosine (5fC) and 5-carboxyl-
cytosine (5caC), which will ultimately remove methyl 
groups and ensure the correct DNA methylation in the 
cell [91]. IDH1/2 mutations are found in several cancer 
types, including AML, gliomas, chondrosarcoma and 
intrahepatic cholangiocarcinoma [92, 93]. IDH mutations 
(gain-of-function) result in further processing of α-KG to 
2-hydroxyglutarate (2-HG). This leads to the production 

of “oncometabolite” 2-HG, which inhibits TET family of 
DNA demethylases and Jumonji family of histone dem-
ethylases [94] and promotes tumorigenesis [95]. Accu-
mulation of 2-HG in leukemic cells leads to increased 
DNA and histone methylation and results in blocked cell 
differentiation [96, 97]. Several small molecule inhibitors 
of both IDH1 and IDH2 have demonstrated reduction 
of 2-HG levels and differentiation of leukemic cells that 
carry the specific IDH mutations [98–100]. These effects 
also correlate with global changes in DNA methylation/
histone modification state, suggesting that the pheno-
typic effects are, to some extent, secondary to rewiring 
transcriptional programs in the leukemic cells [101].

The aforementioned RNA demethylases, FTO and 
ALKBH5 which demethylate  m6A, are α-KG-dependent 
dioxygenases [102–104].  m6A destabilizes transcripts 
and controls expression of key transcription factors in 
hematopoietic stem cells (HSCs) and human embryonic 
stem cells (ESCs) [105]. 2-HG suppresses FTO activity in 
leukemia cells, leading to decreased expression of the lin-
eage transcription factor CCAAT enhancer binding pro-
tein α (C/EBPα) that enforces normal HSC quiescence 
and myeloid differentiation [106]. Therefore, the inhibi-
tion of IDH may lead to the changes in metabolic activi-
ties in TCA cycle such as α-KG and 2-HG, coordinating 
the cell fate in HSCs and ESCs.

Epigenetic drugs for cancer treatment: approved 
or in clinical trials
Approved epigenetic therapies
To date, the FDA-approved epigenetic agents are 
mostly limited in treating hematologic malignancies. 
Two DNMT inhibitors are approved for the treatment 
of myelodysplastic syndrome (MDS)—azacitidine and 
decitabine. Clinical trials with azacitidine and its deoxy 
derivative, decitabine, demonstrated that 15% or more of 
the patients with AML or intermediate to high-risk MDS 
showed improvement in blood cell counts and survival 
[107, 108]. Several HDAC inhibitors are approved for the 
treatment of hematologic malignancies, including belin-
ostat for peripheral T cell lymphoma (PTCL), panobi-
nostat for multiple myeloma, vorinostat for cutaneous T 
cell lymphoma (CTCL) and romidepsin for both CTCL 
and PTCL. IDH inhibitors, enasidenib and ivosidenib, 
have been approved for relapsed or refractory AML with 
IDH mutations [109–111]. EZH2 inhibitor, Tazemetostat, 
has been approved for patients with relapsed or refrac-
tory follicular lymphoma (R/R FL) with EZH2 mutation 
and who have received at least 2 prior systemic therapies, 
and for adult patients with R/R FL who have no satisfac-
tory alternative treatment options [112].
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Clinical trials are ongoing in solid tumors with agents 
from multiple drug classes. In January 2020, tazemetostat 
has been granted accelerated approval by FDA in treat-
ing epithelioid sarcoma, for which we will discuss later in 
this article [113]. These FDA-approved agents are sum-
marized in Table 1.

Monotherapies in solid tumors
Historically, the first generation DNMT inhibitors (aza-
cytidine and decitabine) showed limited activity in solid 
tumor, in part due to their toxicity. Biomarker studies 
demonstrated evidence of DNA methylation changes 
associated with drug administration; however, the 
responses were short-lived and treatment resistance 
developed early [114–117]. A phase I study of decitabine 
was conducted in patients with stage IV lung cancer, 
esophageal cancer, and malignant pleural mesothelioma. 
No objective response was observed and severe toxicities 
occurred. Grade 4 neutropenia was observed in 43% (15 
out of 35) of the patients and grade 3 hepatotoxicity were 
seen in two patients with extensive liver metastases [118].

The second-generation DNMT inhibitors, such as 
guadecitabine (SGI-110), have been undergoing inves-
tigation. Guadecitabine is a novel hypomethylating 
prodrug of decitabine with a prolonged half-life. This 
novel compound is an oligonucleotide consisting of 

decitabine linked through a phosphodiester bond to the 
endogenous nucleoside deoxyguanosine. The dinucleo-
tide configuration provides protection from drug clear-
ance [119]. Guadecitabine [119] has been demonstrated 
to be safe and well tolerated as a single agent, with evi-
dence of promising activity in heavily pretreated MDS 
and AML patients [120]. A phase II trial of SGI-110 
monotherapy in patients with HCC who progressed on 
sorafenib (NCT01752933) was completed. The single 
agent SGI-110 demonstrated disappointing PFS in this 
trial.

Similar to DNMT inhibitors, HDAC inhibitors have 
shown limited single agent activity, and responses have 
been rare in solid tumors [121, 122]. A phase II study 
of vorinostat in relapsed non-small cell lung cancer 
(NSCLC) showed no objective response in 14 evaluable 
patients, and severe toxicities were reported including 
neutropenia, lymphopenia, fatigue and pulmonary embo-
lisms [123]. A phase III trial of vorinostat as second-line 
monotherapy in advanced mesothelioma was conducted 
in patients who had previously received chemother-
apy, and it showed that single agent  vorinostat did not 
improve overall survival (OS) compared with placebo 
[124]. Representative recent clinical trials of single agent 
DNMT inhibitors and HDAC inhibitors in solid tumors 
are summarized in Table 2.

Table 1 FDA-approved epigenetic therapeutics in malignancies

CTCL cutaneous T-Cell lymphoma, DNMT-1 DNA demethyltransferase-1, DNMTi DNA methyltransferase inhibitor, FDA US Food and Drug Administration, FL follicular 
lymphoma, HDACi histone deacetylase inhibitor, IDH isocitrate dehydrogenase, MDS myelodysplastic syndrome, MM multiple myeloma, PTCL peripheral T-cell 
lymphoma, CTCL cutaneous T-cell lymphoma

Epigenetic therapeutics Target Date of approval Approved indication Reference

DNMTi

Azacitidine (Vidaza) DNMT-1 inhibition 5/2004 MDS [172–174]

Decitabine (Dacogen) DNMT-1 inhibition 5/2006 MDS [175]

HDACi

Vorinostat (Zolinza) Class I and II HDACs 10/2006 Progressive, persistent, or recurrent CTCL disease on or following two 
systemic therapies

[176, 177]

Romidepsin (Istodax) Class I HDACs primarily 11/2009 CTCL after at least one prior systemic therapy [178, 179]

5/2011 PTCL after at least one prior therapy

Belinostat (Beleodaq) Class I, II and IV HDACs 7/2014 Relapsed or refractory PTCL [180]

Panobinostat (Farydak) Class I, II and IV HDACs 2/2015 MM (in combination with bortezomib and dexamethasone) after at 
least two prior regimens, including bortezomib and an immu-
nomodulatory agent

[181]

IDH mutation inhibitor

Enasidenib (Idhifa) IDH2 mutant enzyme 8/2017 Relapsed or refractory AML with an IDH2 mutation [109]

Ivosidenib (Tibsovo) IDH1 mutant enzyme 7/2018 Relapsed or refractory AML with an IDH1 mutation [110, 111]

EZH2 inhibitor

Tazemetostat (Tazverik) EZH2 inhibition 6/2020 Relapsed or refractory (R/R) FL with EZH2 mutation and who have 
received at least 2 prior systemic therapies, and for adult patients 
with R/R FL who have no satisfactory alternative treatment options

[113]

1/2020 Metastatic or locally advanced epithelioid sarcoma not eligible for 
complete resection

[112]
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Table 2 Clinical trials of single agent DNMT inhibitors and HDAC inhibitors in solid tumors

Agent(s) Cancer type(s) Trial details Trial identifier/status

DNMT inhibitors

CC-486 (oral form of azacitidine) Locally advanced or metastatic NPC Phase II trial NCT02269943

Enrollment: 36 patients Completed 4/2017

Results: ORR 12%; median PFS and OS were 
4.7 and 18.0 months, respectively. CC-486 as 
monotherapy did not show sufficient clinical 
activity in this patient population. The most 
common grade 3/4 TEAEs were neutropenia 
(33%) and febrile neutropenia (11%) [182]

Guadecitabine (SGI-110) Advanced HCC Phase II trial NCT01752933

Enrollment: 52 patients Completed 9/2015

Results: DCR 25% and 24.4%, median duration of 
response 262 days and 144 days, median PFS 
55 days and 82.5 days, median OS 294 days 
and 245 days in the 60 mg/m2 group and 
45 mg/m2 group, respectively. The most com-
mon being febrile neutropenia in both groups 
(25% vs. 11%) [183]

ASTX727 (cedazuridine and decitabine) Recurrent or progressive non-enhancing IDH 
mutant gliomas

Phase I trial NCT03922555

Enrollment: 18 patients Recruiting

Results: pending

HDAC Inhibitors

Entinostat (SNDX-275, MS-275) Relapsed or refractory abdominal neuroendo-
crine tumors

Phase II trial NCT03211988

Planned enrollment: 40 patients Recruiting

Results: N/A

Mocetinostat (MGCD0103) Locally advanced or metastatic urothelial 
carcinoma

Phase II trial NCT02236195

Enrollment: 17 patients Completed 7/2016

Results: Eligible patients received oral moceti-
nostat at a dose of 70 mg thrice weekly (TIW) 
escalating to 90 mg TIW in 28-day cycles in a 
planned 3-stage study. Single agent moceti-
nostat was not efficacious in this setting and 
significant toxicities impacted drug exposure 
and possibly contributed to modest clinical 
activity in these pretreated patients [184]

Panobinostat (LBH589) Locally recurrent or metastatic HER2-negative 
breast cancer

Phase II trial NCT00777049

Enrollment: 54 patients Completed 4/2015

Results: In HR + group (n = 33) there were 1 
PR, 13 SD, 14 PD and 5 missing data; most 
common SAE was thrombocytopenia (12.5%). 
In HR-group (n = 21) there was 1 CR, 4 SD, 14 
PD, 2 missing data; most common SAE was 
constipation (10%)

Metastatic medullary thyroid cancer and radioac-
tive iodine resistant differentiated thyroid 
cancer

Phase II trial NCT01013597

Enrollment: 13 patients Completed 2/2016

Results: Patients received LBH589 20 mg by 
mouth three times weekly for 28-day cycles. 
No responses seen, median time to progres-
sion 3.6 months, median OS 18.4 months 
(5.8 to NA). Most common toxicities were 
lymphopenia, thrombocytopenia and fatigue 
(8 patients each). There were 3 deaths “not 
otherwise specified”
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To further explore the efficacy of epigenetic mono-
therapy, newer epigenetic agents have been investigated 
beyond HDAC and DNMT inhibitors, targeting more 
specific patient population with a narrowed spectrum 
epigenetic modulation. Among them, tazemetostat is 
the first FDA-approved epigenetic therapy in the solid 
tumor, epithelioid sarcoma [112]. ES is a rare soft tis-
sue sarcoma that is characterized by the loss of expres-
sion in INI1/SNF5/SMARCB1. SMARCB1 (SWI/SNF 
related, matrix associated, actin dependent regulator of 
chromatin, subfamily b, member 1), a subunit of SWI/
SNF (SWItch/Sucrose Non-Fermentable) chromatin 
remodeling complex, can repress EZH2 transcription 
[125]. The loss of INI1 function leads to elevated expres-
sion and recruitment of EZH2 to target genes, resulting 

in the upregulation of several oncogenic signaling path-
ways [126]. The accelerated approval of tazemetostat was 
based on the results of a single arm cohort in patients 
with metastatic or locally advanced ES who are not eligi-
ble for complete resection (NCT02601950). Nine out of 
sixty two patients with INI1-negative ES (15%) had par-
tial response (PR) and six out of those nine patients (67%) 
had a duration of response lasting 6  months or longer. 
Tazemetostat was generally well tolerated [127] in the 
study.

In addition, early phase studies demonstrated BET 
inhibitors had clinical activities in patients with NMC. 
NMC is a rare and aggressive squamous cancer, which 
is commonly driven by the BRD4-NUT or BRD3-NUT 
fusion oncoprotein. A phase Ib study of birabresib 

Only select studies within the past 5 years have been included due to extent of clinical trials

AE adverse events, CRC  colorectal cancer, CRPC castrate-resistant prostate cancer, DCR disease control rate, DNMT DNA methyltransferase, HCC hepatocellular 
carcinoma, HDAC histone deacetylase, HR hormone receptor, ITT intention-to-treat, NPC nasopharyngeal carcinoma, NSCLC non-small cell lung cancer, ORR objective 
response rate, OS overall survival, PD progressive disease, PFS progression-free survival, PR partial response, SAE serious adverse event, SCLC small cell lung cancer, SD 
stable disease, TEAE treatment-emergent adverse event

Table 2 (continued)

Agent(s) Cancer type(s) Trial details Trial identifier/status

Metastatic melanoma Phase I trial NCT01065467

Enrollment: 16 patients Completed 3/2017

Results: 6 patients were treated on Arm A (oral 
panobinostat 30 mg daily on MWF) and 
10 patients were enrolled to Arm B (oral 
panobinostat 30 mg three times a week every 
other week) with 9 patients treated. DLT in arm 
A included clinically significant thrombocy-
topenia requiring dose interruption. Among 
all 15 treated patients, ORR was 0% and DCR 
was 27%. Panobinostat monotherapy was 
not active in melanoma and there was a high 
toxicity rate [185]

Valproic acid (VPA) Uveal melanoma Phase II trial NCT02068586

Planned enrollment: 150 patients Recruiting

Results: N/A

Advanced thyroid cancers of follicular origin Phase II trial NCT01182285

Enrollment: 13 patients Completed 4/2016

Results: No responses were seen and 6 patients 
had PD. Zero of 10 patients had increased radi-
oiodine uptake at their tumor sites. Valproic 
acid did not increase radioiodine uptake and 
did not have anticancer activity in patients 
with advanced, radioiodine-negative thyroid 
cancer of follicular cell origin [186]

Vorinostat (SAHA) Locally advanced, recurrent or metastatic 
adenoid cystic carcinoma

Phase II trial NCT01175980

Enrollment: 30 patients Completed 6/2018

Results: Stable disease was the best response 
in 27 patients. Median PFS and stable disease 
duration were both 11.4 months and median 
OS has not been reached. Grade 3 AEs that 
occurred in more than 1 patient included 
lymphopenia (n = 5), hypertension (n = 3), oral 
pain (n = 2), thromboembolic event (n = 2) 
and fatigue (n = 2). Eleven patients required 
dose reduction due to drug related AEs [187]
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(MK-8628/OTX015) was conducted in patients with 
NMC. Three out of ten patients (30%) with NMC had a 
PR with duration of response of 1.4 to 8.4 months [128]. 
In another phase I study of molibresib (GSK525762), out 
of nineteen NMC patients, four (21%) achieved either 
confirmed or unconfirmed PR and eight patients (42%) 
had stable disease as best response [129]. These results 
have demonstrated that targeting BRD4-NUT and BRD3-
NUT with BET inhibitors resulted in strong antitumor 
activity in this rare patient population.

Another new epigenetic agent targeting a specific 
genetic defect in epigenetic pathways has been inves-
tigated. The phase III ClarIDHy trial (NCT02989857) 
evaluated the IDH1 inhibitor ivosidenib in 185 previ-
ously treated patients with IDH1-mutated advanced 
cholangiocarcinoma. Ivosidenib improved  PFS from 
1.4  months with placebo to 2.7  months (hazard ratio 
[HR] = 0.37; P < 0.001). Although the objective response 
rate was low (2.4%), clinical benefit was observed with 
stable disease (SD) in 50.8% of patients. Median OS was 
10.8 months with ivosidenib versus 9.7 months with pla-
cebo (HR = 0.69; P = 0.06), including 57% of patients who 
crossed over from placebo group [130]. As a side note, 
the benefit of IDH1 inhibitors in patients with chondro-
sarcoma is controversial [131, 132], in part due to the 
different histological subtype with various disease aggres-
siveness and clinical outcome [133].

Summarized clinical trials investigating novel epige-
netic drugs (single agent) in solid tumors are listed in 
Table 3.

Combination therapies in solid tumors
Due to the limited efficacy of epigenetic monotherapy as 
described previously, and the complexity of epigenetic 
modification in cancer, many trials are investigating com-
bination therapies in solid tumors. Recent clinical tri-
als include epigenetic modifier combinations as well as 
combinations of epigenetic agents with cytotoxic chemo-
therapy, hormonal therapies, and immune checkpoint 
inhibitors (ICIs).

Combination of DNMT inhibitors and HDAC inhibitors
Preclinical studies demonstrated that DNMT inhibitor 
enhances apoptosis in cancer cells induced by HDAC 
inhibitors, suggesting the potential synergism of DNMT 
in combination with HDAC inhibitors [134]. A phase I/
II trial of azacitidine and entinostat in NSCLC yielded 
some promising results with durable responses [135]. 
This trial included heavily pre-treated patients who had 
received a median of three prior therapies. Clinical effi-
cacy was observed with one complete response (CR) for 

14  month duration, one PR for eight month duration, 
and ten patients with SD lasting at least 12 weeks. One 
of these patients had stable disease for 18  months and 
another for 14 months. The prolonged clinical benefit in 
certain patients in this trial prompted a correlative bio-
marker study to predict treatment response. The study 
collected and examined the promoter methylation status 
in circulating DNA from patient plasma collected before 
therapy (day 0) and after 1 cycle of therapy (day 29). Of 
these, ten out of 26 patients demonstrated a decrease 
in methylation during the first four weeks of treatment 
compared to their baseline. There was a higher response 
rate and improvement in overall survival in the patients 
with methylation changes (“methylation signature”–posi-
tive) compared to patients without methylation change 
(“methylation signature”–negative). The median OS and 
PFS were 10.42  months for the methylation signature-
positive cohort versus 6.54  months for the methylation 
signature-negative (P = 0.035). This suggests a potential 
role of epigenetic therapy in NSCLC, and the important 
role of biomarkers to predict response and benefit in 
patients.

Epigenetic therapy with cytotoxic chemotherapy
Preclinical studies suggested that DNMT and HDAC 
inhibitors have the greatest efficacy when combined 
with chemotherapy in an attempt to re-sensitize cancers 
to the standard cytotoxic agents [136, 137]. Acquired 
resistance to the chemotherapy agents might be reversed 
when combined with DNMT and/or HDAC inhibi-
tors, especially in ovarian cancers [138]. A phase I trial 
of low-dose decitabine combined with carboplatin was 
conducted in patients with recurrent platinum-resistant 
ovarian cancer. The low dose decitabine was tolerated 
and demonstrated biological activity in DNA hypometh-
ylation. However, the clinical benefit was modest [139]. 
Another phase II randomized study compared guadecit-
abine in combination with carboplatin against second-
line chemotherapy in patients with platinum-resistant 
ovarian cancer. It does not meet the primary endpoint 
and there is no difference in either median PFS or OS 
between the two groups [140, 141]. Similarly, in a phase 
I trial in patients with metastatic colorectal cancer who 
were exposed to irinotecan previously, guadecitabine in 
combination with irinotecan showed modest clinical 
activity with stable disease as the best response [142]. As 
a note, the challenge in epigenetic agents in combination 
with cytotoxic chemotherapies include the side effects of 
additive toxicities needing dose reduction of epigenetic 
agents. In addition, the chemotherapies cause G1/S cell 
cycle arrest, which may interfere with incorporation of 
hypomethylating agents into the DNA and RNA.
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Table 3 Clinical trials of newer epigenetic agents in solid tumors

Agent(s) Cancer type(s) Trial details Trial identifier/status

IDH inhibitors

Enasidenib (AG-221) Advanced solid tumors, AITL Phase I/II trial NCT02273739

Enrollment: 21 patients Completed 6/2016

Results: None available

Ivosidenib (AG-120) Advanced solid tumors, 
including cholangiocarci-
noma, chondrosarcoma, 
and glioma

Phase I trial NCT02073994

Planned enrollment: 170 patients Active, not recruiting

Results: Ivosidenib demonstrated good oral exposure and a 
long half-life. Ivosidenib 500 mg once daily was an appro-
priate dose irrespective of intrinsic and extrinsic factors, 
including patient/disease characteristics and concomitant 
administration of weak CYP3A4 inhibitors/inducers. Persis-
tent plasma 2-HG inhibition was observed in IDH1-mutant 
cholangiocarcinoma and chondrosarcoma [188]

Glioma Phase I trial NCT03343197

Enrollment: 49 patients Active, not recruiting

Results: In cohort 1 (patients randomized 2:2:1 to AG-120 
500 mg daily, AG-881 50 mg daily, or no treatment for 
4 weeks preoperatively), AG-120 and AG-881 were CNS pen-
etrant and lowered 2-HG compared to untreated samples. 
Cohort 2 is open and will evaluate AG-120 250 mg twice 
daily and AG-881 10 mg daily [189]

Advanced cholangiocarci-
noma

Phase III trial NCT02989857

Planned enrollment: 186 patients Active, not recruiting

Results: Ivosidenib resulted in significant improvement in PFS 
and favorable OS trend versus placebo in IDH1-mutated 
advanced cholangiocarcinoma [130]

BET Inhibitors

AZD5153 Solid tumors, lymphomas Phase I trial NCT03205176

Planned enrollment: 60 patients Not recruiting

Results: AZD5153 monotherapy appeared to be safe and 
tolerated at doses up to 30 mg once daily and 15 mg twice 
daily. Linear increase in PK was observed [190]

Birabresib (OTX015, 
MK-8628)

Selected advanced solid 
tumors, including NMC, 
NSCLC, CRPC

Phase 1b trial NCT02259114

Enrollment: 47 patients Completed 3/2017

Results: The RP2D of birabresib was 80 mg once daily with 
continuous dosing. Clinical activity was observed in NMC 
(3 of 10 patients had PR). Birabresib has dose-proportional 
exposure based on PK analysis and a favorable safety profile 
[128]

Selected advanced solid 
tumors

Phase Ib trial NCT02698176

Enrollment: 13 patients Terminated due to futility

Summary: Dose escalation trial of MK-8628 in TNBC (1 
patient), CRPC (9 patients), or NMC (3 patients)

GBM Phase IIa trial NCT02296476

Enrollment:12 patients Terminated due to futility

Summary: Dose escalation and expansion cohort study to 
evaluate single-agent MK-8628 in recurrent GBM after fail-
ing standard front-line therapy

BMS-986158 Selected advanced solid 
tumors, hematologic 
malignancies

Phase I/IIa trial: NCT02419417

Planned enrollment: 417 patients Recruiting

Results: N/A

INCB054329 Advanced malignancies Phase I/II trial NCT02431260

Enrollment: 69 patients Terminated due to PK variability

Summary: Open-label dose escalation and expansion study 
of INCB054329
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Table 3 (continued)

Agent(s) Cancer type(s) Trial details Trial identifier/status

INCB057643 Advanced malignancies Phase I/II trial NCT02711137

Enrollment: 136 patients Terminated due to safety issues

Summary: Open-label, dose escalation and dose expansion 
study of INCB057643 as monotherapy and in combination 
with standard-of-care agents in patients with advanced 
malignancies

Molibresib 
(GSK525762)

NMC, other solid tumors Phase I/II trial NCT01587703

Enrollment: 196 patients Completed

Results: RP2D was selected as 80 mg once daily. The most 
frequent treatment-related AEs of any grade were thrombo-
cytopenia (51%), gastrointestinal events (22–42%), anemia 
(22%) and fatigue (20%). Among 19 patients with NUT 
carcinoma-4 achieved either confirmed or unconfirmed 
PR, 8 had SD as best response and 4 were progression-free 
for > 6 months [191]

RO6870810 Advanced solid tumors Phase I trial NCT01987362

ZEN003694 Enrollment: 52 patients Completed 10/2017

Results: None available

Metastatic CRPC Phase I trial NCT02705469

Enrollment: 44 patients Completed 10/2017

Results: None available

EZH2 Inhibitors

Tazemetostat (EPZ-
6438)

Advanced solid tumors, B-cell 
lymphoma

Phase I trial NCT03028103

Planned enrollment: 28 patients Active, not recruiting

Results: None available

Advanced solid tumors, B-cell 
lymphomas

Phase I/II trial NCT01897571

Planned enrollment: 420 patients Active, not recruiting

Results: 64 patients [21 with B-cell non-Hodgkin lymphoma 
(NHL) and 43 with advanced solid tumors] received doses 
of tazemetostat. No treatment-related deaths occurred; 
7 (11%) patients had non-treatment-related deaths (1 
at 200 mg twice daily, 4 at 400 mg twice daily and 2 at 
1600 mg twice daily). The RP2D was determined to be 
800 mg twice daily. Durable objective responses, including 
CR, were observed in 8/21 (38%) patients with B-cell NHL 
and 2/43 (5%) patients with solid tumors. Tazemetostat 
showed a favorable safety profile and anti-tumor activity 
in patients with refractory B-cell NHL and advanced solid 
tumors. Phase 2 is ongoing [191)

Mesothelioma Phase II trial NCT02860286

Enrollment: 74 patients Completed 5/2019

Results: Efficacy was assessed in 61 patients with deficient 
BRCA1 associated protein 1 (BAP1). Primary endpoint was 
met with 31 (51%) patients achieving disease control at 
12 weeks and 15 patients sustained disease control at 
24 weeks. Most frequent AEs of any grade include fatigue 
(32%), decreased appetite (28%), dyspnea (28%), and 
nausea (27%). Tazemetostat monotherapy had favorable 
toxicity profile and showed promising antitumor activity 
with confirmed responses and durable disease control in 
malignant mesothelioma [192]
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Table 3 (continued)

Agent(s) Cancer type(s) Trial details Trial identifier/status

INI1-negative tumors, 
relapsed/refractory synovial 
sarcoma

Phase II trial NCT02601950

Planned enrollment: 250 patients Recruiting

Results: 62 INI1-negative epithelioid sarcoma patients were 
enrolled and treated with tazemetostat 800 mg BID. ORR 
15% (1.6% CR, 13% PR). There were 9/62 (15%) confirmed 
PR, with ORR 15% and DCR 26%. Median OS was 82.4 weeks. 
Most common AEs include fatigue (24/62; 39%), nausea 
(35%) and cancer pain (32%). Grade ≥ 3 TEAEs in ≥ 2 pts 
included anemia (6%) and decreased weight (3%). There 
were no drug-related deaths and a low discontinuation 
rate (1.7%). Tazemetostat was generally well tolerated 
and showed durable clinical response [127]. On January 
23, 2020, FDA granted accelerated approval to tazem-
etostat (EZH2) for the treatment of adults and pediatric 
patients > 16 years old with metastatic or locally advanced 
epithelioid sarcoma who were not eligible for complete 
resection [107]

LSD1 Inhibitors

INCB059872 Relapsed or refractory Ewing 
sarcoma

Phase Ib trial NCT03514407

Planned enrollment: 21 patients Terminated

Results: N/A

Advanced malignancies Phase I/II trial NCT02712905

Planned enrollment: 215 patients Terminated

Results: N/A

Seclidemstat (SP-
2577)

Advanced solid tumors Phase I trial NCT03895684

Planned enrollment: 50 patients Recruiting

Results: N/A

Relapsed or refractory Ewing 
sarcoma

Phase I trial NCT03600649

Planned enrollment: 50 patients Recruiting

Results: N/A

AE adverse events, AITL angioimmunoblastic T-cell lymphoma, ALK anaplastic lymphoma kinase, AML acute myeloid leukemia, BET bromodomain and extra-terminal, 
CR complete response, CRC  colorectal cancer, CRPC castrate-resistant prostate cancer, DLT dose-limiting toxicities, ER estrogen receptor, EZH2 enhancer of zeste 
homologue 2, GBM glioblastoma multiforme, HMT histone methyltransferase, IDH isocitrate dehydrogenase, IDO-1 indoleamine 2,3-dioxygenase, INI1 integrase 
interactor or INI1/SNF5/SMARCB1, LSD1 lysine-specific demethylase 1A, MDS myelodysplastic syndrome, MTD maximum tolerated dose, NSCLC non-small cell lung 
cancer, NMC nuclear protein in testis (NUT) midline carcinoma, PK/PD pharmacokinetics/pharmacodynamics, RP2D recommended phase 2 dose, SCLC small cell lung 
cancer, TNBC triple-negative breast cancer

Epigenetic therapy with immune checkpoint inhibitors
ICIs have recently changed the cancer treatment land-
scape in many types of cancers. The combination of epi-
genetic agents with ICIs is an area of investigation in a 
variety of solid tumors [143]. In the clinical trial involv-
ing 45 patients with advanced-stage NSCLC who were 
treated with azacitidine and entinostat, five patients 
who had disease progression during the trial were sub-
sequently enrolled in trials of anti-PD-1 therapy [135]. 
Three of the five patients achieved an objective response 
and the other two had SD for 24  weeks before disease 
progression. This clinical observation has led to pre-clin-
ical research to understand the mechanism of epigenetic 
therapies in modulating immune responses. Treatment 
of tumor cells with DNMT inhibitors can induce the 
transcription of endogenous retrovirus (ERVs), which 

are normally silenced in most somatic tissues [144]. The 
reactivation of ERVs result in the formation of cytoplas-
mic double-stranded RNAs [145, 146], the cognate ligand 
of the retinoic acid inducible gene I (RIG-I)-like recep-
tors (RLR), including RIG-I and melanoma differentia-
tion associated gene 5 (MDA5) [147]. Activation of the 
RLR family (innate immune sensors) initiates signaling 
cascades leading to the production of type I and III inter-
ferons, which elicit an antitumor immune response (virial 
mimicry) by activation of CD8+ T cells [148, 149]. Also, 
epigenetic therapy can lead to the re-expression of tumor 
antigens, such as cancer testis antigens (CTAs) and mel-
anoma-associated antigen 1 (MAGE1), increasing immu-
nogenicity [150–152]. Therefore, both pre-clinical and 
clinical studies suggests that these epigenetic therapies 
might augment antitumor immune response through 
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various mechanisms, enhancing tumor antigen expres-
sion and infiltration of cytotoxic T cells, and reversing T 
cell exhaustion with a concurrent increase in the abun-
dance of effector and/or memory T cells, among others 
[153]. These observations are being translated into clini-
cal trials that focus on the combination of ICIs with epi-
genetic drugs in a variety of solid tumors.

A phase I/Ib trial of pembrolizumab plus oral vori-
nostat (HDAC inhibitor) has been completed in patients 
with advanced/metastatic NSCLC [154]. Thirty-three 
patients were treated, including thirteen in phase I and 
twenty in phase Ib. In phase I, both ICI-naïve and ICI-
pretreated patients were enrolled to determine dose-lim-
iting toxicities (DLTs). No DLTs were observed, and the 
recommended phase II dose was pembrolizumab 200 mg 
and vorinostat 400  mg/day. The most common adverse 
events of any grade included fatigue (33%) and nausea/
vomiting (27%). Among those 6 ICI-naïve patients, there 
was 1 case (16.7%) of confirmed PR, 4 cases (66.7%) of 
SD, and 1 case (16.7%) of PD. Of 24 ICI-pretreated 
patients evaluable for response, there were 3 cases with 
(13%) PR (1 confirmed), 11 cases with (46%) SD and 10 
cases (42%) with progressive disease (PD). The results 
suggested the combined therapy of pembrolizumab and 
vorinostat is feasible with a manageable safety profile and 
active in both ICI-naïve and -exposed NSCLC patients. 
The presence of CD8+ T-cell in tumor stroma in pre-
treatment samples, not CD8+ T-cell in tumor bed, was 
associated with treatment benefit. In addition, on-treat-
ment biopsies showed the increase in CD8+ T cells in 
the stroma was correlated with clinical benefit (with SD 
or PR for a period of ≥ 24 weeks). It would be crucial to 
investigate whether the combination is better than ICI 
alone in ICI-naïve patients in the front line setting and/or 
if the combination is superior to the standard of care in 
ICI-exposed patients in the later line treatment setting. 
An ongoing randomized phase 2 trial is examining pem-
brolizumab +/− vorinostat in ICI-naive advanced/meta-
static NSCLC patients (NCT02638090).

Similarly, a phase II study is investigating azacitidine 
and entinostat with concurrent nivolumab in patients 
with metastatic NSCLC, in both ICI-naïve and ICI-
resistant patient populations (NCT01928576) and a 
phase I study is investigating pembrolizumab in combi-
nation with guadecitabine and mocetinostat for patients 
with advanced lung cancer who progressed on prior ICIs 
(NCT03220477). These on-going trials include correla-
tive studies to evaluate induced viral mimicry, interferon 
induction, and T cell function phenotypes [153].

The newer epigenetic agents in combination with 
ICIs are also under investigation. A phase I/II trial is 
evaluating a BET inhibitor, INCB057643, in combina-
tion with pembrolizumab and epacadostat (indoleamine 

2, 3-dioxygenase or IDO-1 inhibitor) in patients with 
advanced or metastatic solid tumors (NCT02959437). 
Additionally, trials of EZH2 inhibitors in combination 
with ipilimumab (CTLA-4 inhibitor) or pembrolizumab 
are recruiting the patients with advanced solid tumors 
(NCT03525795 and NCT03854474).

Epigenetic therapy with other anticancer therapies
New approaches combining epigenetic agents with other 
anticancer therapies, including hormonal therapy, have 
been explored as an approach to overcome treatment 
resistance. In the phase II study ENCORE301, entinostat 
was added to exemestane (steroidal aromatase inhibi-
tor [AI]) in patients with hormone receptor (HR)-pos-
itive advanced breast cancer with disease progression 
after prior non-steroidal AI. The study demonstrated 
a significant improvement in PFS (HR = 0.73; p = 0.06) 
and also in OS (HR = 0.59; p = 0.036). The combination 
was well tolerated, with neutropenia (13%) and fatigue 
(11%) being the most frequent grade 3 or 4 toxicities in 
entinostat-treated patients [155]. Therefore, entinostat, 
when added to exemestane, was designated by the FDA 
as breakthrough therapy for postmenopausal women 
with HR-positive advanced breast cancer whose disease 
has progressed after nonsteroidal AI therapy. Based on 
the ENCORE301 study, a phase III trial (E2112) is ongo-
ing to investigate entinostat versus placebo in combina-
tion with exemestane in patients with locally advanced or 
metastatic breast cancer who have experienced disease 
progression after a non-steroidal AI [156]

Everolimus, a sirolimus (formerly called rapamycin) 
derivative, inhibits phosphatidylinositol 3-kinase (PI3K)/
Akt/(158)mammalian target of rapamycin (mTOR) sign-
aling pathway, which is one of the mechanisms of endo-
crine resistance in HR-positive breast cancer [157, 158]. 
In preclinical studies, the use of everolimus in combi-
nation with aromatase inhibitors results in synergistic 
inhibition of the proliferation and induction of apopto-
sis [159]. The BOLERO-2 trial showed that everolimus 
in combination with exemestane improved PFS com-
pared to exemestane alone in post-menopausal women 
with advanced HR+/Her2-negative breast cancer [160]. 
However, recent data suggested that the combination of 
exemestane and everolimus did not yield a durable clini-
cal response, indicating a need for alternative combina-
tions and therapeutic strategies [161]. The pre-clinical 
studies showed that resistance to everolimus was medi-
ated by overexpression of MYC in ER-positive cancers, 
which can be reversed by BET inhibitors [162]. Also, 
a combination of BET inhibitor with fulvestrant (ER 
degrader) showed long-lasting antitumor effect in a 
tamoxifen (selective ER modulator)-resistant breast can-
cer xenograft mouse model [163].
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Similarly, the combination of BET inhibitors with 
AR antagonists is able to subvert resistance in castrate-
resistant prostate cancer (CRPC) in preclinical experi-
ments [164]. Other studies combining BET and PARP 
inhibition show mitotic catastrophe (cell death related 
to premature entry of cells into  mitosis) with induction 
of apoptosis, causing synergistic effect in suppressing 
BRCA1/2 wild-type ovarian cancer. This study also sug-
gests that BET inhibitors re-sensitize PARP-inhibitor-
resistant  BRCA  mutant epithelial ovarian cancer cells 
to PARP inhibition [165]. DNMT inhibitors create a 
“BRCAness” phenotype through downregulating expres-
sion of key homologous recombination and nonhomolo-
gous end-joining (NHEJ) genes, and promote synergism 
with PARP inhibitors in the setting of BRCA-proficient 
NSCLC in animal models. These pre-clinical data sup-
port the expansion of therapeutic studies of PARP 
inhibitors and various epigenetic agents in patients with 
BRCA-proficient cancer [166].

There are also ongoing clinical trials with BET inhibi-
tors in combination with PARP inhibitors, ER antago-
nists, and AR antagonists. A phase I trial is accruing 
patients to investigate AZD5153 in combination with 
olaparib for platinum-resistant/refractory ovarian can-
cer. Other accruing studies include a phase II trial of 
ZEN003694 in combination with talazoparib in TNBC 
(NCT03901469); a phase I/II trial to test GSK525762 in 
combination with fulvestrant in advanced HR-positive 
breast cancer (NCT02964507); and a phase Ib study com-
bining GSK525762 with abiraterone or enzalutamide in 
advanced CRPC (NCT03150056). In addition, several 
early phase trials are investigating EZH2 inhibitors in 
combination with enzalutamide or abiraterone in meta-
static CRPC, given the synergistic effect of EZH2 inhibi-
tors in combination with AR antagonists.

Ongoing clinical trials of combination therapies of epi-
genetic drugs with chemotherapy or other agents includ-
ing ICIs in solid tumors are listed in Table 4.

Conclusions
The development of epigenetic therapeutics has prom-
ise for cancer treatment, particularly with advancements 
in hematologic malignancies. In solid tumors, only one 
epigenetic agent (EZH2 inhibitor, tazemetostat) has 
been approved (ES). It is not fully understood why solid 
tumors are not as sensitive to epigenetic agents, even 
though there is profound aberrant epigenetic alterations 
in solid tumors. There may be a critical difference in cel-
lular differentiation and epigenetic plasticity between 
solid tumors and hematological malignancies. Solid 
tumors arise from a more terminally differentiated state, 
which may be intrinsically more resistant to epigenetic 
reprogramming. In contrast, hematopoietic lineages 

are precisely controlled by epigenetic modulation. It is 
understandable that epigenetic agents demonstrated 
robust clinical activity in hematological malignancies in 
which cell differentiation is a key biological feature. The 
alternative explanation could be that altered epigenetic 
modulation may occur early in oncogenesis, however, 
it is not the “driver” event that controls the tumor cell 
proliferation and survival [167]. In the era of precision 
oncology, the broad impact of epigenetic treatment is 
both promising in “reprograming” solid tumor epigenetic 
dysfunction, as well as challenging in targeting particu-
lar epigenetic driving events. In recent years, the fur-
ther development of next generation of broad spectrum 
agents and the emerging narrow spectrum agents as 
potential targeted epigenetic therapy have provided the 
new opportunities for solid tumor therapy. The approval 
of an epigenetic agent (EZH2 inhibitor, tazemetostat) in 
treatment of a rare soft tissue malignancy, epithelioid sar-
coma, is a solid step towards the future breakthrough in 
the mechanism based solid tumor epigenetic treatment.

Various HDAC and DNMT inhibitors have been tested 
for treatment of both hematologic malignancies and solid 
tumors. Primary and secondary resistance to these thera-
pies are common [168, 169]. No clear clinical benefits 
have been observed as yet in solid tumors. The limited 
antitumor activity with DNMT and HDAC inhibitors 
as monotherapy in solid tumors may also be related to 
either the short half-lives of the S phase-specific drugs 
with low incorporation into DNA [115] or due to a lack 
of specificity. Combination therapies with dual DNMT 
and HDAC inhibitors are explored in clinical trials; the 
therapeutic rationale is that densely methylated DNA 
is usually accompanied by deacetylated histone (tran-
scriptionally repressive) [170]. However, most of the 
dual-agent epigenetic therapy trials did not result in an 
obvious clinical benefit, except the observation of durable 
responses in select NSCLC patients [135].

Potential novel therapies are being investigated to tar-
get new epigenetic modulation, such as IDH mutation 
inhibition and LSD1 inhibition, in both hematologic 
and solid malignancies. Many of these agents are tar-
geting specific genetic defects in epigenetic pathways. 
Ivosidenib showed improved PFS in patients with cholan-
giocarcinoma harboring IDH1 mutation [130]. Pre-clin-
ical studies suggest targeted epigenetic therapy may be 
effective in specific patient subsets, such as LSD1 inhibi-
tors in the treatment for SCLC [69]. Early phase stud-
ies demonstrated BET inhibitors had activities in NMC, 
which is driven by BET fusion proteins. Most recently, 
METTL3 inhibitors and other agents targeting RNA epi-
genetics are emerging as potential cancer therapies with 
pending clinical trials.
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The exciting finding that epigenetic agents are able to 
modulate tumor microenvironment has been a focus of 
epigenetic research. The combination of these “repro-
gramming” effects with other approved or novel thera-
pies are being extensively explored. One of the current 
focuses is the combined epigenetic and immune therapy. 
It may be speculated that epigenetic agents have a sig-
nificant “reprogramming” activity in immune cell com-
ponents in addition to cancer cell component. There are 
many ongoing clinical trials evaluating the combination 
of the epigenetic agents with ICI in solid tumors. DNMT, 
HDAC, and other epigenetic inhibitors may enhance 
the response to and/or reverse the resistance to ICIs, if 
these agents can modulate key components of the tumor 
microenvironment including tumor cells, stromal cells, 
and innate and/or adaptive immune cells.

Beyond the scope of the current review, there are also 
important implications of epigenetic biomarkers in can-
cer screening, diagnosis, prognosis, and prediction to 
treatment. The development in the epigenetic biomarkers 
field are addressed in other reviews, including this one by 
Berdasco et al. [171].

In summary, epigenetic drugs represent “genomic 
medicines” that do not require existing DNA mutations. 
Given the wide diversity of solid tumors, epigenetic ther-
apy is attractive because of the potential to target and 
modify the cancer genome functions. It is likely that can-
cer cells exploit epigenetic modulation to activate cellular 
pathways in cancer cell survival, including drug resist-
ance and immune surveillance. Thus, epigenetic agents 
may have great therapeutic potential in the future under 
the right contexts. It will be essential to continue funda-
mental research to better identify the underlying mecha-
nism and to translate these findings into clinical trial of 
newer epigenetic agents and optimize combinatorial 
approaches with exploration of predictive biomarkers in 
solid tumors.
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