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Abstract 

Background: Blood DNA methylation‑based aging algorithms predict mortality in the general population. We inves‑
tigated the prognostic value of five established DNA methylation aging algorithms for patients with colorectal cancer 
(CRC).

Methods: AgeAccelHorvath, AgeAccelHannum, DNAmMRscore, AgeAccelPheno and AgeAccelGrim were con‑
structed using whole blood epi‑genomic data from 2206 CRC patients. After a median follow‑up of 6.2 years, 1079 
deaths were documented, including 596 from CRC. Associations of the aging algorithms with survival outcomes were 
evaluated using the Cox regression and survival curves. Harrell’s C‑statistics were computed to investigate predictive 
performance.

Results: Adjusted hazard ratios (95% confidence intervals) of all‑cause mortality for patients in the third compared 
to the first tertile were 1.66 (1.32, 2.09) for the DNAmMRscore, 1.35 (1.14, 1.59) for AgeAccelPheno and 1.65 (1.37, 2.00) 
for AgeAccelGrim, even after adjustment for age, sex and stage. AgeAccelHorvath and AgeAccelHannum were not 
associated with all‑cause or CRC‑specific mortality. In stage‑specific analyses, associations were much stronger for 
patients with early or intermediate stage cancers (stages I, II and III) than for patients with metastatic (stage IV) can‑
cers. Associations were weaker and less often statistically significant for CRC‑specific mortality. Adding DNAmMRscore, 
AgeAccelPheno or AgeAccelGrim to models including age, sex and tumor stage improved predictive performance 
moderately.

Conclusions: DNAmMRscore, AgeAccelPheno and AgeAccelGrim could serve as non‑invasive CRC prognostic 
biomarkers independent of other commonly used markers. Further research should aim for tailoring and refining such 
algorithms for CRC patients and to explore their value for enhanced prediction of treatment success and treatment 
decisions.
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Introduction
Colorectal cancer (CRC) is one of the leading causes of 
cancer death, accounting for approximately 9% of the 
total cancer deaths globally [1]. While declines in CRC 
mortality rates occurred in Western countries in recent 
years, CRC mortality rates continue to increase in many 
middle- and low-income countries [2]. Besides enhanced 
early detection, enhanced prediction of patients’ 
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prognosis might open new avenues of more effective, 
personalized treatment strategies to further reduce mor-
tality rates [3]. The tumor-node-metastasis (TNM) stag-
ing system is widely utilized to predict CRC prognosis 
and to guide adjuvant therapy after potential curative 
surgery. However, the TNM system is not satisfactory in 
predicting clinical outcomes for patients with interme-
diate stages [4], and markers that have prognostic value 
beyond the TNM system are highly desirable.

Research on prognostic markers for CRC patients has 
largely focused on characteristics of the tumor tissue, 
whereas less research has been devoted to other indi-
cators of CRC patient prognosis. Recently, a number of 
studies have disclosed major prognostic value of aging-
related changes in methylation of whole blood DNA 
with respect to mortality in general population cohorts 
[5–9]. If and to what extent they may also be useful for 
predicting chances of survival of CRC patients has, to our 
knowledge, not previously been addressed in large-scale 
studies. We aimed to evaluate the prognostic value of 
five recently proposed aging-related algorithms of DNA 
methylation (DNAm) derived from whole blood DNA 
with respect to total and CRC-specific mortality in a 
large cohort of CRC patients from Germany.

Methods
Study design and population
Our analysis is based on prospective follow-up of CRC 
patients recruited in the context of the German DACHS 
(Darmkrebs: Chancen der Verhütung durch Screening) 
Study, an ongoing population-based case–control study 
on CRC. Details of the DACHS study design have been 
described elsewhere [10–13]. In brief, patients with a first 
diagnosis of CRC (ICD 10 codes C18-C20) aged at least 
30 years (without an upper age limit) are recruited in all 
of the 22 clinics providing first-line treatment for CRC in 
the Rhine-Neckar region in Southern Germany. The cur-
rent analysis includes patients diagnosed in 2003–2010 
for whom comprehensive follow-up with respect to sur-
vival outcomes was completed and for whom DNA meth-
ylation microarray data from blood samples taken at 
baseline were available.

Data collection
The patients were recruited by their treating physician 
during first hospital stay due to CRC and notified to the 
study center at the German Cancer Research Center 
after receipt of informed consent. Personal interviews 
by trained interviewers were scheduled at the earli-
est possible convenience, either during hospital stay or 
shortly thereafter at patients’ homes, in which sociode-
mographic information, medical and lifestyle informa-
tion was collected using a standardized questionnaire. 

Comprehensive medical data, including data on patient 
and tumor characteristics and treatment, were extracted 
from medical records. Peripheral blood samples were 
collected after the interview and stored at − 80  °C. The 
time of blood drawing could be prior (within 2 weeks) to 
surgery and after surgery including before, during and 
after adjuvant therapy. Standardized follow-up infor-
mation on newly diagnosed diseases and recurrences 
was provided by patients’ physicians 3 and 5 years after 
diagnosis. Data on vital status, date and cause of death 
were obtained from local population registers and public 
health authorities. All patients provided written informed 
consent. The study was approved by the ethical commit-
tees of the Medical Faculty of the University of Heidel-
berg and the Medical Chambers of Baden-Württemberg 
and Rhineland-Palatinate.

DNAm assessment
DNA was extracted from whole blood samples using 
standard procedures. Whole blood DNA methylation 
profiles were obtained using the Infinium Methylatio-
nEPIC BeadChip Kit that covers over 850,000 CpG sites 
(Illumina, Inc, San Diego, CA, USA) according to the 
manufacturer’s protocol. We excluded probes with 
detection P value > 0.01 or missing value > 10% from 
the analysis. Pre-processing and normalization of DNA 
methylation data were conducted following the pipeline 
of Lehne et al. [14]. The methylation proportions at each 
CpG site (beta values) were calculated using normalized 
intensity values. Leukocyte composition was estimated 
using Houseman’s algorithms [15].

DNAm aging algorithms calculation
Table  1 shows basic information on five DNAm aging 
algorithms, including Horvath’s algorithm [5], Hannum’s 
algorithm [6], DNAm mortality risk score (DNAmMR-
score) [7], DNAmPhenoAge [8] and DNAmGrimAge [9]. 
Typically, DNAm aging algorithms are constructed by 
regressing the chronological age or a surrogate measure 
of biological age on a set of CpG sites from specific tis-
sues using penalized regression analyses, such as LASSO 
or elastic net regression [16]. Horvath’s algorithm was 
developed based on 353 CpGs that were related to a 
transformed version of chronological age [5]. Hannum’s 
algorithm was built based on 71 age-related CpGs [6]. 
Unlike Horvath’s algorithm and Hannum’s algorithm, 
DNAmMRscore, DNAmPhenoAge and DNAmGrim-
Age were developed by replacing prediction of chrono-
logical age with prediction of lifespan and/or surrogate 
of health span [7–9]. To develop DNAmMRscore, 10 of 
58 mortality-related CpG sites were selected by LASSO 
Cox regression model [7]. DNAmPhenoAge is based on 
513 CpGs, which were associated with a phenotypic age, 
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a combination of chronological age and nine biomarkers 
that reflect the function of liver, kidney, metabolism and 
immune system [8]. Similarly, AgeAccelGrim was con-
structed with age, sex as well as 1030 CpGs, which were 
related to smoking pack-year and seven mortality-related 
plasma proteins [9].

Age acceleration (AgeAccel) is defined as the residual 
resulting from regressing DNAm algorithms on chrono-
logical age [5]. Thus, a positive value of AgeAccel indi-
cates accelerated aging and premature mortality. In this 
analysis, the age acceleration of Horvath’s algorithm, 
Hannum’s algorithm, DNAm PhenoAge and DNAm 
GrimAge were used and denoted by AgeAccelHorvath, 
AgeAccelHannum, AgeAccelPheno and AgeAccelGrim, 
respectively. They were computed using an online DNAm 
aging algorithm calculator (https ://dnama ge.genet ics.
ucla.edu) [5]. DNAmMRscore was not transformed to 
the AgeAccel version since it originally was designed as 
a predictor of mortality [7]. In addition, two CpGs of the 
original DNAmMRscore, which had been derived using 
a 450  K CpG DNA methylation microarray, were not 
included in the EPIC microarray data. We thus developed 
an equation (as follows) of constructing DNAmMRscore 
based on eight CpGs by regressing the original DNAm-
MRscore of ten CpGs on the remaining eight CpGs in 
the 450 K microarray data of the German ESTHER Study 
[17], which had been used to develop the DNAmMR-
score [7].

(1)

DNAmMRscore = −0.36909− 1.09957× cg01612140

− 1.65446× cg05575921+ 3.12883× cg08362785

− 0.22268× cg10321156− 0.30369× cg14975410

− 0.31940× cg19572487− 3.39726× cg24704287

− 1.93238× cg25983901

Statistical methods
The correlations among AgeAccelHorvath, AgeAccel-
Hannum, DNAmMRscore, AgeAccelPheno and AgeAccel-
Grim were assessed with Pearson correlation coefficients 
and scatter plots. The distribution of the DNAm aging algo-
rithms was described by median and interquartile range 
(IQR) and compared across categorical baseline character-
istics of the study population by Kruskal–Wallis test.

Cox proportional hazards regression accounting for 
delayed entry was used to assess the associations of DNAm 
aging algorithms [per standard deviation (SD) increase 
and classified in tertiles] with all-cause mortality (or over-
all survival) and CRC-specific mortality (or CRC-specific 
survival). In addition, competing risk was considered in the 
analysis for CRC-specific mortality. The Schoenfeld Resid-
uals method was applied to test if the algorithms violate the 
assumption of Cox regression. A “clinical model” was per-
formed as the main model adjusting for the factors that are 
easily obtained in clinical settings, including chronological 
age, sex, stage, measurement batch and leukocyte composi-
tion (Houseman’s algorithms). Furthermore, stage-specific 
HRs and survival curves with adjustment for age, sex, batch 
and leukocyte composition were used to assess whether the 
association between DNAm markers and CRC prognosis 
differs depending on tumor stages. Tests for interaction 
were carried out by setting variable cross-product terms 
of DNAm aging algorithm with stage in the model. The 

Table 1 Overview of DNA methylation aging algorithms

AgeAccel, age acceleration; DNAm, DNA methylation; MRscore, mortality risk score
* DNAm aging algorithms are usually constructed by regressing mortality and/or a surrogate measure of biological age on a set of CpG sites
# Horvath’s epigenetic clock was originally developed based on CpG sites from DNA of 51 different tissues and cell types. In our study, AgeAccelHorvath was 
calculated based on CpG sites from DNA of whole blood samples
§ DNAmMRscore was initially developed based on ten CpG sites, of which two CpG sites are not included in Illumina EPIC microarray data. An adapted formula based 
on the remaining eight CpG sites has been developed using the data from an external cohort, the German ESTHER cohort
† 9 markers include albumin, creatinine, serum glucose, C-reactive protein, lymphocyte percent, mean cell volume, red cell distribution width, alkaline phosphatase 
and white blood cell count
‡ 7 plasma proteins include adrenomedullin, beta-2-microglobulim, cystatin C, growth/differentiation factor 15, leptin (Leptin), plasminogen activator inhibitor-1 and 
tissue inhibitor metalloproteinases 1

DNAm aging algorithm Original study Tissue nCpGs Surrogate measure of biological age*

AgeAccelHorvath Horvath et al. [5] Multiple  tissues# 353 Calibrated chronological age

AgeAccelHannum Hannum et al. [6] Whole blood 71 Chronological age

DNAmMRscore Zhang et al. [7] Whole blood 10(8)§ All‑cause mortality

AgeAccelPheno Levine et al. [8] Whole blood 513 9  markers†, chronological age

AgeAccelGrim Lu et al. [9] Whole blood 1030 7 Plasma  proteins‡, smoking pack‑years

https://dnamage.genetics.ucla.edu
https://dnamage.genetics.ucla.edu
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difference between survival curves was evaluated using the 
G-rho family of tests.

Sensitivity analyses were performed to investigate the 
association between DNAm aging algorithms and CRC 
prognosis with a more comprehensive adjustment for the 
variables that are shown in Table  2, including age, sex, 
batch, leukocyte composition, tumor stage, body mass 
index (BMI, kg/m2), smoking status (never, former and 
current smokers), alcohol consumption (gram of ethanol 
per day), tumor subsite and Charlson comorbidity index 
(CCI) score that was calculated from comorbidities at 
the time of CRC diagnosis [18]. Additionally, to exclude 
the influence of chemotherapy and/or radiotherapy on 
DNAm markers, we assessed the association between the 
DNAm and CRC prognosis among patients who had not 
received any chemotherapy or radiotherapy during the 
follow-up.

Predictive accuracy and discriminating ability of 
DNAm aging algorithms were evaluated using Har-
rell’s concordance statistics (C-statistics) and were com-
pared with age, sex and stage. A C-statistic value of 0.5 
suggests no discrimination, and 1.0 indicates perfect 
discrimination.

Hazard ratios and Harrell’s C-statistics were derived 
using the PROC PHREG in SAS version 9.4 (SAS Insti-
tute, Cary, NC). Correlation matrix and adjusted survival 
curves were produced using the R 3.6.0 with the packages 
corrplot and survminer, respectively [19]. Statistical sig-
nificance was defined by P < 0.05 in two-sided testing.

Results
Clinical characteristics of study population
We included 2206 eligible patients diagnosed with CRC, 
of whom 18.1%, 34.4%, 32.9% and 14.0% were diagnosed 
in stage I, II, III and IV, respectively. Over a median of 
6.2  years (IQR 3.7–10.1) of follow-up, a total of 1079 
deaths occurred, including 596 deaths due to CRC.

Table  2 describes baseline characteristics of the study 
population, which included more men (58.8%) than 
women and had a median age of 69 years. Most patients 
were diagnosed in either stage II (34.6%) or stage III 
(33.1%), and more than 40% had relevant comorbidity 
(CCI > 0). The distribution of AgeAccelHorvath, AgeAc-
celHannum, DNAmMRscore, AgeAccelPheno and 
AgeAccelGrim according to categorical baseline charac-
teristics is presented in Additional file 1: Table S1.The lev-
els of all DNAm aging algorithms were higher in females, 
smokers, those consuming more alcohol and patients 
with higher CCI and advanced stage CRC. Additional 
file 1: Fig. S1 presents correlations of AgeAccelHannum, 
DNAmMRscore, AgeAccelPheno and AgeAccelGrim 
with leukocyte composition. Levels of DNAm aging 

Table 2 Clinical characteristics at  baseline in  the  DACHS 
study

BMI, body mass index; char, characteristics; IQR, interquartile range
* Numbers do not add up to 2206 because of missing data:11 missing values 
for tumor stage, 10 missing values for BMI, 7 missing values for alcohol 
consumption and 2 missing values for smoking status. Complete case analysis 
was applied when adjusting for these variables
# Leukocyte composition was estimated by Houseman’s method
† The proximal colon includes the cecum, the ascending colon and the 
transverse colon
‡ The distal colon includes the descending colon (the left side of the colon) and 
the sigmoid colon

Baseline Characteristics Values

Sex, n (%)

 Women 910 (41.2)

 Men 1296 (58.8)

Age at diagnosis, n (%)

 33 ≤–< 55 years 238 (10.8)

 55 ≤–< 65 years 479 (21.7)

 65 ≤–< 75 years 776 (35.2)

 75 ≤–≤ 96 years 713 (32.3)

Tumor stage, n (%)*

 I 400 (18.2)

 II 760 (34.6)

 III 726 (33.1)

 IV 309 (14.1)

Leukocyte composition, Median (IQR)#

 CD4 + T cells 0.12 (0.07, 0.17)

 CD8 + T cells 0.03 (0.004, 0.06)

 NK cells 0.07 (0.04, 0.11)

 B cells 0.04 (0.03, 0.06)

 Monocytes 0.08 (0.06, 0.10)

 Granulocytes 0.65 (0.56, 0.74)

Charlson comorbidity index, n (%)

 0 (no comorbidity) 1282 (58.1)

 1 (mild comorbidity) 479 (21.7)

 2 (moderate comorbidity) 264 (12.0)

 3+ (severe comorbidity) 182 (8.2)

Tumor sub‑site, n (%)*

 Proximal  colon† 796 (36.1)

 Distal  colon‡ 738 (33.5)

 Rectum 670 (30.4)

BMI at diagnosis, n (%)* –

 < 25 kg/m2 834 (38.0)

 25 ≤–< 30 kg/m2 932 (42.4)

 ≥ 30 kg/m2 430 (19.6)

Alcohol consumption, n (%)* –

 Abstainer 380 (17.3)

 Female: < 20 g/day; Male: < 40 g/day 1559 (70.9)

 Female: ≥ 20 g/day; Male: ≥ 40 g/day 260 (11.8)

Smoking status, n (%)*

 Never 907 (41.1)

 Former 948 (43.0)

 Current 350 (15.9)
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algorithms did not vary by the year of blood sampling 
(Additional file 1: Fig. S2).

Correlation among DNAm aging algorithms
All DNAm aging algorithms were statistically signifi-
cantly correlated with each other, as shown in Addi-
tional file 1: Fig. S3. DNAmMRscore showed a moderate 
positive correlation with AgeAccelHannum (ρ = 0.46), 
AgeAccelPheno (ρ = 0.46) and AgeAccelGrim (ρ = 0.63), 
but a weaker correlation with AgeAccelHorvath 
(ρ = 0.14).

Association of DNAm aging algorithms with CRC prognosis
Table  3 shows the association between DNAm aging 
algorithms and all-cause mortality of CRC patients. 
In the analyses including patients with any stage, we 
observed marginal non-significant associations for 
AgeAccelHorvath and AgeAccelHannum and statistically 
significant associations for DNAmMRscore, AgeAccel-
Pheno and AgeAccelGrim. HRs (95%CIs) were 1.17 (0.99, 
1.38), 1.12 (0.94, 1.33), 1.66 (1.32, 2.09), 1.35 (1.14, 1.59) 
and 1.65 (1.37, 2.00) for the association of all-cause mor-
tality with upper (vs. lower) tertiles of AgeAccelHorvath, 
AgeAccelHannum, DNAmMRscore, AgeAccelPheno 
and AgeAccelGrim, respectively. In stage-specific analy-
sis, as shown in Table 3 and Figs. 1, 2 and 3, associations 
of DNAm aging algorithms and overall survival attenu-
ated with increased severity of CRC. Survival was worst 
among the patients with highest levels of DNAm aging 
algorithms for early and intermediate stage. Among stage 
IV patients, medium levels of AgeAccelPheno were asso-
ciated with highest risk of mortality (Fig. 2). However, the 
interaction between the algorithms and stages was not 
statistically significant.

As shown in Table  4, associations of higher DNAm 
aging algorithms with poorer survival were weaker for 
CRC-specific survival than for overall survival. HRs (95% 
CIs) for the comparison of the upper tertile with the 
lower tertile of AgeAccelHorvath, AgeAccelHannum, 
DNAmMRscore, AgeAccelPheno and AgeAccelGrim 
were 1.17 (0.94, 1.46), 1.06 (0.83, 1.36), 1.54 (1.11, 2.15), 
1.25 (0.98, 1.59) and 1.28 (0.84, 1.93), respectively. Table 4 
and Figs. 1, 2 and 3 show that only AgeAccelHorvath was 
statistically significantly associated with CRC-specific 
mortality among stage I and II patients. Among stage III 
patients, the associations were statistically significant for 
DNAmMRscore and AgeAccelPheno. Among stage IV 
patients, AgeAccelGrim showed a marginally significant 
association with CRC-specific mortality.

God Additional file  1: Tables S2 and S3 show that 
additional adjustments for BMI, smoking status, alcohol 
consumption, tumor subsite and CCI changed the associ-
ation of DNAm aging algorithms with all-cause mortality 

and CRC-specific mortality only slightly. Additional file 1: 
Table S4 shows that the associations of DNAmMRscore, 
AgeAccelPheno and AgeAccelGrim with both outcomes 
were stronger among patients who received surgery only. 
AgeAccelHorvath was statistically significantly associ-
ated with all-cause mortality, but not with CRC-specific 
mortality.

Predictive utility of DNAmMRscore, AgeAccelPheno 
and AgeAccelGrim
Table  5 presents the discrimination ability of various 
combinations of CRC prognostic factors, including age, 
sex, stage, DNAmMRscore, AgeAccelPheno and AgeAc-
celGrim. The performance of prediction was moder-
ately improved after adding DNAm aging algorithms in 
models including age, sex and stage. For all-cause mor-
tality, models including AgeAccelGrim showed tenta-
tively stronger predictive ability than the others among 
patients of all stages and in patients with stages I and II 
or III. For CRC-specific mortality, similar improvements 
in predictive ability were achieved by adding either one of 
the three algorithms to the models. Moreover, a model of 
combining DNAmMRscore, AgeAccelPheno and AgeAc-
celGrim did not significantly improve the predictive 
performance compared with the single algorithm model 
(data not shown).

Discussion
To our knowledge, this study is the first to investigate 
longitudinal association of five frequently used DNAm 
aging algorithms with CRC prognosis. Of the five algo-
rithms, DNAmMRscore, AgeAccelPheno and AgeAc-
celGrim were positively associated with all-cause and 
CRC-specific mortality. Associations were strongest for 
DNAmMRscore and were generally stronger for all-cause 
mortality than for CRC-specific mortality. Adding either 
of DNAmMRscore, AgeAccelPheno or AgeAccelGrim to 
models including age, sex and stage moderately increased 
prognostic performance with respect to either all-cause 
mortality or CRC-specific mortality within all stages, 
including stage IV.

Previous studies have shown that Horvath’s and 
Hannum’s algorithms are statistically significantly 
associated with all-cause mortality in older general 
populations [20–23]. Consistent with our findings, 
DNAmMRsocre, PhenoAge and GrimAge outper-
formed the first generation of DNAm aging algorithms 
regarding mortality prediction [8, 9, 24–26]. Few stud-
ies have focused on the prognostic values of DNAm 
aging algorithms among cancer patients. Dugué and 
colleagues compared different variations of Horvath’s 
and Hannum’s algorithms and concluded that the 
increased age acceleration was associated with higher 



Page 6 of 13Gào et al. Clin Epigenet          (2020) 12:184 

Ta
bl

e 
3 

A
ss

oc
ia

ti
on

s 
of

 D
N

A
 m

et
hy

la
ti

on
 a

gi
ng

 m
ar

ke
rs

 w
it

h 
al

l-c
au

se
 m

or
ta

lit
y

Ag
eA

cc
el

, a
ge

 a
cc

el
er

at
io

n;
 C

I, 
co

nfi
de

nc
e 

in
te

rv
al

; D
N

A
m

, D
N

A
 m

et
hy

la
tio

n;
 H

R,
 h

az
ar

d 
ra

tio
; M

Rs
co

re
, m

or
ta

lit
y 

ris
k 

sc
or

e

N
um

be
rs

 p
rin

te
d 

in
 b

ol
d:

 s
ta

tis
tic

al
ly

 s
ig

ni
fic

an
tly

 d
iff

er
en

t f
ro

m
 1

 (P
 <

 0
.0

5)
*  O

ve
ra

ll 
H

R 
w

as
 a

dj
us

te
d 

fo
r a

ge
, s

ex
, b

at
ch

 e
ffe

ct
s, 

tu
m

or
 s

ta
ge

 a
nd

 le
uk

oc
yt

e 
co

m
po

si
tio

n 
(H

ou
se

m
an

’s 
al

go
rit

hm
)

#  S
ta

ge
-s

pe
ci

fic
 H

R 
w

as
 a

dj
us

te
d 

fo
r a

ge
, s

ex
, b

at
ch

 e
ffe

ct
s 

an
d 

le
uk

oc
yt

e 
co

m
po

si
tio

n 
(H

ou
se

m
an

’s 
al

go
rit

hm
)

M
ar

ke
rs

Ca
te

go
ri

es
A

ll 
st

ag
es

St
ag

e 
I a

nd
 II

St
ag

e 
III

St
ag

e 
IV

P 
fo

r i
nt

er
ac

tio
n

n d
ea

th
/n

ca
se

s
H

R 
(9

5%
 C

I)*
n d

ea
th

/n
ca

se
s

H
R 

(9
5%

 C
I)#

n d
ea

th
/n

ca
se

s
H

R 
(9

5%
 C

I)#
n d

ea
th

/n
ca

se
s

H
R 

(9
5%

 C
I)#

A
ge

A
cc

el
H

or
va

th
Te

rt
ile

 1
36

1/
73

6
1.

00
 (R

ef
.)

13
5/

36
4

1.
00

 (R
ef

.)
12

4/
26

0
1.

00
 (R

ef
.)

10
0/

10
7

1.
00

 (R
ef

.)
–

Te
rt

ile
 2

33
9/

73
6

1.
01

 (0
.8

6,
 1

.1
8)

13
8/

40
2

0.
97

 (0
.7

6,
 1

.2
4)

10
9/

23
6

0.
95

 (0
.7

3,
 1

.2
5)

87
/9

2
1.

14
 (0

.8
3,

 1
.5

5)
–

Te
rt

ile
 3

37
9/

73
4

1.
17

 (0
.9

9,
 1

.3
8)

16
3/

39
3

1.
32

 (1
.0

4,
 1

.3
8)

11
7/

23
0

1.
18

 (0
.9

0,
 1

.5
5)

98
/1

10
0.

98
 (0

.7
1,

 1
.3

4)
–

Pe
r S

D
 in

cr
ea

se
10

79
/2

20
6

1.
06

 (0
.9

9,
 1

.1
3)

43
6/

11
59

1.
10

 (0
.9

9,
 1

.2
1)

35
0/

72
6

1.
10

 (0
.9

9,
 1

.2
3)

28
5/

30
9

0.
96

 (0
.8

4,
 1

.1
0)

0.
13

9

A
ge

A
cc

el
H

an
nu

m
Te

rt
ile

 1
32

7/
73

6
1.

00
 (R

ef
.)

12
8/

38
6

1.
00

 (R
ef

.)
12

4/
26

8
1.

00
 (R

ef
.)

74
/8

0
1.

00
 (R

ef
.)

–

Te
rt

ile
 2

34
0/

73
6

0.
93

 (0
.7

8,
 1

.0
9)

12
6/

38
7

0.
89

 (0
.6

9,
 1

.1
5)

10
9/

23
5

0.
93

 (0
.7

0,
 1

.2
4)

10
3/

11
1

0.
86

 (0
.6

0,
 1

.2
4)

–

Te
rt

ile
 3

41
2/

73
4

1.
12

 (0
.9

4,
 1

.3
3)

18
2/

38
6

1.
18

 (0
.9

1,
 1

.5
3)

11
7/

22
3

1.
14

 (0
.8

4,
 1

.5
5)

10
8/

11
8

0.
91

 (0
.6

2,
 1

.3
4)

–

Pe
r S

D
 in

cr
ea

se
10

79
/2

20
6

1.
06

 (0
.9

8,
 1

.1
4)

43
6/

11
59

1.
05

 (0
.9

3,
 1

.1
7)

35
0/

72
6

1.
11

 (0
.9

8,
 1

.2
6)

28
5/

30
9

1.
00

 (0
.8

6,
 1

.1
7)

0.
47

5

D
N

A
m

M
Rs

co
re

Te
rt

ile
 1

27
5/

73
6

1.
00

 (R
ef

.)
10

2/
41

0
1.

00
 (R

ef
.)

97
/2

42
1.

00
 (R

ef
.)

76
/8

4
1.

00
 (R

ef
.)

Te
rt

ile
 2

34
6/

73
6

1.
07

 (0
.8

9,
 1

.3
0)

14
7/

39
9

1.
27

 (0
.9

4,
 1

.7
0)

10
4/

23
1

0.
97

 (0
.7

1,
 1

.3
4)

92
/1

02
0.

89
 (0

.6
1,

 1
.2

9)

Te
rt

ile
 3

45
8/

73
4

1.
66

 (1
.3

2,
 2

.0
9)

18
7/

35
0

2.
01

 (1
.4

2,
 2

.8
5)

14
9/

25
3

1.
64

 (1
.1

3,
 2

.3
8)

11
7/

12
3

1.
33

 (0
.8

7,
 2

.0
4)

–

Pe
r S

D
 in

cr
ea

se
10

79
/2

20
6

1.
34

 (1
.2

0,
 1

.4
9)

43
6/

11
59

1.
50

 (1
.2

8,
 1

.7
6)

35
0/

72
6

1.
39

 (1
.1

8,
 1

.6
4)

28
5/

30
9

1.
09

 (0
.9

0,
 1

.3
3)

0.
61

6

A
ge

A
cc

el
Ph

en
o

Te
rt

ile
 1

31
8/

73
6

1.
00

 (R
ef

.)
12

2/
39

0
1.

00
 (R

ef
.)

12
3/

26
3

1.
00

 (R
ef

.)
71

/8
0

1.
00

 (R
ef

.)
–

Te
rt

ile
 2

32
3/

73
6

1.
02

 (0
.8

6,
 1

.2
0)

12
6/

39
5

0.
89

 (0
.6

8,
 1

.1
5)

99
/2

34
0.

92
 (0

.6
9,

 1
.2

2)
96

/1
02

1.
43

 (1
.0

2,
 2

.0
1)

–

Te
rt

ile
 3

43
8/

73
4

1.
35

 (1
.1

4,
 1

.5
9)

18
8/

37
4

1.
50

 (1
.1

7,
 1

.9
2)

12
8/

22
9

1.
28

 (0
.9

8,
 1

.6
9)

11
8/

12
7

1.
31

 (0
.9

3,
 1

.8
6)

–

Pe
r S

D
 in

cr
ea

se
10

79
/2

20
6

1.
18

 (1
.1

0,
 1

.2
7)

43
6/

11
59

1.
22

 (1
.1

1,
 1

.3
5)

35
0/

72
6

1.
20

 (1
.0

7,
 1

.3
5)

28
5/

30
9

1.
12

 (0
.9

7,
 1

.3
0)

0.
45

9

A
ge

A
cc

el
G

rim
Te

rt
ile

 1
28

6/
73

6
1.

00
 (R

ef
.)

98
/4

05
1.

00
 (R

ef
.)

11
9/

25
8

1.
00

 (R
ef

.)
68

/7
2

1.
00

 (R
ef

.)
–

Te
rt

ile
 2

34
7/

73
6

1.
13

 (0
.9

4,
 1

.3
4)

14
4/

38
1

1.
34

 (1
.0

0,
 1

.7
8)

10
6/

24
6

0.
98

 (0
.7

3,
 1

.3
2)

95
/1

04
0.

95
 (0

.6
6,

 1
.3

7)
–

Te
rt

ile
 3

44
6/

73
4

1.
65

 (1
.3

7,
 2

.0
0)

19
4/

37
3

2.
30

 (1
.6

9,
 3

.1
3)

12
5/

22
2

1.
63

 (1
.1

9,
 2

.2
2)

12
2/

13
3

1.
01

 (0
.7

1,
 1

.4
5)

–

Pe
r S

D
 in

cr
ea

se
10

79
/2

20
6

1.
35

 (1
.2

4,
 1

.4
7)

43
6/

11
59

1.
48

 (1
.3

1,
 1

.6
6)

35
0/

72
6

1.
24

 (1
.0

8,
 1

.4
3)

28
5/

30
9

1.
23

 (1
.0

5,
 1

.4
4)

0.
08

2



Page 7 of 13Gào et al. Clin Epigenet          (2020) 12:184  

cancer mortality [27]. Moreover, Zheng et al. observed 
a significantly positive association of Horvath’s algo-
rithm with overall survival of CRC for the comparison 
of age acceleration group and age deceleration group, 
which is not supported by our study [28]. In Zheng’s 
analysis, the Cox model was adjusted for only tumor 
stage and molecular subtype, which may not be suffi-
cient to exclude confounding due to age, sex and leuko-
cyte composition alteration.

DNAmMRscore, AgeAccelPheno and AgeAccelGrim 
were modestly correlated with each other in our study. 
Unlike other algorithms, DNAmMRscore is explicitly 
trained to predict Mortality. It is developed based on 
much fewer CpG sites that were related to all-mortal-
ity, severe conditions and smoking [7]. More clinical 
and/or lifestyle characteristics were considered in the 
development of AgeAccelPheno and AgeAccelGrim. 
As for AgeAccelPheno, chronological age and nine 

Fig. 1 Stage‑specific survival curves for overall and cancer‑specific survival of CRC patients by tertiles of DNAmMRscore. a Overall and b 
CRC‑specific survival curve among stage I and II patients; c overall and d CRC‑specific survival curve among stage III; e overall and f CRC‑specific 
survival curve among stage IV. Stage‑specific survival curves were adjusted for age, sex, batch and leukocyte composition (Houseman’s algorithm)
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mortality-related clinical markers such as C-reactive 
protein were integrated and were regressed on DNAm 
data [8]. Finally, AgeAccelGrim was computed using 
the methylation pattern of CpG sites, which were asso-
ciated with seven plasma proteins, smoking pack-year 
and all-cause mortality [9]. The significant correlation 
of DNAmMRscore, AgeAccelPheno and AgeAccelGrim 
with comorbidity suggests that the predictive power for 
CRC prognosis can be improved by regressing clinical 

outcomes and biomarkers on DNAm data in the process 
of CpG sites selection. In other words, DNAmMRscore, 
AgeAccelPheno and AgeAccelGrim were likely to cap-
ture pathophysiological information in the prediction of 
mortality risk among CRC patients. Although DNAm-
MRscore, AgeAccelPheno and AgeAccelGrim showed 
similar predictive performance regarding CRC prognosis, 
DNAmMRscore achieved such prognostic performance 
with much fewer CpG sites.

Fig. 2 Stage‑specific survival curves for overall and cancer‑specific survival of CRC patients by tertiles of AgeAccelPheno. a Overall and b 
CRC‑specific survival curve among stage I and II patients; c overall and d CRC‑specific survival curve among stage III; e overall and f CRC‑specific 
survival curve among stage IV. Stage‑specific survival curves were adjusted for age, sex, batch and leukocyte composition (Houseman’s algorithm)
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Even though there has been substantial improvement 
in the prognosis of patients with CRC over the last dec-
ades, it remains challenging to stratify patients with spe-
cific CRC stages and to make decisions on treatments 
from which they can benefit most [29]. Although there 
has been intensive search for blood-based biomarkers 
with prognostic or predictive ability, few of them retained 
their prognostic relevance after adjustment for or strati-
fication by CRC stage. Our study showed that DNAm 

aging algorithms, especially DNAmMRscore, AgeAccel-
Pheno and AgeAccelGrim, were associated with over-
all survival and disease-specific survival among patients 
with CRC, independent of age, sex and stage. Therefore, 
a combination of those DNAm aging algorithms with 
other clinical factors, such as age, sex and stage, may have 
the potential to enhance judgment of patients’ progno-
sis and to improve patient management in clinical prac-
tice. However, the associations between DNAm markers 

Fig. 3 Stage‑specific survival curves for overall and cancer‑specific survival of CRC patients by tertiles of AgeAccelGrim. a Overall and b 
CRC‑specific survival curve among stage I and II patients; c overall and d CRC‑specific survival curve among stage III; e overall and f CRC‑specific 
survival curve among stage IV. Stage‑specific survival curves were adjusted for age, sex, batch and leukocyte composition (Houseman’s algorithm)
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and CRC prognosis were weak and mostly statistically 
non-significant among patients with advanced (stage 
IV) CRC, among whom prognosis is generally extremely 
poor. Also, case numbers were smallest in this group 
which limited statistical power to detect possible asso-
ciations. Sample size limitations also prohibited in-depth 
analyses on potential use of the DNAm aging algorithms 
for predicting success of specific therapies within CRC 
stages which should be addressed in further, even much 
larger studies.

Besides potential use for prognostic classification or 
prediction of treatment success, DNAm aging algorithms 
can be utilized to explore potential mechanisms and/or 
synergies underlying the relationship between aging and 
tumor progression in CRC patients. While our study 
was the first to demonstrate associations of composite 
DNAm aging algorithms with CRC prognosis further 
work should address in more detail which components 
of the algorithms or which other DNAm markers might 
be most predictive for CRC prognosis and treatment 
success, and elucidate in more detail the underlying bio-
logical mechanisms. Further studies are also needed to 
develop novel prognostic DNAm markers and algorithms 
that are more specific to CRC.

The strengths of this study include the prospective 
design, large case numbers, long-term follow-up, the 
well-recorded causes of death, detailed information on 
pathological data and treatment data. The large sample 
size allowed detecting moderate size associations which 
might not be observed in smaller studies. There are also 
potential limitations that are worth noting. First, surgery, 
chemo- and radiotherapy administration could affect leu-
kocyte distribution and subsequently have an impact on 
DNAm levels. Therefore, the leukocyte composition was 
adjusted for in all Cox regression models to minimize the 
bias. Sensitivity analyses were performed to investigate 
the potential bias caused by the timing of blood sampling 

relative to treatment. Similar results were observed 
among the patients who received surgery only (Addi-
tional file 1: Table S4). Moreover, results barely changed 
after additionally adjusting the Cox regression model 
for the timing of blood sampling relative to treatment 
(data not shown). Second, even though we thoroughly 
adjusted for potential confounders, residual confound-
ing cannot be completely excluded because of the obser-
vational nature of our study. Third, the relatively smaller 
number of CRC-specific deaths limited the statistical 
power; therefore, further studies with larger sample size 
are needed. Last, we investigated a Caucasian population. 
Caution is therefore required when generalizing the find-
ings to non-Caucasian populations.

In conclusion, DNAmMRscore, AgeAccelPheno and 
AgeAccelGrim, which incorporate clinical biomarkers 
and/or features, showed a strong positive association 
with all-cause mortality among patients with CRC, even 
within specific CRC stages. They have slight prognostic 
value beyond age, sex and stage. Further research should 
address the potential of refinement of DNAm algorithms 
for predicting prognosis and explore the value of such 
refined algorithms for predicting success of specific treat-
ments, which may contribute to paving the way for guid-
ing therapeutic decision as well as drug development.
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