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Abstract 

Background: Epigenetic alterations may contribute to early detection of cancer. We evaluated the association of 
blood DNA methylation with lymphatic–hematopoietic cancers and, for comparison, with solid cancers. We also 
evaluated the predictive ability of DNA methylation for lymphatic–hematopoietic cancers.

Methods: Blood DNA methylation was measured using the Illumina Infinium methylationEPIC array in 2324 Strong 
Heart Study participants (41.4% men, mean age 56 years). 788,368 CpG sites were available for differential DNA meth‑
ylation analysis for lymphatic–hematopoietic, solid and overall cancers using elastic‑net and Cox regression models. 
We conducted replication in an independent population: the Framingham Heart Study. We also analyzed differential 
variability and conducted bioinformatic analyses to assess for potential biological mechanisms.

Results: Over a follow‑up of up to 28 years (mean 15), we identified 41 lymphatic–hematopoietic and 394 solid can‑
cer cases. A total of 126 CpGs for lymphatic–hematopoietic cancers, 396 for solid cancers, and 414 for overall cancers 
were selected as predictors by the elastic‑net model. For lymphatic–hematopoietic cancers, the predictive ability 
(C index) increased from 0.58 to 0.87 when adding these 126 CpGs to the risk factor model in the discovery set. The 
association was replicated with hazard ratios in the same direction in 28 CpGs in the Framingham Heart Study. When 
considering the association of variability, rather than mean differences, we found 432 differentially variable regions for 
lymphatic–hematopoietic cancers.

Conclusions: This study suggests that differential methylation and differential variability in blood DNA methylation 
are associated with lymphatic–hematopoietic cancer risk. DNA methylation data may contribute to early detection of 
lymphatic–hematopoietic cancers.
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Introduction
Epigenetic modifications—heritable and reversible 
changes in the genome without changes in the DNA 
sequence—are involved in tumorigenesis, potentially 
enabling early cancer detection. Modifications in DNA 
methylation, the most established epigenetic measure, 
occur in early stages of tumor development [1] and have 
been associated with cancer-related biological processes 
including oxidative stress [2] and apoptosis [3]. Many 
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types of human cancers show hypermethylation of regu-
latory regions of certain tumor-suppressor genes [4]. 
DNA methylation-based biomarkers have been a target 
for early detection of cancer [5] due to their early and 
frequent emergence in tumors, their high quality meas-
urement by well-established methods, their stability over 
time, their presence in different body fluids, and their cell 
type specificity [6]. However, only two DNA methylation-
based tests have received FDA approval to date, both of 
them for colorectal cancer screening protocols [6].

Lymphatic and hematopoietic cancers affect the blood, 
bone marrow, lymph, and lymphatic system tissues. They 
are classified as myeloid (affecting mainly blood, includ-
ing leukemia) and lymphoid (affecting mainly lymph 
nodes) neoplasms [7]. In 2019, they were expected to 
account for 10% of new cancer cases diagnosed in the 
United States [8].

For most cancers, early detection using DNA meth-
ylation is limited by the need for biopsy and access to 
the target tissue. For lymphatic and hematopoietic neo-
plasms, blood is a much more readily available biospeci-
men, providing a ready opportunity to identify markers 
that can detect cancer in early stages of development. 
Global DNA hypomethylation has been associated with 
better clinical outcomes in acute lymphoblastic leuke-
mia [9] and acute myeloid leukemia [10, 11], and has also 
been used to conduct genetic characterization for strati-
fication of acute myeloid leukemia risk groups [12]. In 
addition, site-specific differential blood DNA methyla-
tion in humans has been identified in several epigenome-
wide association studies for multiple myeloma [13], 
B-cell lymphoma [14] and chronic lymphocytic leukemia 
[15], and in  vitro for T-acute lymphoblastic leukemia 
[16]. Those studies, however, compared prevalent cases 
to controls and lacked follow-up, which is critical both 
for prediction and association purposes. In addition, the 
number of samples or the number of CpGs included in 
prior studies was small.

Because blood represents the relevant target tissue for 
lymphatic–hematopoietic tumors, we hypothesized that 
DNA methylation changes in blood may have a better 
ability to predict these compared to solid tumors. The 
objective of this study was to investigate the association 
of blood DNA methylation with lymphatic–hematopoi-
etic and non-lymphatic–hematopoietic (solid) tumors 
in the Strong Heart Study (SHS), a prospective cohort 
study that has followed adult men and women since 
1989–1991. In addition to estimating Differentially Meth-
ylated Positions (DMPs) and Differentially Methylated 
Regions (DMRs), we also tested for Differentially Variable 
Positions (DVPs) and regions (DVRs), which are under-
explored but increasingly recognized as predictors of 
field defects (tissue transformations that predate tumor 

development). We assessed replication in an independent 
population: the Framingham Heart Study (FHS), a pro-
spective cohort study of adults of European ancestry in 
Framingham, MA followed for health outcomes for dec-
ades [17].

Methods
Main study population: the Strong Heart Study
The SHS is a prospective cohort study funded by the 
National Heart, Lung and Blood Institute to investigate 
cardiovascular diseases and risk factors in American 
Indian adults [18]. In 1989–1991, 4549 men and women 
aged 45–75  years members of 13 tribes from Arizona, 
Oklahoma, and North and South Dakota agreed to par-
ticipate. To analyze blood DNA methylation, we had a 
series of exclusion criteria that were not related to the 
cancer outcome (Fig.  1): (1) Due to tribal request, sam-
ples from one of the tribes were not selected for DNA 
methylation analyses, leaving 4091 participants. (2) As 
we needed to use metal data to answer other research 
questions, participants without sufficient urine for metal 
determinations were excluded, leaving 3515 participants. 
(3) Cardiovascular disease was a primary aim for the 
methylation data, so participants who were free of car-
diovascular disease and were not missing other variables 
of interest at baseline (1989–1991) were eligible for blood 
DNA methylation analyses (N = 2730). (4) Sufficient 

Fig. 1 Flowchart of the included participants from the Strong Heart 
Study
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genomic DNA was available for DNA methylation analy-
ses in 2350 participants. (5) After laboratory analyses, 
data from individuals without classical bimodal distribu-
tion in DNA methylation levels and from individuals with 
low median intensity levels were removed, leaving a total 
of 2324 participants for this study. These participants 
were similar by sociodemographic and anthropometric 
characteristics to the eligible participants (Table 1).

Participant characteristics
Trained and certified personnel collected information 
on sociodemographic factors, medical history, smoking 
status and alcohol consumption in a personal interview. 
Participants having smoked < 100 cigarettes in their life-
time were considered never smokers. Participants having 
smoked ≥ 100 cigarettes in their lifetime and smoking at 
the time of the interview were considered current smok-
ers. Participants having smoked ≥ 100 cigarettes in their 
lifetime but currently not smoking were classified as for-
mer smokers. Current alcohol consumption was defined 
as any alcohol use within the past year. Former alcohol 
consumption was defined as no use of any alcohol dur-
ing the last year but previous use of > 12 drinks of alcohol. 
The physical exam included anthropometric measures 
(height and weight), and collected fasting blood and spot 
urine samples.

Cancer incidence follow‑up
The SHS used tribal records, death certificates, medical 
records, and direct annual contact with participants and 
their families to assess health outcomes and vital status 
over time. Cancer incidence was assessed by interviews, 
death certificates and/or chart reviews. For these analy-
ses, we evaluated total cancer incidence, lymphatic and 

hematopoietic cancer incidence (codes 200–208), and 
non-lymphatic and hematopoietic cancer incidence (all 
cancer codes minus codes 200–208, for simplicity called 
solid cancers). Participants with any prior history of can-
cer before baseline were excluded (136 for solid and 1 for 
lymphatic–hematopoietic cancers). We calculated fol-
low-up from the date of baseline examination to the date 
of the cancer diagnosis or 31 December 2017, whichever 
occurred first.

Microarray DNA methylation measurements
Details of microarray DNA methylation measurements 
at the baseline visit of the SHS (1989–1991) have been 
published elsewhere [19]. Briefly, buffy coats from fasting 
blood samples were collected in 1989–1991 and stored 
at − 70  °C. DNA from white blood cells was extracted 
and stored at the Penn Medical Laboratory, MedStar 
Health Research Institute under a strict quality-control 
system. In 2015, blood DNA was shipped with dry ice 
to the analytical laboratory at the Texas Biomedical 
Research Institute for DNA  methylation analysis. DNA 
was bisulfite-converted with the EZ DNAm kit (Zymo 
Research) according to the manufacturer’s instructions. 
Bisulfite converted DNA methylation from white blood 
cells was measured using the Illumina MethylationEPIC 
BeadChip (850 K). Individuals with low detection p-val-
ues, cross-hybridizing probes, probes located in sex chro-
mosomes and SNPs (Single Nucleotide Polymorphisms) 
with minor allele frequency > 0.05 were excluded. Single 
sample noob normalization and regression on correlated 
probes normalization were conducted following Illumi-
na’s recommendations for preprocessing [20]. Blood cell 
proportions (CD8T, CD4T, NK cells, B cells, monocytes 
and neutrophils) were estimated using the R package 
FlowSorted.Blood.EPIC. The preprocessing resulted in 
data from 2324 individuals and 788,368 CpG sites in our 
analyses.

Replication population: the Framingham Heart Study
The FHS is a community-based study [17]. In this study, 
participants from the FHS Offspring cohort, participants 
who attended exam cycle 8 (2005–2008, N = 2202) and 
Third Generation cohort participants who attended exam 
cycle 2 (2008–2011, N = 1455) were eligible. The study 
protocol was approved by the Institutional Review Board 
at Boston University Medical Center (Boston, MA).

Cancer was defined as the occurrence of any type of 
malignant tumor excluding non-melanoma skin neo-
plasms. Diagnoses were confirmed from pathology 
and laboratory reports and clinical notes. Age-specific 
incidence rates were compared with Connecticut Sur-
veillance, Epidemiology, and End Results (SEER) data 
[21]. Participants with any prior history of cancer 

Table 1 Descriptive characteristics for eligible participants 
versus finally selected participants

IQR interquartile range

Included (N = 2324) Eligible (N = 2730)

Age (years), median (IQR) 55.0 (49.2, 62.0) 54.9 (49.2, 62.0)

Sex (% male) 41.4 40.7

Smoking status

 % Current 38.4 37.7

 % Former 32.2 33.0

BMI, median (IQR) 29.6 (26.3, 33.6) 29.7 (26.3, 33.7)

Education

 % High 58.6 59.4

 % Medium 23.9 23.5

Alcohol consumption

 % Current 43.1 42.9

 % Former 42.2 42.2
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before the blood draw for DNA methylation measure-
ments were excluded. Participants were followed from 
the time of blood collection to the time of cancer inci-
dence (N = 376), which extended to December 31, 2016. 
These included hematological cancers (N = 28) and other 
(solid tumor) cancers (N = 348). Body Mass Index (BMI) 
was calculated as weight (kg) divided by height squared 
 (m2). Current smoking (yes/no) was defined as smoking 
on average at least one cigarette per day during the past 
12  months. Smoking pack-years was computed by mul-
tiplying the average number of cigarettes smoked per 
day by the number of years smoked, divided by 20. Cell 
type fractions of CD4T, CD8T, NK cells, monocytes and 
eosinophils were estimated from DNA methylation data 
using the Houseman method [22].

DNA samples were extracted from whole blood buffy 
coat samples using the Gentra Puregene DNA extraction 
kit (Qiagen, Venlo, Netherland) and subsequently under-
went bisulfite conversion using the EZ DNA methylation 
kit (Zymo Research, Irvine, CA). DNA methylation lev-
els were measured using the Illumina Infinium Human 
Methylation450 BeadChip (450 K). FHS Offspring cohort 
samples were run in two laboratory batches (batch #1 
and #2). The Third Generation samples were run in batch 
#3. For each separate lab batch, DNA methylation beta 
values from Illumina GenomeStudio were further nor-
malized using the DASEN methodology implemented 
in the wateRmelon R package. We used surrogate vari-
able analyses to eliminate unwanted variation in the 
DNA methylation data. Beta values were regressed on 
batch-specific surrogate variables, and the DNA meth-
ylation residual was taken forward. The three lab batches 
were merged for analyses. For sample quality control, we 
excluded samples with a missing DNA methylation value 
(detection p > 0.01) for > 1% CpGs, poor matching of 
SNPs between the 65 SNPs on the Illumina 450 K array 
and the GWAS array, or outliers at the multi-dimensional 
scaling plot. For quality control at the CpG level, we 
excluded CpGs with methylation values missing (detec-
tion p value > 0.01) for > 20% of samples, as well as CpGs 
previously identified to map to multiple locations on the 
sex chromosomes, or to have an underlying SNP (minor 
allele frequency > 5% in European ancestry in the 1000 
Genomes Project data) at the CpG site or within 10 bp of 
the single base extension. A total of 415,318 CpGs were 
retained for analyses.

Statistical methods
Differentially Methylated Positions (DMPs)
Standard Cox Proportional Hazard Regression models 
are limited in accounting for large numbers of predic-
tors or correlated data. Thus, we used GLMnet penalized 
regression, a mix between Ridge and Lasso regression in 

an elastic-net framework [23] which tests all CpG sites 
simultaneously. This approach has shown to be success-
ful for high-dimensional methylation data [24] as well 
as genome-wide association studies of SNPs [25, 26]. 
The elastic-net penalty is controlled by the α parameter, 
where the default would be α = 1 (Lasso regression) and 
Ridge regression would be α = 0. Importantly, the Lasso 
penalty tends to select only one variable among the set 
of correlated variables, whereas the Ridge penalty offers 
more flexibility and could introduce more than one pre-
dictor from a correlated set in the models. We selected 
α = 0.05 based on the performance of the model after try-
ing different values on the range between 0 and 1. This 
level of α, which is close to Ridge regression, has been a 
popular choice and has shown to work well for methyla-
tion data. The regularization path is computed for the 
selected penalty at a set of values as specified by the regu-
larization parameter λ, which was selected using 10-folds 
cross-validation in our study. This model is thus also use-
ful for avoiding genomic inflation, which is a concern 
in all Epigenome-Wide and Genome-Wide Association 
Studies. DNA methylation proportions at a given CpG 
(beta values) were used as predictors with age as time 
scale and individual entry times (age at baseline) treated 
as staggered entries for lymphatic–hematopoietic, solid 
and overall cancers. Models were adjusted for biologi-
cally relevant variables (sex, smoking status (never, for-
mer, current), BMI, blood cell counts (CD8T, CD4T, NK 
cells, monocytes and B cells), study region (Arizona, 
Oklahoma, North  Dakota and South Dakota) and five 
genetic PCs [27]. Predictive ability was evaluated using 
Harrell’s concordance or C index. For replication, we 
ran elastic-net in the SHS restricting the CpGs to those 
present in 450  K (as no data from the EPIC array were 
available in the FHS) and we fitted an elastic-net model in 
the FHS population introducing the CpGs that the model 
selected in the SHS.

Since statistical inference based on the coefficients 
from the elastic-net model is unreliable given the shrink-
age of the coefficients, we ran Cox proportional hazards 
models comparing the 90th versus the 10th percentile of 
DNA methylation with the CpGs selected by the elastic-
net in order to report hazard ratios (HRs).

For comparison with approaches commonly used in 
the literature, we ran Cox proportional hazard models 
comparing the 90th versus the 10th percentile of DNA 
methylation epigenome-wide (i.e. including all CpG sites) 
for lymphatic–hematopoietic, solid and all cancers.

Protein–protein interaction network
We created lists of unique protein-coding genes from 
the CpGs selected by elastic-net for lymphatic–hemat-
opoietic and solid tumors, respectively. We constructed a 
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protein interaction network using the STRING database 
v11.0 [28], which provides a confidence score (from 0 to 
1) to indicate the estimated likelihood that the annotated 
interaction between a given pair of proteins is biologi-
cally meaningful, specific and reproducible, according to 
the evidence derived from in-house predictions, homol-
ogy transfers and externally maintained databases. We 
displayed a protein interaction network with Cytoscape v. 
3.8.0 [29] using the yfiles Organic layout. In the resultant 
network, we only kept connections obtained from experi-
mental studies, publicly available databases and text min-
ing with a minimum confidence score of 0.3. Nodes that 
had no connections were excluded.

Differentially Methylated Regions (DMRs)
Testing differential methylation at the regional level 
might have several advantages as compared to the single 
position approach. DMRs can remove spatial redundancy 
by reducing the dimensionality of the often spatially cor-
related methylation levels and might offer increased 
robustness [30]. In addition, some studies have argued 
that DMRs might be more biologically relevant than 
DMPs [31, 32]. We used the R package DMRcate, which 
computes a kernel estimate against a null comparison to 
identify Differentially Methylated Regions, and ranks the 
DMRs by Stouffer p value [33]. DMRs were calculated 
based on the combination of the Cox regression results 
for individual CpGs. CpGs were annotated to the closest 
gene based on hg19 notation.

Differentially Variable Positions (DVPs) and Regions (DVRs)
We used the R package missMethyl for the DVP analy-
sis between cases and non-cases (no survival method is 
available to date). The function varFit calculates a meas-
ure of variability (absolute deviation) for each CpG site 
and then fits a linear model to the deviations. Empirical 
Bayes shrinkage is applied to the residuals of the linear 
model to obtain robust moderated t statistics [34]. Multi-
ple comparisons were accounted for using the Benjamini 

and Hochberg method to control for the false discovery 
rate (FDR) [35]. We report Log Var Ratios, which are 
defined as the natural log of the ratio of the absolute devi-
ations of cancers versus non-cancers. A Log Var Ratio of 
log(2) would mean that the variance of one group is twice 
that of the second group. For the regional analysis, we 
used the DMRcate package.

Sensitivity analyses
We further adjusted the cancer models for a family his-
tory of cancer in first-degree relatives and for alcohol 
consumption (never, former, current) to see if the predic-
tive ability changed. Additionally, we excluded all cases 
diagnosed in the first 5 years of follow-up (before 1995) 
to evaluate if DNA methylation could predict better cases 
in the near future. We analyzed lymphatic cancers (lym-
phomas) and hematopoietic cancers (myelomas and leu-
kemias) separately to see if we could observe differences. 
Last, among the CpG sites that were selected by the elas-
tic-net model, we repeated the Cox models adjusting for 
epigenetic aging instead of chronological age, using three 
different epigenetic aging biomarkers: the Hannum clock 
[36], the Horvath clock [37] and the PhenoAge [38]. The 
aim was to explore if some of the methylation changes 
might be reflecting aging.

Results
Descriptive analysis
Participants with incident cancer were older and more 
likely to be current smokers than non-cases (Table  2). 
Participants with incident lymphatic–hematopoietic can-
cers had higher BMI at baseline than solid cancers and 
non-cases. During follow up there were 420 new-onset 
cancer cases including 41 lymphatic–hematopoietic 
tumor cases. The mean follow-up time among partici-
pants who did not develop cancer was 26.8  years. The 
mean time from blood samples collection to cancer diag-
nosis was 14.7  years for lymphatic–hematopoietic can-
cers and 15.1 years for solid cancers and overall cancer. 

Table 2 Participants’ characteristics by cancer status

Medians (IQR) or percentages are shown for continuous or categorical variables, respectively

IQR interquartile range

Lymphatic–hematopoietic 
cancer (N = 41)

Solid cancers (N = 394) Overall cancer (N = 420) No cancer (N = 1904)

Age (years), median (IQR) 53.2 (49.8, 59.9) 56.4 (50.5, 64.0) 56.2 (50.4, 63.7) 54.7 (49.0, 61.7)

Sex, % male 36.6 46.2 46.0 40.5

Smoking status, %

 Former 22.0 30.2 22.6 30.9

 Current 46.3 47.2 46.4 36.7

BMI, median (IQR) 31.5 (26.9, 36.5) 29.0 (25.5, 33.8) 29.2 (25.7, 33.9) 29.7 (26.3, 33.5)
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Solid cancers included 85 lung cancers, 49 breast cancers, 
44 colorectal cancers, 24 kidney cancers, 23 pancreatic 
cancers, 22 stomach-esophagus cancers, 21 liver cancers, 
15 ovarian cancers, 15 gallbladder cancers, 4 endometrial 
cancers, 2 thyroid cancers, and 214 other solid neoplasms 
(one individual might have several types of cancers).

Differentially Methylated Positions
The elastic-net model for lymphatic–hematopoietic can-
cer selected 126 CpG sites as relevant. Among them, 10 
were annotated to the gene FAM65B. The C index com-
paring the model that only included risk factors (age, 
sex, smoking status, BMI, blood cell counts, study region 
and five genetic PCs) to the model that further included 
DNA methylation increased from 0.5 to 0.87 (Table  3). 
The results from the Cox proportional hazards model for 
the selected CpGs by elastic-net are shown in Table  S1 
(Additional file  1). When considering each CpG sepa-
rately, 12,342 DMPs were epigenome-wide significant at 
FDR < 0.05. The genomic inflation factor was 1.41 (41% of 
false positives, data not shown).

For solid cancers, the elastic-net model selected 396 
CpG sites including one CpG annotated to the oncogene 
LMO2 and seven CpGs annotated to smoking-related 
genes (AHRR, F2RL3, PRSS23 and GFI1). All the CpGs 
annotated to smoking-related genes were inversely asso-
ciated with incident lung cancer in our population (data 
not shown), meaning that hypomethylation in those 
genes would increase lung cancer risk. The C index com-
paring the model that only included risk factors to the 
model that further included DNA methylation increased 
from 0.66 to 0.79 (Table 3). The results from the Cox pro-
portional hazards model for those CpGs are shown in 
Table S2 (Additional file 1). No DMPs were found by the 
traditional epigenome-wide association study (EWAS) 
approach at 0.05 FDR significance level.

For overall cancer, the elastic-net model selected 
414 CpG sites of which 250 were also selected for solid 
tumors and two for lymphatic–hematopoietic cancers. 
The C index increased from 0.66 to 0.79 after including 
DNA methylation in the model (Table  3). The results 
from the Cox proportional hazards model for those CpGs 
are shown in Table S3 (Additional file 1). No DMPs were 
found by the traditional epigenome-wide association 
study (EWAS) approach at 0.05 FDR significance level.

Replication
Replication results of DNA methylation and cancer in 
the FHS are shown in Table 4. For lymphatic–hematopoi-
etic cancers, the C index for a model including only risk 
factors in the FHS (age, sex, BMI and smoking status) 
was 0.76, and it increased to 0.89 when further includ-
ing CpG sites selected by the SHS model as well as cell 
counts (Table  4). For solid tumors, the C index for a 
model including only risk factors in the FHS was 0.69, 
and it increased to 0.75 when further including the CpGs 
selected by the SHS model and cell counts (Table 4). For 
overall cancers, the C index when only including risk fac-
tors in the FHS was 0.69, and it increased to 0.74 when 
further including the CpGs selected by the SHS model 
and cell counts (Table 4). The results from the Cox pro-
portional hazards model for those CpGs for lymphatic–
hematopoietic, solid and overall cancers are show in 
Additional file 1 (Tables S1, S2 and S3, respectively). 28 
CpGs for lymphatic–hematopoietic, 54 for solid and 37 
for overall cancers had HRs in the same direction as in 
the SHS.

Protein–protein interaction network
When restricting the SHS analyses to 450  K, 126 and 
373 CpGs were selected for lymphatic–hematopoi-
etic and solid tumors, respectively, which included 442 
unique genes. Among those, 218 were ncRNA genes or 

Table 3 Predictive ability of DNA methylation for lymphatic–hematopoietic, solid and overall cancers in the Strong Heart 
Study from the elastic-net model

coef coefficient, PCs principal components, DMPs Differentially Methylated Positions
a Age (years), smoking status (current/former/never), sex (men/women), BMI (kg/m2) and study center (AZ, OK, ND/SD)
b Variables with coef 0 are considered not to play any role in prediction

N predictors Lymphatic–hematopoietic 
cancer

Solid cancers Overall cancer

C index N coef > 0b C index N coef > 0b C index N coef > 0b

Risk  factorsa 5 0.50 0 0.66 5 0.65 5

Risk  factorsa + cell 
counts + genetic PCs

15 0.50 0 0.67 15 0.66 14

Risk  factorsa + cell 
counts + genetic 
PCs + DMPs

788,383 0.87 126 0.79 396 0.79 414
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non-connected nodes. Thus, a network with 224 nodes 
and 398 interactions was obtained (Fig. 2). From 57 lym-
phatic–hematopoietic nodes identified in the SHS, 26 
were also identified in the FHS population, being GATA4, 
SOX1 and PPARGC1A the most connected (11, 9 and 9 
interaction, respectively). For 162 solid cancer nodes 
identified in the SHS, 50 nodes were also identified in 
the FHS population, being MYC, NOTCH1 and SHH the 
most connected nodes in the network (> 20 connections). 
The remaining 5 nodes (PRDM16, GALNT9, PACRG , 
PDLIM1 and ZMIZ1) were reported in both lymphatic–
hematopoietic and solid tumors. Details of the network 
are included in Additional file 2.

Differentially Methylated Regions (DMRs)
We found 159 DMRs for lymphatic–hematopoietic can-
cers. The top 15 are shown in Table  5. No DMRs were 
found for overall or solid tumors. The number of CpGs 
included in the DMRs for lymphatic–hematopoietic can-
cers ranged from 4 to 41. The region 24910562: 24912385 
(chromosome 6), annotated to the gene FAM65B, was 
the top DMR, including 20 CpGs. The top two DMR, 
reflecting 41 CpG sites, was annotated to the gene WT1. 
Figure  3 shows the tendency of the associations of the 
individual CpGs within this DMR; a bump of highly 
hypermethylated CpG sites followed by a flat area with 
no significant sites and another hypermethylation bump 
is observed.

Differentially Variable Positions (DVPs) and Regions (DVRs)
At a 0.05 FDR significance level, we found 12,967 DVPs 
for lymphatic–hematopoietic (Table  6 shows top 15), 7 
for solid (Table 7), and 9 for all cancers (data not shown). 
There were five common DVPs for overall and solid 
tumors annotated to CCDC92, AQP12B, GFI1, XIRP2 

and SPRY2 genes. Other DVPs associated to solid neo-
plasms (Table 7) were annotated to TBC1D12 and MTOR 
genes. The violin plots in Fig. 4 show the distribution of 
the methylation proportions for lymphatic–hematopoi-
etic cancer cases versus non-cases for the top 4 DVPs. 
The Log Var Ratios of the top 15 DVPs for lymphatic–
hematopoietic cancers range between 1.57 and 2.22, indi-
cating the group variance is between 5 and 9 times higher 
(log(5) = 1.6, log(9) = 2.2) in lymphatic–hematopoietic 
cancer cases compared to non-cases (Table 6). 106 of the 
152 CpGs selected by elastic-net were DVPs as well. We 
found 432 DVRs for lymphatic–hematopoietic cancers 
(Table 8 shows top 15); 78 were DMRs as well.

Sensitivity analyses
Adjustment for cancer family history or alcohol con-
sumption made no changes in the C index of the 
predictive models. After excluding five cases of lym-
phatic–hematopoietic cancers diagnosed before 1995, 
the C index dropped from 0.85 to 0.75. The C index did 
not change when excluding 33 cases of solid cancers 
that were diagnosed before 1995. A model including 19 
cases of lymphatic cancers had a C index of 0.83, with 
seven CpGs being selected. A model including 20 cases 
of hematopoietic cancers had a C index of 0.94, with 
184 CpGs being selected (including the gene FAM65B 
selected several times). Adjustment for any of the three 
epigenetic aging biomarkers did not change the results 
as compared to the adjustment for chronological aging 
(data not shown).

Discussion
Differential methylation at a number of CpGs and 
regions was associated with the incidence of lymphatic–
hematopoietic, solid, and overall cancers. The strongest 

Table 4 Replication: predictive ability in the Framingham Heart Study (450 K) of the CpGs selected in the Strong Heart 
Study for lymphatic–hematopoietic, solid and overall cancers

coef coefficient, PCs principal components, DMPs Differentially Methylated Positions
a Age (years), smoking status (current/former/never), sex (men/women) and BMI (kg/m2)
b Variables with coef 0 are considered not to play any role in prediction
c For lymphatic–hematopoietic and overall cancers, among the 125 CpGs selected by elastic‑net in the Strong Heart Study (restricting to CpGs included in 450 K), 
123 were present in the Framingham Heart Study. In addition, the four risk factor variables and the five cell count variables were included in the elastic‑net model: a 
total of 132 variables. For solid cancers, 373 CpGs were selected in the Strong Heart Study, 370 being present in the Framingham Heart Study. With the four risk factor 
variables and the five cell count variables, a total of 379 variables were included. For overall cancers, 395 CpGs were selected in the Strong Heart Study, 390 being 
present in the Framingham Heart Study. With the four risk factor variables and the five cell count variables, a total of 399 variables were included

N predictors Lymphatic–hematopoietic 
cancer

Solid cancers Overall cancer

C index N coef > 0b C index N coef > 0b C index N coef > 0b

Risk  factorsa 5 0.76 5 0.69 4 0.69 5

Risk  factorsa + cell counts 11 0.79 10 0.69 11 0.69 10

Risk  factorsa + cell counts + DMPs 132/379/399c 0.89 62 0.75 34 0.74 32
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epigenetic signals were apparent for lymphatic–hemat-
opoietic cancers, and the increase in prediction ability 
was substantially higher for lymphatic–hematopoietic 
cancers compared to the other cancers. Of note, improve-
ment in event prediction for lymphatic–hematopoietic 
cancer cases was due to cases occurring during early 
follow up and may reflect blood DNA methylation pre-
dicting subclinical disease. The improvement in predic-
tive ability for lymphatic–hematopoietic cancers as well 
as the direction of association for several CpGs was rep-
licated in the FHS, an independent population of white 
men and women from Framingham, MA. Whereas sev-
eral signals showed to be robust across both populations, 
other CpGs were not replicated in the FHS and some of 
them had opposite directions of association. Given that 

DNA methylation is highly influenced by environmen-
tal and genetic factors, population-specific effects for 
methylation sites might exist [39]. Our results support 
stronger and more robust signals for hematopoietic than 
for lymphatic cancers. This might be related to the speci-
ficity of the blood tissue.

The issue of genomic inflation and the spatial redun-
dancy among correlated CpGs may make DMRs a more 
appropriate and robust approach than DMPs calcu-
lated by individual models for each CpG [30]. DMR 
approaches, however, remain spatially defined and do 
not include non-contiguous CpG sets [40]. For this 
reason, studying all CpG sites together in the same 
model might be more appropriate than studying them 
separately. When introducing all the CpG sites in the 

Fig. 2 Protein–Protein interaction network of Differentially Methylated Positions in lymphatic–hematopoietic cancer. The circle nodes indicate 
Differentially Methylated Positions in the Strong Heart Study and the square nodes those replicated in the Framingham Heart Study. The red nodes 
indicate Differentially Methylated Positions for lymphatic–hematopoietic cancers, the blue nodes for solid cancers and the yellow nodes for all 
cancers. The size of the nodes is proportional to the number of connections. The edges indicate confidence scores for interactions from 0 to 1
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elastic-net model for lymphatic–hematopoietic can-
cers, only 126 were selected, in contrast to the 12,342 
sites identified in the traditional EWAS DMP modeling. 
One possible reason for this large drop in the number 
of CpGs is the reduction in redundancy among corre-
lated methylation across multiple CpGs, either due to 
spatial correlation or to methylation-level interactions 
on disease risk.

Our results are consistent with those from a case–
control study in a population from three different cities 
in the US [15] that studied genome-wide DNA meth-
ylation changes in chronic lymphocytic leukemia. They 
found cancer-related hypermethylation in HOX gene 
clusters. Two of our DVRs and a DMR for lymphatic–
hematopoietic cancers were annotated to genes HOXA2 

and HOXA-AS3 and overlapped with promoters of the 
HOX family, whose aberrant expression levels have been 
related to several cancers [41–45]. The second top both 
DMR and DVR in our study (including 41 CpG sites) was 
annotated to WT1, an oncogene in acute myeloid leu-
kemia. Another top DMR was annotated to PRICKLE2. 
WT1 and PRICKLE2 genes are part of the WNT signal-
ing pathway. Hypermethylation in genes related to WNT 
signaling pathway was also found in the aforementioned 
case–control study [15]. Moreover, mutations in WT1 
have been recurrently identified in acute myeloid leuke-
mia and associated with poor prognosis and chemother-
apy resistance [46, 47]. The DMRs annotated to HOXA2 
and WT1 in our study were hypermethylated, consist-
ently with the case–control study [15].

Fig. 3 Differentially methylated region for lymphatic–hematopoietic cancer. Hazard ratios (95% confidence intervals) and genomic location of the 
top 2 differentially methylated region for lymphatic–hematopoietic cancers including 41 CpG sites. Orange bars represent overlapping promoters. 
Locations of CpGs of the differentially methylated region in the chromosome are represented by blue vertical bars above the overlapping 
promoters. The grey area in the plot represents the differentially methylated region
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Despite limitations in methods for prospective analy-
ses, DVPs have previously been shown to be valuable 
for early cancer detection [30]. Differential variability 
detected field defects (tissue transformations that may 
predate cancer) in breast [48] and cervical [49] cancers. 
In our study, differential variability was associated with 
lymphatic–hematopoietic cancer with an extremely 
large number of DVPs identified. In addition, 96 of the 
126 CpGs selected by the elastic-net models for lym-
phatic–hematopoietic cancers were also DVPs, reflecting 

the importance of variability in methylation for the 
occurrence of these tumors. An example of the afore-
mentioned spatial redundancy can be seen in our DVP 
results (Table 6), where most of the top CpGs are anno-
tated to FAM65B. These DVPs are encompassed into a 
single DVR in chromosome 6 annotated to FAM65B in 
Table 8. The gene FAM65B is repeatedly showing as dif-
ferentially methylated and differentially variable in our 
study; furthermore, seven of the selected CpGs by the 
elastic-net model were annotated to this gene, suggesting 

Table 6 Top 15 Differentially Variable Positions for lymphatic–hematopoietic cancers

Log Var Ratios: Natural log of the ratio of the absolute deviations of cancers versus non‑cancers. A Log Var Ratio of log(2) would mean that the variance of one group is 
twice that of the second group

Model adjusted for age, smoking status (never, former, current), sex (male/female), BMI (kg/m2), Houseman cell proportions (CD8T, CD4T, NK, B cells and monocytes), 
five genetic PCs and study center (Arizona, Oklahoma or Dakota)

CpG Chr Gene Function In 450 k Log Var Ratio p value FDR

cg03098814 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 2.22 1.31E−22 1.03E−16

cg11083276 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 1.97 3.61E−21 1.42E−15

cg17090968 chr12 SLC38A1 Sodium‑dependent amino acid transporter. Mediates the satura‑
ble, pH‑sensitive and electrogenic cotransport of glutamine and 
sodium ions

Yes 1.67 1.08E−19 2.85E−14

cg18761994 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 2.15 1.78E−19 3.52E−14

cg17757602 chr5 Intergenic Uncharacterized Yes 2.02 4.34E−19 6.84E−14

cg11211942 chr15 Intergenic Uncharacterized No 1.92 1.26E−17 1.66E−12

cg19936032 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 2.04 2.34E−17 2.64E−12

cg02915015 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 2.04 1.15E−16 1.13E−11

cg14536812 chr12 Intergenic Uncharacterized 1.84 3.60E−16 3.15E−11

cg08576643 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 2.15 4.26E−16 3.36E−11

cg17896599 chr6 FAM65B Inhibits the proliferation of human leukemic T cells No 2.15 6.59E−16 4.73E−11

cg01726103 chr6 FAM65B Inhibits the proliferation of human leukemic T cells Yes 1.91 8.37E−16 5.50E−11

cg24698979 chr17 ARHGAP23 Increases p53 proto‑oncogene’s transactivity No 1.57 1.09E−15 6.58E−11

cg18368658 chr15 CHST14 Regulates proliferation and neurogenesis of neural progenitor 
cells

No 1.60 1.62E−15 9.12E−11

cg14216285 chr6 LINC01623 Uncharacterized Yes 1.79 2.20E−15 1.16E−10

Table 7 Differentially Variable Positions for solid cancers

Log Var Ratios: Natural log of the ratio of the absolute deviations of cancers versus non‑cancers. A Log Var Ratio of log(2) would mean that the variance of one group is 
twice that of the second group

Models adjusted for age, smoking status (never, former, current), sex (male/female), BMI (kg/m2), cell proportions (CD8T, CD4T, NK, B cells and monocytes), five genetic 
PCs and study center (Arizona, Oklahoma or Dakota)

CpG Chr Gene Function In 450 k Log Var Ratio p value FDR

cg21902846 12 CCDC92 DNA repair and reduction/oxidation reactions No 0.91 1.22E−11 9.65E−06

cg23070169 2 XIRP2 Associated to Alzheimer’s disease and Down syndrome No − 0.64 5.90E−09 0.0022

cg26292116 2 AQP12B Migration, invasion and proliferation of human breast tumor cells No − 0.33 8.44E−09 0.0022

cg13911116 1 MTOR Its activation promotes tumor growth and metastasis, many MTOR 
inhibitors have been approved to treat human cancers

Yes 0.28 1.05E−07 0.021

cg21383151 10 TBC1D12 Mutations suggested to be related to bladder cancer Yes 0.41 1.55E−07 0.023

cg08598861 13 SPRY2 Regulates metastatic potential and differentiation in several cancers No − 0.59 1.74E−07 0.023

cg18146737 1 GFI1 Significant role in development of lung cancer and prostate cancer 
and tumor suppressor gene in colorectal cancer

Yes 0.53 3.37E−07 0.038
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its importance for lymphatic–hematopoietic cancers. 
FAM65B’s function is to control the proliferation of 
transformed and primary T cells [50]. In transformed T 
lymphocytes, forced expression of FAM65B blocks their 
mitosis, leading to G2 cell cycle arrest and apoptosis. In a 
public database including 75,000 individuals with meth-
ylation and cancer data [51], the CpG sites from chromo-
some 6 annotated to gene FAM65B had more variability 
in acute myeloid leukemia cases than in controls, which 
is consistent with our results. Research is needed to 
understand the potential role of this gene in lymphatic–
hematopoietic cancers. Other genes to which DVRs were 
annotated were also related to the lymphatic or hemat-
opoietic systems such as the gene ETV3, associated to 
dendritic cell tumor, which develops from cells of the 
immune system, typically beginning in the lymph system 
[52].

Differential variability might also be relevant for solid 
cancers. We found a DVP annotated to MTOR, which 
regulates cell growth, survival, metabolism and immu-
nity. Activation of MTOR promotes tumor growth and 
metastasis, and many MTOR inhibitors have been devel-
oped to treat cancer [53]. Some of them have already 
been approved and are being used with modest success, 

while others are still being evaluated in clinical trials [54]. 
Other DVPs for solid cancers were annotated to genes 
related to bladder (TBC1D12), breast (AQP12B) or lung, 
prostate and colorectal (GFI1) cancers. GFI1 has been 
identified as a potential therapeutic target for interfering 
with inflammation-induced colorectal cancer progres-
sion and spread [55]. Of note, several CpGs annotated to 
smoking-associated genes were identified as predictive of 
solid cancers in both the SHS and the FHS (AHRR and 
F2RL3) or only in the SHS (PRSS23 and GFI1). These 
genes were individually associated with lung cancer in 
the SHS and might be predictive of other specific solid 
smoking-related cancers as well.

In addition, the protein interaction network showed 
highly connected nodes in both populations that have 
previously been related to cancer. For instance, the hub 
nodes MYC, NOTCH1 and SHH have been associated to 
different types of cancer [56]. The GATA4 gene encodes 
a member of a zinc-finger transcription factors family 
and alterations in gene expression in this gene have been 
associated with cancer [57]. Methylation in PPARGC1A 
gene was reported to predict cancer incidence [58]. The 
common nodes for solid and lymphatic–hematopoietic 
cancers have also been previously associated to cancer, 

Fig. 4 Violin plots for lymphatic–hematopoietic cancer. Distribution of the methylation proportions of lymphatic–hematopoietic cancers versus 
non‑cases for the top four Differentially Variable Positions
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for instance PRDM16 was related to acute myeloblastic 
leukemia [59]. Those highly connected nodes could be 
key factors for lymphatic–hematopoietic cancers devel-
opment. Additional experimental research is needed to 
confirm the biological relevance of the findings.

This study has several limitations. First, we only have 
41 cases of lymphatic–hematopoietic cancers, and we 
might lack power to detect signals for lymphatic and 
hematopoietic cancers separately. Second, we might not 
have been able to capture all risk factors associated with 
some of these tumors (e.g., data on Epstein–Barr virus 
infection, a risk factor for Hodgkin lymphoma). Also, 
the C index measure has shown to be problematic in 
some settings. Training a new model different to that of 
the discovery set might overestimate C index in replica-
tion sets [60]. At the same time, using the model trained 
on the discovery set on the replication set might lead to 
underestimation of the C index due to differences in bio-
logical factors between cohorts [60]. The development of 
more appropriate predictive accuracy methods for rep-
lication sets needs further investigation. Non-fatal can-
cer data in the SHS might be incomplete, as no linkage 
between the SHS cancer data and cancer registry data 
has been conducted to date. However, the lymphatic–
hematopoietic cancer diagnosis is very specific and it is 
unlikely that the reported cases are incorrectly classified. 
On the other hand, this study has several strengths which 
include having comprehensive methylation in one of the 
largest microarrays available nowadays (Infinium meth-
ylationEPIC), the high quality of the study protocols, the 
availability of data to account for potential confounders, 
the innovative statistical methods and the replication 
in an independent population with a large sample size. 
Moreover, this is the first prospective study evaluating 
DNA methylation in lymphatic–hematopoietic cancers 
(including almost 30 years of follow-up).

Conclusions
In conclusion, this study supports that differential meth-
ylation and differential variability in methylation are 
associated with lymphatic–hematopoietic cancers. Blood 
DNA methylation data could improve early detection of 
cancer beyond known risk factors. The identified DNA 
methylation markers may not only constitute a precision 
medicine tool for the early identification of blood cancers 
in adults, but may also help elucidate mechanisms that 
can inform prevention and treatment.
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