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Abstract

Background: Mesenchymal fibroblasts are ubiquitous cells that maintain the extracellular matrix of organs. Within
the lung, airway and parenchymal fibroblasts are crucial for lung development and are altered with disease, but it
has been difficult to understand their roles due to the lack of distinct molecular markers. We studied genome-wide
DNA methylation and gene expression in airway and parenchymal lung fibroblasts from healthy and asthmatic
donors, to identify a robust cell marker and to determine if these cells are molecularly distinct in asthma.

Results: Airway (N = 8) and parenchymal (N = 15) lung fibroblasts from healthy individuals differed in the
expression of 158 genes, and DNA methylation of 3936 CpGs (Bonferroni adjusted p value < 0.05). Differential DNA
methylation between cell types was associated with differential expression of 42 genes, but no single DNA
methylation CpG feature (location, effect size, number) defined the interaction. Replication of gene expression and
DNA methylation in a second cohort identified TWIST1 gene expression, DNA methylation and protein expression
as a cell marker of airway and parenchymal lung fibroblasts, with DNA methylation having 100% predictive
discriminatory power. DNA methylation was differentially altered in parenchymal (112 regions) and airway
fibroblasts (17 regions) with asthmatic status, with no overlap between regions.

Conclusions: Differential methylation of TWIST1 is a robust cell marker of airway and parenchymal lung fibroblasts.
Airway and parenchymal fibroblast DNA methylation are differentially altered in individuals with asthma, and the
role of both cell types should be considered in the pathogenesis of asthma.
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Background
Fibroblasts are mesenchymal cells found in the stroma
of many tissues and organs throughout the body that are
essential for the secretion and maintenance of the extra-
cellular matrix (ECM), in the settings of tissue homeo-
stasis, repair and disease. Fibroblasts are traditionally
defined by their spindle-shaped morphology and the
relatively non-specific expression of vimentin and
S100a4 (Fibroblast specific protein (FSP)-1). However, a
lack of lineage markers has hindered the understanding
of the specific origins and functions of different fibro-
blast populations [1]. Gene expression profiling of fibro-
blasts taken from 35 different anatomic locations,
including the skin, lung, aorta, liver, skeletal muscle and
prostate, has shown fibroblasts from different organs are
molecularly distinct from each other [1, 2]. However, the
segregation of fibroblasts by anatomical organ relied on
panels of large numbers of genes [2] with few genes dis-
tinct to fibroblasts from different organs [1, 2]. Thus, a
single gene expression marker of fibroblast anatomical
location has been elusive. The problem is more complex
in organs such as the lung that contain discreet tissues
such as the conducting airways and parenchymal tissue,
with distinct fibroblast populations in each structure.
Airway and parenchymal fibroblasts have been shown to
be morphologically [3, 4] and molecularly distinct [5].
Such variation in fibroblast biology is important to
understand, as many common lung diseases such as
asthma present with fibrosis in airway versus parenchy-
mal tissues [6, 7], highlighting a need to understand the
role of these distinct fibroblast populations.
DNA methylation is commonly studied in the context

of disease dysfunction; however, the understanding of its

role in regulating normal tissue-specific genome func-
tion has only gained momentum in recent years. A vast
amount of DNA methylation data now exists across a
wide variety of specific cell types, with several studies
identifying differentially methylated regions that are both
tissue- and organ-specific [8–11].Further, given the
stable nature of DNA methylation relative to gene ex-
pression, it may provide better molecular markers to dis-
tinguish specific tissues and cell types.
In the present study (Fig. 1), genome-wide DNA

methylation and gene expression were profiled in airway
and parenchymal fibroblasts from healthy individuals, to
understand if DNA methylation contributes to the het-
erogeneity of lung fibroblasts and can be used a robust
cell marker. Lastly, we assessed whether DNA methyla-
tion is altered in airway and parenchymal fibroblasts iso-
lated from individuals with asthma.

Results
Airway and parenchymal fibroblasts exhibit different
gene expression profiles
We compared genome-wide gene expression between
airway fibroblasts (n = 8) and parenchymal fibroblasts (n
= 15) collected from healthy individuals with no respira-
tory disease or medication history. The demographics of
the 23 healthy subjects are provided in Table 1.
We found 3624 probe sets, representing 2619 unique

genes, that were significant and differentially expressed be-
tween airway and parenchymal lung fibroblasts (Fig. 2a,
dark grey points, Benjamini-Hochberg false discovery rate
(FDR) < 0.05). Of these, 963 genes had a greater than 1.5-
fold difference in gene expression, with 526 genes having
higher expression in airway fibroblasts (Fig. 2a, blue

Fig. 1 Experimental design summary. Outline of the purpose of the analyses, samples used and analysis undertaken for each section
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Table 1 Airway vs parenchymal independent cohort donor demographics

Airway Fibroblasts Parenchymal fibroblasts p value

Total N 8 15

Female/male 6/2 8/7 0.3998

Age (mean ± SEM) 66 ± 3.25 66 ± 2.73 0.787

Smoker (current/ex/non) 0/7/1 4/9/2 0.2588

Fig. 2 (See legend on next page.)
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points), and 437 genes being more highly expressed in
parenchymal fibroblasts (Fig. 2a, red points). Our findings
confirm previous observations that normal airway and
parenchymal fibroblasts exhibit different gene expression
profiles [5]. Of the 963 differentially expressed genes (>
1.5 fold change), only 123 (detailed in Supplemental Table
1) were replicated from the 775 unique genes previously
identified as a gene signature of airway and parenchymal
fibroblasts [5], demonstrating the transient and variable
nature of gene expression.

Airway and parenchymal fibroblasts exhibit different DNA
methylation profiles
Having confirmed that gene expression profiles differed
between airway and parenchymal fibroblasts, we next
assessed if DNA methylation could provide further mo-
lecular distinction of the two cell types. In a site-by-site
analysis, DNA methylation identified 3936 CpGs that
were significantly differentially methylated between air-
way and parenchymal lung fibroblasts (Bonferroni ad-
justed p value < 0.05) (Fig. 2b). To understand the
characteristics of the CpGs differentially methylated in
parenchymal and airway lung fibroblasts, we considered
the direction of difference in CpG methylation (Fig. 2b),
the magnitude of CpG methylation difference (Fig. 2cc),
CpG genomic location (Fig. 2d) and CpG density of the
target site location (Fig. 2e). The directional effect of
DNA methylation was balanced between the two cell
types, with 2088 CpG sites (53%) being more methylated
(Fig. 2b, red points) and 1848 (47%) CpG sites being less
methylated in parenchymal compared to airway fibro-
blasts (Fig. 2b, blue points). The effect sizes in terms of
DNA methylation differences between airway and paren-
chymal lung fibroblasts were notable, 3234 (82.16%)
CpGs had an absolute beta difference of greater than 0.2
(red line, Fig. 2c) and 240 (6.09%) CpGs had an absolute
beta difference of greater than 0.5 (50% methylation dif-
ference) (green line, Fig. 2c). Differently methylated

CpGs were located across all regions of the genome (Fig.
2d) and within all classifications of CpG density (Fig.
2e); however, they were located primarily in gene body
regions (Fig. 2d), and in regions of open sea CpG density
(regions of the genome without any enrichment of CpG
content [12, 13] (Fig. 2e)). Enrichment within these loca-
tions differed significantly from the distribution of the
full data set (gene feature, χ2 p value < 0.017 (Fig. 2d);
CpG density, χ2 p value < 0.0188, (Fig. 2e)).
To assess whether CpG genomic positioning had any

bearing on the magnitude of DNA methylation differ-
ence between airway and parenchymal lung fibroblasts,
we assessed enrichment to CpG location for sites with a
greater than 50% difference in DNA methylation. En-
richment in gene bodies was maintained for sites with a
beta difference of > 0.5 (Fig. 2d, χ2 p value < 0.0012);
however, enrichment in open sea regions was lost (Fig.
2e, χ2 p value = 0.7124). This suggested that the CpG
genomic location of differentially methylated CpGs was
not related to effect size but rather sites of smaller effect
size contributed significantly to open sea enrichment. To
assess whether genomic positioning of a CpG had any
influence on the direction of DNA methylation differ-
ence between airway and parenchymal fibroblasts, we
assessed enrichment of CpG location by direction differ-
ence. Similarly, gene body enrichment was maintained
regardless of whether a higher (χ2 p value = 0.0256) or
lower (χ2 p value = 0.0098) level of DNA methylation
was observed in parenchymal fibroblasts relative to air-
way fibroblasts (Fig. 2f). However, enrichment in open
sea regions was observed only for CpGs with a higher
level of DNA methylation in parenchymal fibroblasts
relative to airway fibroblasts (Fig. 2g; decrease χ2 p value
= 0.0621, increase χ2 p value = 0.0022) suggesting some
propensity for open sea DNA methylation in parenchy-
mal fibroblasts relative to airway fibroblasts.
Gene set enrichment testing using Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes

(See figure on previous page.)
Fig. 2 Gene expression and DNA methylation differs between airway and parenchymal fibroblasts. Airway fibroblasts were used as reference. a
Plot of 53,617 gene expression probes used in the analysis. Red/Blue = Benjamini-Hochberg FDR < 0.05. The horizontal dotted line indicates the p
value corresponding to Benjamini-Hochberg FDR < 0.05. Red = greater expression in parenchymal fibroblasts, blue = greater expression in airway
fibroblasts. b Plot of 414,592 CpG probes used in the analysis. Red/Blue = Bonferroni adjusted p value < 0.05. Airway fibroblasts were used as
reference. Red = greater methylation in parenchymal fibroblasts, blue = greater methylation in airway fibroblasts. The horizontal dotted line
indicates the p-value corresponding to adjusted p value 0.05. c Distribution of DNA methylation (beta) difference between airway and
parenchymal fibroblasts in significant probes (Bonferroni adjusted p value < 0.05). Red line = difference in beta of 0.2, which approximates a 20%
change, green line = beta difference of 0.5. Bars in red indicate an absolute beta difference greater than 0.5 between airway and lung fibroblasts
(differential methylation > 50%). d Gene feature type for all analysis probes, all significant probes, significant probes with a difference in
methylation greater than 50%. e CpG density for all analysis probes, all significant probes, significant probes with a difference in methylation
greater than 50%. f Gene feature type for all analysis probes, all significant probes, significant probes with a decrease in methylation of greater
than 50% and significant probes with an increase in methylation of greater than 50%. g CpG density type for all analysis probes, all significant
probes, significant probes with a decrease in methylation of greater than 50% and significant probes with an increase in methylation of greater
than 50%. UTR, untranslated region; TSS, transcription start site; Island, > 200 bp with > 50% GC percentage; Shore, up to 2 kb from a CpG island;
N_Shore, North shore upstream of CpG island; S_Shore downstream of CpG island; Shelf, 2–4 kb from a CpG island; OpenSea, regions of the
genome without any enrichment of CpG content [12, 13]
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(KEGG) and Reactome identified significant enrich-
ment of CpGs in genes involved in extracellular
matrix (ECM) organization, constitution and degrad-
ation, cell-cell communication, cell adhesion and
muscle contraction (Supplemental Table 2), consistent
with previous reports of the different fibrotic func-
tions of fibroblast cell types [3, 4].

DNA methylation is associated with differential gene
expression in airway and parenchymal fibroblasts
To better understand the relationship between differen-
tial gene expression and DNA methylation, we inte-
grated the two datasets. To be consistent with the DNA
methylation data, we used Bonferroni-corrected gene ex-
pression data, which resulted in 178 probe sets, repre-
senting 158 unique genes that were differentially
expressed between airway and parenchymal lung fibro-
blasts (Bonferroni adjusted p value < 0.05) (Fig. 3a, dark
grey points). Of these, 156 probes had a 1.5-fold differ-
ence in gene expression between airway and parenchy-
mal fibroblasts, with 111 genes being more highly
expressed in airway fibroblasts (Fig. 3a, blue points) and
45 more highly expressed in parenchymal fibroblasts
(Fig. 3a, red points).
Between airway and parenchymal fibroblasts, 42 genes

showed differential gene expression associated with dif-
ferential methylation of at least one DNA methylation
probe (104 CpG probes total) (gene names and CpG
sites are provided in Supplemental Table 3). Gene set
enrichment analysis of the 42 genes identified significant
enrichment (enrichment score 1.7) for extracellular
matrix constituents (Supplemental Table 4), suggesting
DNA methylation may differentially underlie fundamen-
tal matrix deposition function in these two cell types.
We found both direct and inverse relationships between
differences in DNA methylation and fold changes in
gene expression (Fig. 3b). Of the 104 differentially DNA
methylated CpGs associated with differential gene ex-
pression, 68 probes had an inverse relationship, while 36
showed a direct relationship. The direction of the rela-
tionship was not associated with gene feature positioning
(inverse relationship χ2 p value = 0.9287, direct relation-
ship χ2 p value < 0.3005) (Fig. 3c) or CpG density (in-
verse relationship χ2 p value = 0.1769, direct relationship
χ2 p value < 0.0610) (Fig. 3d).
Genomic location, CpG density, delta beta (DNA

methylation difference) values and the number of differ-
entially methylated CpG sites associated with a particu-
lar gene are often used to infer biological relevance to
DNA methylation data in the absence of gene expression
data. To test whether these CpG methylation factors in-
fluenced gene expression differences, we compared all
differentially methylated CpGs (3936 CpGs) that were
annotated to a gene, to the differentially methylated

CpGs associated with the 158 genes differentially
expressed between airway and parenchymal fibroblasts.
We did not find any enrichment for genomic location
(Fig. 4a, χ2 p value = 0.4442), density level (Fig. 4b, χ2 p
value = 0.9235), delta beta (Fig. 4c, Kolmogorov–Smir-
nov p = 0.351) or number of differentially methylated
CpGs (Fig. 4d, Kolmogorov–Smirnov p = 0.137). Specif-
ically, for the 42 genes differentially expressed between
airway and parenchymal fibroblasts which mapped to a
CpG site with differential DNA methylation, we showed
that despite DNA methylation beta values ranging from
7.8 to 50% and being associated with a range of < 1–2.25
log2 fold differences in gene expression, there was no
correlation (Fig. 4e, p = 0.1075). However, there was a
statistically significant but weak correlation, between the
number of differentially methylated CpG sites associated
with a gene and the extent of differential gene expres-
sion (Fig. 4f, Spearman r = 0.457, p value = 0.00233).
These data highlight that DNA methylation should be
understood in association with gene expression rather
than as a proxy, but that the number of differentially
methylated CpGs potentially infers more relevance to
gene expression effect size than CpG genomic location,
delta beta or density.

Airway and parenchymal fibroblast DNA methylation
profiles are differentially associated with asthmatic status
Having further identified molecular distinction be-
tween airway and parenchymal fibroblasts, we investi-
gated the disease relevance of this distinction by
assessing whether fibroblast DNA methylation profiles
differed with asthmatic status, and importantly
whether modifications were shared or distinct be-
tween airway and parenchymal fibroblasts. The demo-
graphics of the individuals from which cells were
isolated are shown in Table 2.
To test whether asthma was associated with differ-

ential methylation, we performed a linear regression
and did not observe any statistical differences in DNA
methylation at individual CpG sites between asthma
and non-asthma cases in either airway or parenchy-
mal lung fibroblasts (Benjamini-Hochberg FDR <
0.05). However, a deviation of the raw p value distri-
bution from the null hypothesis suggested an associ-
ation between asthmatic status and DNA methylation
in parenchymal fibroblasts (Fig. 5a, Kolmogorov–
Smirnov p = 2.2e−16), but not airway fibroblasts (Fig.
5a, Kolmogorov–Smirnov p = 0.999). To further in-
vestigate this, we looked at aggregated sites via a re-
gional analysis using R package DMRcate. This
identified 17 genomic regions differentially methylated
in association with asthmatic status in airway fibro-
blasts (Fig. 5b and details in Supplemental Table 5),
and 112 regions in parenchymal fibroblasts (Fig. 5c
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and details in Supplemental Table 6), with no overlap
between the two cell types. The absence of overlap
between asthma-associated DNA methylation differ-
ences between airway and parenchymal fibroblasts
highlights the necessity for them to be investigated
independently in lung disease studies, rather than
considering a single lung fibroblast population. In air-
way fibroblasts, 15 of the 17 regions contained three

or more CpG sites, of which, 11 were annotated to a
known gene promoter (reference genome hg19). Six
had a maximum difference in DNA methylation (i.e.
at least one probe displayed a mean difference in
methylation) of greater than 20% (Δβ = 0.2) and were
associated with the following genes: PODN, HOOK2,
RP11-214O1.2, HOXA7, HNF1A/HNF1A-AS1 and
C5orf38/IRX2 (Fig. 6a–f respectively). In parenchymal

Fig. 3 Association between differential DNA methylation and gene expression. a Plot of 53,617 probes used in the analysis. Red/Blue =
Bonferroni adjusted p value < 0.05. Airway fibroblasts were used as reference. The horizontal dotted line indicates the p value corresponded to
Bonferroni adjusted p value 0.05. Red = greater expression in parenchymal fibroblasts, blue = greater expression in airway fibroblasts. b Change in
DNA methylation plotted against change in gene expression. c Gene feature type for all differentially methylated probes associated with a gene
that is differentially expressed, differentially methylated probes and differentially expressed genes that display a direct relationship and
differentially methylated probes and differentially expressed genes that display an inverse relationship. d CpG Density for all differentially
methylated probes associated with a gene that is differentially expressed, differentially methylated probes and differentially expressed genes that
display a direct relationship and differentially methylated probes and differentially expressed genes that display an inverse relationship
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fibroblasts, 99 of the 112 regions contained three or
more CpG sites, of which 71 were annotated to a
known gene. Six of these had a maximum difference
in DNA methylation of 20% and were associated with
the following genes: HRNR, NR2F1-AS1, GDNF,

HOXA5/6/HOX-AS3, RBP1 and HLA-F (Fig. 7a–f
respectively).
Gene expression of the six airway and six parenchy-

mal fibroblast regions specified above identified no
expression of PODN, HNF1A/HNF1A-AS1, C5orf38,

Fig. 4 Relationship between differential DNA methylation and gene expression. a Gene feature type for all differentially methylated probes and
differently methylated probes associated with a gene that is differentially expressed. b CpG Density for all differentially methylated probes and
differently methylated probes associated with a gene that is differentially expressed. c Distribution of CpG probe methylation difference in all
differentially methylated probes (yellow) and differently methylated probes associated with a gene that is differentially expressed (pink). d
Distribution of the number of CpG probes associated with all gene annotated, differentially methylated CpGs (Yellow) and of the number of
differently methylated probes associated with a gene that is differentially expressed (pink). e Correlation of gene expression and associated probe
averaged DNA methylation changes. f Correlation of gene expression with number of differentially methylated CpG probes associated with
the gene

Clifford et al. Clinical Epigenetics          (2020) 12:145 Page 7 of 20



IRX2, HLA-F, HRNR or GDNF in either fibroblast
type. For the remaining genes (airway fibroblasts:
HOOK2 and HOXA7 (Fig. 8a and b); parenchymal fi-
broblasts: HOXA5, HOXA6, HOXA-AS3, RB1 and
NR2F1-AS1 (Fig. 9a–e)), there was no differential
gene expression between donors with and without
asthma.

Validation of TWIST DNA methylation as a molecular
marker of airway and parenchymal fibroblasts
To investigate if DNA methylation could be used as a
molecular cell-type marker, a validation cohort from
seven donors with matched airway and parenchymal fi-
broblasts were used to remove any bias in DNA methy-
lation levels due to inter-individual genetics and
environmental exposures. Donors had a mean age of
23.42 (SEM ± 7.5), three were female, two current
smokers and five ex-smokers. Eighty-eight of the 240
CpGs previously identified passed Bonferroni correction
(p < 0.05), and 78 of these exhibited an absolute beta dif-
ference of > 0.5 (Fig. 10a). Details of these 78 CpGs are
given in Supplemental Table 7. Of the significant CpGs,
67 with a beta difference of > 0.5 were less methylated
in parenchymal fibroblasts compared to airway fibro-
blasts, while 11 CpGs were more methylated (Fig. 10a).
To identify a marker with maximum signal-to-noise ra-
tio, specificity and sensitivity, we utilized ‘DMRcate’, a
Bioconductor R package [14], to identify de novo differ-
entially methylated regions with CpGs in close genomic
proximity. Fourteen regions containing three or more
probes were identified as differentially methylated be-
tween airway and parenchymal fibroblasts (Fig. 10b and
Supplemental Table 8), of which eight were annotated to
a gene, allowing for assessment of both gene expression
and DNA methylation as a distinguishing marker. This
was further restricted to regions containing a CpG iden-
tified in the site-by-site analysis by linear modelling,
which provided gene regions for further assessment:
TWIST1 (Fig. 10c), HLX (Fig. 10d) and SKAP2 (Fig. 10e).

Affymetrix array data identified differential gene expres-
sion of TWIST1 (Fig. 10f), HLX (Fig. 10 g) and SKAP2
(Fig. 10h) between airway and parenchymal fibroblasts,
providing three high confidence targets for differentiat-
ing between airway and parenchymal fibroblasts. Pyrose-
quencing verified differential DNA methylation of TWIS
T1 (Fig. 11a), HLX (Fig. 11b) and SKAP2 (Fig. 11c) be-
tween airway and parenchymal fibroblasts; however,
qPCR only validated differential gene expression of
TWIST1 (paired samples Fig. 11d–f, full sample set Sup-
plemental Fig. 1). Further, TWIST1 protein was differen-
tially expressed (higher expression in airway fibroblasts,
p < 0.05 two sample t test), strengthening the evidence
for TWIST1 as a DNA methylation cell-type marker
capable of distinguishing airway and parenchymal fibro-
blasts (Fig. 11g/h).
Finally, logistic regression showed gene expression

of TWIST1 identified airway fibroblasts from paren-
chymal fibroblasts (Fig. 12a) at a validation area
under the receiver operating characteristic curve of
92% (95% confidence interval 73.7–100%) (Fig. 12b),
while elastic net regularized logistic regression showed
DNA methylation of the six TWIST1 CpGs fully dis-
tinguished airway fibroblasts from parenchymal fibro-
blasts (Fig. 12c) at a validation area under the
receiver operating characteristic curve of 100% (Fig.
12d). This further suggested that the DNA methyla-
tion of CpG sites associated with the TWIST1 gene
can be utilized as a molecular marker to distinguish
airway and parenchymal fibroblasts for future
research.

Discussion
In the current study, we report that DNA methylation
can be utilized as a cellular marker to distinguish airway
and parenchymal lung fibroblasts using TWIST-1; fur-
ther, that DNA methylation profiles can identify differ-
ences between airway and parenchymal fibroblasts from
asthmatic and non-asthmatic subjects; and lastly, that

Table 2 Asthmatic donors demographics

Airway fibroblasts Parenchymal fibroblasts

Non-asthmatic Asthmatic P value Non-asthmatic Asthmatic p value

Total N 8 9 9 8

Sex (M/F) 5/3 3/6 0.6193 7/2 3/5 0.1534

Age
(mean ± SEM)

33.5 ± 8.166 17.67 ± 2.95 0.0754 27.11 ± 5.978 18.75 ± 3.06 0.2566

Smoking status (non/ex/current) 4/2/2 7/0/2 0.2505 5/1/3 6/0/2 0.5389

Bronchodilator (Y/N) NA 6/3 N/A 5/3

Inhaled steroid (Y/N) N/A 1/8 N/A 1/7

Oral steroid N/A 1/8 N/A 1/7

Fatal asthma (Y/N) N/A 6/3 N/A 8/3
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the relationship between DNA methylation profiles and
gene expression signatures is complex.
Airway and parenchymal lung fibroblast transcrip-

tomes have previously been profiled [5], and our data
confirmed that the two cell types do indeed have differ-
ential gene expression profiles. However, only 123 of the
963 differentially expressed genes in our study (1.5-fold
change) replicated the 775 genes previously identified
for airway and parenchymal lung fibroblasts by Zhou
et al. [5]. One reason could be the use of a more strin-
gent fold change cut off in our analysis (> 1.5 vs > 1.2);

however, a sub-analysis of our data showed relaxing our
fold-change cut off to that of the previous study still
only identified 183 of the previously reported genes.
Zhou et al. also combined fibroblasts from asthmatic
and non-asthmatic donors in their analysis, having first
found no statistical differences in gene expression be-
tween the diseased and non-diseased samples. Lastly,
technical factors including the cell passage number stud-
ied (p4 vs p3 in the Zhou study), the utilization of differ-
ent microarray platforms, the different normalization
methods (Robust Multiarray Averaging (RMA) vs cyclic

Fig. 5 Differential DNA methylation between airway/parenchymal fibroblasts isolated from individuals with/without asthma. a p value distribution
for the association of DNA methylation with asthmatic status in airway (blue) and parenchymal (yellow) fibroblasts. b Summary of regional DNA
methylation differences between DNA isolated from airway fibroblasts isolated from donors with and without asthma. c Summary of regional
DNA methylation differences between DNA isolated from parenchymal fibroblasts isolated from donors with and without asthma
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loss in the Zhou study) or the different statistical tests
(limma moderated t-test versus Wilcoxon signed-rank
test in the Zhou study) may also account for the discrep-
ancies in our results as compared to the Zhou study. Re-
gardless, these data highlight the transient and variable

nature of gene expression which reduces its ability to ef-
fectively distinguish between the cell types.
Conversely, DNA methylation is a more stable mo-

lecular mark, and tissue-specific differentially methylated
regions (tDMRs) have been identified in other tissues [9]

Fig. 6 Differential regional DNA methylation in airway fibroblasts isolated from individuals with/without asthma. a–f Detailed plots of the six
regions with a maximum difference in DNA methylation of greater than 20% in airway fibroblasts isolated from individuals with and without
asthma. a PODN, b HOOK2, c RP11-214012.2, d HOXA7, e HNF1A/HNF1A-AS1, f C5orf38/IRX2
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suggesting increased potential for utilization as a cellular
marker. This study identified 3936 CpGs that were dif-
ferentially methylated between airway and parenchymal
fibroblasts in a cohort of unmatched airway and paren-
chymal fibroblasts. The airway and parenchymal
fibroblast-specific CpGs identified were all enriched
within gene bodies and open sea regions. This finding is
corroborated by previously identified tissue-specific

differentially methylated regions (tDMRs) in blood, sal-
iva, buccal swabs, hair follicles, liver, muscle, pancreas,
subcutaneous fat, omentum and spleen that have been
shown to be enriched in CpG-poor regions [9]. Interest-
ingly, only 104 of our 3936 (2.6%) differentially methyl-
ated CpGs were associated with differential gene
expression when using the closest annotated gene name
to define the CpG/gene association. Further, the link

Fig. 7 Differential regional DNA methylation in parenchymal fibroblasts isolated from individuals with/without asthma. a–f Detailed plots of the
six regions with a maximum difference in DNA methylation of greater than 20% in parenchymal fibroblasts isolated from individuals with and
without asthma. a HRNR, b NR2F1-AS1, c GDNF, d HOXA5/A6/A-AS3, e RBP1, f HLA-F
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between gene expression and DNA methylation was not
explained by CpG location (gene feature or CpG dens-
ity), the size of the change in methylation level (delta
beta), or the number of differentially methylated CpGs
associated with that gene. However, there was a weak
correlation between the number of differentially methyl-
ated CpGs associated with a gene and the extent of the
difference in gene expression. These findings highlight
that the relationship between DNA methylation and
gene expression differences is complex and need to be
validated. As there was no available datasets for us to
corroborate our initial finding, we validated the identi-
fied 240 high confidence CpGs in a second cohort of
matched airway and parenchymal fibroblasts and further
confirmed TWIST1 as a cell marker for airway versus
parenchymal lung fibroblasts at the DNA methylation,
gene expression and protein level. Importantly, elastic
net-regularized logistic regression analysis demon-
strated that the DNA methylation profile of TWIST1
provided 100% separation between the two cell types
indicating that the larger and more defined differ-
ences in DNA methylation perform better as a cell-
type marker. TWIST1 is a 21 kDa transcription factor
[15] that is primarily expressed in mesoderm tissues
from the early stages of embryo development and is
involved in the specification and differentiation of
mesenchyme tissues. It is therefore probable that
TWIST1 is a cell marker for airway and parenchymal
fibroblasts due to its distinct regulation of mesenchy-
mal cell phenotypes. The lack of an independent val-
idation cohort remains a limitation to the study;
however, the cells used in the current study were iso-
lated at three different geographical locations using
the same tissue culture protocols, limiting the oppor-
tunity for our differences to be due to isolation bias.

Understanding the regulation of genes like TWIST1 by
DNA methylation may have important implications for
understanding the role of airway and parenchymal fibro-
blasts in lung health and disease. Differential DNA methy-
lation in asthma has been studied in the airway epithelium
[16–19], but not in lung fibroblast populations. We identi-
fied 17 airway and 112 parenchymal fibroblast differen-
tially methylated DNA regions that were associated with
asthma, with no overlap between the two cell types. None
of the airway but two of the parenchymal fibroblast
asthma-associated DNA methylation regions were anno-
tated to genes with previously identified genome-wide as-
sociation study genetic risk loci for asthma [20], TSLP
(rs1837253) and GATA3 (rs2589561), with the SNP and
the differentially methylated regions being between ~ 0.6
and 1 Mbp apart. Importantly, the differences in the num-
ber of asthma-associated differences in DNA methylation
observed between airway and parenchymal fibroblasts was
independent of fatal and non-fatal asthma, and the thera-
peutic use of inhaled bronchodilators and steroids as air-
way and parenchymal fibroblasts were isolated from the
same asthmatic individuals. The larger number of pertur-
bations to DNA methylation in association with asthma in
parenchymal fibroblasts versus airway fibroblasts was sur-
prising based on the understanding that the parenchyma’s
contribution to the asthmatic phenotype is thought to be
minimal. However, airway fibrosis is driven by myofibro-
blasts (an α smooth muscle actin (αSMA) positive fibro-
blast subtype), and recently an αSMA-positive fibroblast
subtype was identified in the lung parenchyma, with ap-
proximately three times more αSMA-positive cells in the
parenchyma of individuals with asthma compared to non-
asthmatic control subjects [21, 22] suggesting that
parenchymal-derived fibroblasts in asthmatics may play a
role. Furthermore, it has been shown that there is more

Fig. 8 Expression of the genes associated with maximal differential DNA methylation in airway fibroblasts. Gene expression measured by qPCR of
a HOOK2 and b HOXA7 in airway fibroblasts isolated from individuals with and without asthma
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parenchymal extracellular matrix in asthmatic lungs com-
pared to controls [22]. These studies highlight an emer-
ging role for the parenchyma fibroblast in asthma
pathology and the necessity to work with the most appro-
priate cell type when investigating human disease.

Conclusions
In conclusion, our study identified in two independent
sample cohorts, that genome-wide and targeted DNA
methylation profiles of TWIST1 can distinguish between
airway and parenchyma-derived lung fibroblasts. Further,
airway and parenchymal fibroblast-related differences in
DNA methylation and associated gene expression, indicate

these two cells are phenotypically different and likely per-
form separate and distinct roles in normal lung physi-
ology. Further, we show that airway and parenchymal
fibroblast DNA methylation is differentially altered in in-
dividuals with asthma and the role of both cell types
should be considered in the pathogenesis of asthma.

Methods
Isolation and culture of airway and parenchymal
fibroblasts
Primary cultures of airway and parenchymal fibroblasts
from healthy and asthmatic individuals were isolated
from lung biopsies, intrapulmonary airway and

Fig. 9 Expression of the genes associated with maximal differential DNA methylation in parenchymal fibroblasts. Gene expression measured by
qPCR of a HOXA6, b RPB1, c HOXA5, d NF2F1-AS1 and e HOXA-AS3 in parenchymal fibroblasts isolated from individuals with and
without asthma
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parenchymal lung tissue obtained from lung cancer re-
sections (from the normal margin) or non-transplantable
donor lungs. Airway and parenchymal fibroblasts were
derived using the outgrowth techniques as previously de-
scribed [3, 23] at three different sites. Briefly, 2 mm2 tis-
sue explants were placed in 6-well tissue culture plates

with DMEM (Sigma) containing 10% fetal bovine serum
(GIBCO, Life Technologies), penicillin (100 U/ml),
streptomycin (100 μg/ml) and L-glutamine (4 mM) in a
5% CO2-humidified incubator. Media was replaced regu-
larly until cellular outgrowth reached confluence. Tissue
pieces were removed and destroyed, and cells were

Fig. 10 Validation of differential methylation between airway and parenchymal fibroblasts and associated gene expression. a Plot of 240 CpG
probes used in the analysis. Red/Blue = Bonferroni adjusted p value < 0.05. Red = greater expression in parenchymal fibroblasts, blue = greater
expression in airway fibroblasts. b Summary of regional DNA methylation differences within the 240 CpG probes used in the analysis, between
DNA isolated from airway versus parenchymal fibroblasts. c Regional beta value plots for TWIST1 in paired samples. d Regional beta value plot for
HLX in paired samples. e Regional beta value plot for SKAP2 in paired samples. Microarray generated gene expression in paired airway and
parenchymal fibroblasts for f TWIST1, g HLX and h SKAP2 (**limma moderated t test p < 0.01)
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harvested using trypin/EDTA solution (Sigma). All cells
for this study were cultured at the same time under the
exact same conditions. Samples were generated from
cells at passage 4 except for two asthmatic airway fibro-
blast samples at passage 5, a single healthy airway fibro-
blasts sample at passage 3, and two asthmatic
parenchymal fibroblast samples at passage 5. Cells at the
required passage were grown to confluence in 6-well
plates and serum starved for 24 h prior to lysis for DNA,

RNA and protein isolation. The tissue was obtained and
cells extracted with the approval of each of the research
ethics boards for each of the academic institutions in-
volved: McMaster University (Hamilton Integrated Re-
search Ethics Board Ref:00-1839), University of British
Columbia (Providence Health Care Research Ethics
Board Ref:H13-02173) and University of Nottingham
(East Midlands Research Ethics Committee Ref: 08/
H0407/1).

Fig. 11 Validation of high confidence targets. Pyrosequencing versus array percent methylation for CpGs identified in regional CpG methylation
analyses for a TWIST1, b HLX and c SKAP2. QPCR generated gene expression in the paired samples for d TWIST1, e HLX, f SKAP2 (*Wilcoxon
signed-rank test p < 0.05). g Densitometry and h associated western blot for TWIST1 whole cell protein expression (#p < 0.05 by two-sample t
test, n = 7 airway, n = 7 parenchymal)
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DNA and RNA isolation
DNA and RNA were simultaneously isolated from
each sample using the AllPrep DNA/RNA Mini Kit
(Qiagen) as per the manufacturer’s instructions and
assessed for quality and quantity using a Nano-
DropTM 8000 Spectrophotometer (Thermo Fisher
Scientific).

Protein isolation
Cells were washed with PBS, lysed in RIPA buffer
(Sigma) and stored at − 80 until required.

Bisulfite conversion and DNA methylation arrays
Seven hundred fifty nanograms of purified genomic
DNA was bisulfite converted using the EZ DNA Methy-
lation Kit (Zymo Research) as per the manufacturer’s in-
structions. Specific incubation conditions for the
Illumina Infinium Methylation Assay were used as per
the manufacturer’s protocol Appendix. Samples were
eluted in 12 μl of the provided elution buffer. Bisulfite-
converted DNA was assessed for concentration and
quality using a NanoDropTM 8000 Spectrophotometer
(Thermo Fisher Scientific), and 160 ng of the conversion
product was used for genome-wide DNA methylation

Fig. 12 DNA methylation better distinguishes airway and parenchymal fibroblasts that gene expression. a Cross-validation AUC for TWIST1 gene
expression in the training set. b Prediction accuracy of TWIST1 gene expression in the validation set. c Cross-validation AUC for six CpGs of TWIS
T1 in the training set. d Prediction accuracy of the six TWIST1 CpGs in the validation set
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quantification at over 485,000 CpG sites using the Illu-
mina Infinium HumanMethylation450 BeadChip array,
according to the manufacturer’s protocols.

DNA methylation data quality control and normalization
IDAT files produced by GenomeStudio were imported
into the R statistical software (version 3.2.1) using the
minfi package (v. 1.14.0) [24]. The 65 known quality
control SNP probes were used to cluster all samples to
detect anomalies within samples from the same donor.
Probes were excluded from further analysis according to
several criteria: first, 1402 probes were found to have ei-
ther a detection p value < 0.05 in at least 1% of samples
or had less than 3 bead count in at least 5% of samples;
second, the 65 SNP probes; third, 59,593 probes were
found to be cross-hybridized to other parts of the gen-
ome [25]; and fourth, 9925 probes on the XY chromo-
somes. 414,592 probes remained for analysis. Filtered
probes were normalized using the funtooNorm algo-
rithm [26], which extends the funNorm procedure [27]
and is purported to correct for unwanted variation while
preserving important differences in methylation patterns
between different cell types. We employed the
normalization option of principal components regression
with 5 principal components. Two values of DNA
methylation were calculated, beta-values (β-values) and
M-values. β-values are the ratio of all methylated probe
intensities over total signal intensities (methylated and
unmethylated) and have a range from 0 to 1. They ap-
proximately represent percent methylation. M-values are
the logit transformation of β-values and are more statis-
tically robust [28]. All statistical analyses were performed
using M-values, while β-values were used for
visualization and interpretability purposes. Principal
components analysis was performed for quality control
of the M-values. Two replicates between passage 3 and
passage 4 of the same donor provided correlation r2 of
0.9869 and 0.9948, suggesting minimal genome-wide
DNA methylation dysfunction due to passage.

Differential DNA methylation analysis
Airway versus parenchymal in healthy individuals
Samples were split into two groups: those used in the
initial analysis in which we used all available samples re-
gardless of whether matched samples from airway and
parenchyma were available, and a second group, con-
taining only samples from donors from which we ob-
tained both airway and parenchymal samples. The
paired samples were not included in the initial analysis
and represent a completely independent data set.
Linear regression analysis was applied to the initial

group using the limma package in R [29] while adjusting
for age as a covariate. As large changes in DNA methyla-
tion were apparent, we considered only CpG sites to be

significant if they had a Bonferroni-adjusted p value <
0.05, and an effect size on methylation-β of more than
0.5. With these sites, a similar analysis was done on the
paired group using their DNA methylation differences
between parenchyma and airway, which is analogous to
a paired t test, but also adjusted for age. Filtering the lat-
ter results to chromosomes with more than one hit, we
identified genomic clustering of the CpG sites in differ-
entially methylated regions (DMRs) using the DMRcate
package in R [14], which uses Gaussian kernel smooth-
ing to find patterns of differential methylation, agnostic
to genomic annotation. We used the authors’ recom-
mended bandwidth (λ) of 1000 base pairs and scaling
factor (C) of 2, though we were using a sparse set of
sites, the intention was to find regions with large effect
sizes. Gene set testing was performed with the
methylglm function of methylGSA [30] in R, which ad-
justs for the number of CpGs associated with a gene.

Asthma versus non-asthma
Airway and parenchymal fibroblasts were considered
separately. Linear regression analysis using the limma
package in R was used to identify individually differen-
tially methylated CpG sites. Regional differences in DNA
methylation associated with asthmatic status were iden-
tified using the DMRcate package in R including all
CpGs specified by a nominal linear modelling p value
limit of < 0.001.

Gene expression microarray analysis
Whole-genome transcriptome analysis was conducted by
hybridizing samples of total RNA to Affymetrix Human
Gene 2.1 ST Arrays Strips (Affymetrix, Santa Clara, CA,
USA). A minimum RIN score of 8 was used as cut off
for inclusion in the microarray analysis. Two hundred
fifty-nanogram RNA was used for all samples. All steps
were conducted at the Nottingham Arabidopsis Stock
Centre.

Differential gene expression analysis
Raw CEL files were read into R, RMA background cor-
rected with quantile normalization and log2 transformed
using the Oligo package [31–34]. Linear regression ana-
lysis was applied to sample groups using the limma
package in R to identify differentially expressed genes
[29]. Both Benjamini-Hochberg and Bonferroni-cor-
rected significance levels are reported. Integration with
DNA methylation was done with Bonferroni-corrected
data for both DNA methylation (3936 CpGs) and gene
expression (158 genes), using Affymetrix gene annota-
tion for the gene expression data and Illumina Closest
Transcription Start Site annotation for DNA methylation
data.
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Bisulfite PCR-pyrosequencing
DNA methylation data were confirmed using Pyrose-
quencing at 7 CpG sites present in both the DMRcate
and linear modelling data comparing airway and paren-
chymal fibroblasts: TWIST1, cg10624122, cg14391419;
HLX, cg20454002, cg22698272, cg12479878,
cg19306970; SKAP2, cg03730533. We were unable to
design a functional assay for SKAP2 cg12140851. Bisul-
fite PCR-pyrosequencing assays were designed with
PyroMark Assay Design 2.0 (Qiagen). The regions of
interest were amplified by PCR using the HotstarTaq
DNA polymerase kit (Qiagen) as follows: 15 min at 95 °C
(to activate the Taq polymerase), 45 cycles of 95 °C for
30 s, 58 °C for 30 s, and 72 °C for 30 s, and a 5-min
72 °C extension step. For pyrosequencing, single-
stranded DNA was prepared from the PCR product with
the Pyromark™ Vacuum Prep Workstation (Qiagen) and
sequencing was performed using sequencing primers on
a Pyromark™ Q24 pyrosequencer (Qiagen). The quanti-
tative levels of methylation for each CpG dinucleotide
were calculated with Pyromark Q24 software (Qiagen).
Primer sequences are shown in Table 3.

Reverse transcription and qPCR
0.5 μg of RNA was reverse transcribed using SuperScript
IV (Invitrogen) as per the manufacturer’s instructions.
The resulting 20 μl cDNA samples were diluted to a
total volume of 200 μl using nuclease-free water. cDNA
was amplified using PerfeCTa SYBR Green FastMix
(Quanta bio), with 2 μl template and 200 nM primers in
a 10-μl reaction using a Stratagene Mx3000P/3005P sys-
tem. Thermal cycler conditions included incubation at
95 °C for 10 min, followed by 40 cycles of 95 °C for 10 s,
60 °C for 30 s, and 72 °C for 20 s. Data was collected in
MxPro, a single product was confirmed by melt curve
analysis and Ct values were exported to excel for ana-
lysis. Expression was expressed by the ΔΔCt method
relative to β2-Microglobulin (β2M) Ct and mean airway
fibroblast target/β2M ΔCt. Primer sequences are as

follows: β2-Microglobulin, forward 5′-AATCCAAATG
CGGCATCT-3′, reverse 5′-GAGTATGCCTGCCGTG
TG-3′; TWIST1, forward 5′-GCCCGGAGACCTAGAT
GTCATT-3′, reverse 5′-CCCACGCCCTGTTTCT
TTGA-3′; HLX, forward 5′-CGCTGAGAGATCTCAC
TTCCC-3′, reverse 5′-TCAGGATTGCAGAAGCCT
CG-3′; SKAP2, forward 5′-GTTCTTAATCCGGGCC
GCTA-3′, reverse 5′-TCAACATCTGCCAACAGG
TTC-3′. Primer utility was tested on reference cDNA
(Takara) for positive amplification prior to assessment of
samples.

Western blotting
Fifteen-microgram whole cell lysate protein samples
were subject to electrophoresis in 15% SDS-
polyacrylamide gel. Separated proteins were electro-
blotted to polyvinylidene difluoride membranes, and the
blot was blocked for 1 h at room temperature with
blocking buffer (0.1% TBST with 5% fat-free dried milk
powder). The blot was then incubated with 1:1000 dilu-
tion TWIST 1 (clone MAB6230, R&D Systems) or 1:10,
000 dilution GAPDH (Abcam) at 4 °C overnight. The
blot was washed with 0.1% TBST and incubated with
HRP-conjugated anti-mouse secondary Abs (DakoCyto-
mation, Cambridge, U.K.) (1:2000 dilution with 5% fat-
free dried milk in 0.1% TBST) for 1 hour. The blot was
washed again and then incubated with Clarity western
ECL substrate (Bio-Rad). The densitometry analysis was
performed in ImageJ.

Classification using elastic net-regularized logistic
regression
Elastic net-regularized logistic regression was applied to
both DNA methylation data (microarray) and gene ex-
pression data (microarray) to distinguish airway fibro-
blasts from parenchymal fibroblasts. Data were split into
a training set and a validation set. Samples from the ini-
tial non-matched groups were used as the training set
while samples from the paired groups were used as the

Table 3 Pyrosequencing primer details

Target Forward primer Reverse primer Sequencing primer Assay position

TWIST cg10624122 AGTATATAGTGTTGGGGTGGG *AGTATATAGTGTTGGGGTGGG AGGTTAGTTTATGGGTTTTTTAG 5

TWIST1
cg14391419

AGTATATAGTGTTGGGGTGGG *ACCTTACTCCAACCCAAAAA TTGGGGTGGGGGTAG 1

HLX cg20454002 ATGGAAGTGAGGGATATATAGGAATTTT *TCTCTCTCCCAACAATTACCAA AGGGATATATAGGAATTTTT 2

HLX cg22698272 *GGTGTATTTTTTAGGTTTGTAGT CCCCTTAAACAATACTCTAAAATTTT
TCC

ACAAAAACCTCCTTAATAAAAT
CT

1

HLX cg12479878 TTTTAGGATTGAAGTTTTTAGGGTTGTT *CTACCCCTTTTCAAAAAAAACCA GGTGTAGTAATTTTATAATTGGG 1

HLX cg19306970 AGTTTATGTTTGGGTGTTTGGATAT *CCCTTAAACCTAAATAATAACAACC TTTGGGTGTTTGGATATA 1

SKAP1 cg03730533 GTAGTAATTTGATAATAAGAAAAGGTTA
GT

*ACCTCCCACCCTTCTCTCCC TTTAGTTAGGTTTTTAGAATTT
TTT

1

*Biotinylated
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validation set. Elastic net performs both shrinkage of re-
gression coefficients and feature selection to identify fea-
tures (genes or CpG sites) that are highly discriminative
with respect to the phenotypes (fibroblast type). The
mixing percentage (α) and regularization shrinkage par-
ameter (λ) were tuned at different values to build bio-
marker panels of various sizes. Area under the receiver
operating characteristic curve (AUC) obtained from
leave-one-out cross-validation (LOOCV) of the training
set was used as the evaluation metric to identify the
best-performing panel. The optimal cut-off for predicted
probabilities was determined using Youden’s index
method to maximize both sensitivity and specificity. The
validation set was subsequently tested through the best-
performing panel to calculate the validation AUC and
prediction accuracy. All the analyses were performed
using the glmnet package in R [35].
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