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Abstract

Background: The association between obesity and cardiovascular disease (CVD) is proven, but why some adults
with obesity develop CVD while others remain disease-free is poorly understood. Here, we investigated whether
mitochondrial DNA (mtDNA) methylation in platelets is altered prior to CVD development in a population of adults
with overweight and obesity.

Methods: We devised a nested case-control study of 200 adults with overweight or obesity who were CVD-free at
baseline, of whom 84 developed CVD within 5 years, while 116 remained CVD-free. Platelet mtDNA was isolated
from plasma samples at baseline, and mtDNA methylation was quantified in mitochondrially encoded cytochrome-
C-oxidase I (MT-CO1; nt6797 and nt6807), II (MT-CO2; nt8113 and nt8117), and III (MT-CO3; nt9444 and nt9449); tRNA
leucine 1 (MT-TL1; nt3247 and nt3254); D-loop (nt16383); tRNA phenylalanine (MT-TF; nt624); and light-strand-origin-
of-replication (MT-OLR; nt5737, nt5740, and nt5743) by bisulfite-pyrosequencing. Logistic regression was used to
estimate the contribution of mtDNA methylation to future CVD risk. ROC curve analysis was used to identify the
optimal mtDNA methylation threshold for future CVD risk prediction. A model was generated incorporating
methylation at three loci (score 0, 1, or 2 according to 0, 1, or 2–3 hypermethylated loci, respectively), adjusted for
potential confounders, such as diastolic and systolic blood pressure, fasting blood glucose, and cholesterol ratio.
mtDNA methylation at MT-CO1 nt6807 (OR = 1.08, 95% CI 1.02–1.16; P = 0.014), MT-CO3 nt9444 (OR = 1.22, 95% CI
1.02–1.46, P = 0.042), and MT-TL1 nt3254 (OR = 1.30, 95% CI 1.05–1.61, P = 0.008) was higher at baseline in those
who developed CVD by follow-up, compared with those who remained CVD-free. Combined use of the three loci
significantly enhanced risk prediction, with hazard ratios of 1.38 (95% CI 0.68–2.78) and 2.68 (95% CI 1.41–5.08) for
individuals with score 1 or 2, respectively (P = 0.003). Methylation at these sites was independent of conventional
CVD risk factors, including inflammation markers, fasting blood glucose concentration, and blood pressure.

Conclusions: Methylations of MT-CO1, MT-CO3, and MT-TL1 are, together, strong predictors of future CVD incidence.
Since methylation of these mtDNA domains was independent of conventional CVD risk factors, these markers may
represent a novel intrinsic predictor of CVD risk in adults with overweight and obesity.
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Background
Cardiovascular disease (CVD) is the single largest cause
of death and is responsible for approximately 30% of all
deaths worldwide [1]. Overweight and obesity are risk
factors for CVD, attributed to insulin resistance [2], in-
flammation [3–5], and the hyperaggregability of platelets
[6]. Subsequently, inflammation markers, such as C-re-
active protein (CRP) [7], uric acid (UA) [8, 9], and fi-
brinogen [10], are used for CVD risk prediction, as
are markers of platelet activation such as lipoprotein-
associated phospholipase A2 (Lp-PLA2) [11]. How-
ever, not everyone with obesity develops CVD, and
the reasons why some individuals with obesity de-
velop CVD while others remain CVD-free are poorly
understood.
Mitochondrial dysfunction and damage have been im-

plicated in obesity [12, 13] and CVD [14]. In particular,
platelet mitochondria are important in maintaining
thrombosis and hemostasis [15]. Intriguingly, platelets
show hyperaggregability in adults with obesity and are
unresponsive to anticoagulant treatment [6, 16]. Mito-
chondria contain a circular genome of approximately
17 kb in size with 37 genes encoding for proteins, ribo-
somal RNAs, and transfer RNAs related to oxidative
phosphorylation. There is growing evidence for epigen-
etic regulation of mitochondrially encoded genes
through DNA methylation, supported by the identifica-
tion of DNA methyltransferase activity in mitochondria
[17], and these epigenetic marks are altered in response
to environmental exposures [18, 19] and in disease
states such as cancer [20]. It has recently been demon-
strated that mitochondrial DNA (mtDNA) in platelets
is aberrantly methylated in CVD patients [21], but
whether this precedes disease development is not
known. Supporting the hypothesis that such epigenetic
changes in the mitochondrial epigenome may be early
events related to CVD development, nuclear DNA
methylation patterns in the liver are known to be modi-
fied by obesity [22], while epigenetic analysis of blood

samples predicts future CVD risk [23–26]. DNA methy-
lation is not only modified in CVD patients [27, 28],
but also with exposure to CVD risk factors [29–33].
Further, the associations between DNA methylation
and CVD events are often stronger in individuals with
pre-existing CVD risk markers, such as obesity [23, 34].
Therefore, we hypothesized that aberrant platelet
mtDNA methylation occurs in at-risk individuals, such
as adults with obesity, prior to developing CVD and
may therefore serve as a biomarker of CVD risk.
Here, we tested this hypothesis in a nested case-

control study investigating the utility of platelet
mtDNA methylation to predict future CVD events in
adults with overweight or obesity who were CVD-free
at baseline.

Results
Characteristics of participants
The mean age of participants (n = 200) was 62 years
(SD = 10), and 61% (n = 122) were female. The par-
ticipants were overweight or obese (mean BMI =
35.5, SD = 5.1) and without CVD diagnosis at base-
line. These participants were followed for up to 5
years, and the incidence of CVD was recorded (Fig.
1). At baseline, those participants who developed
CVD during follow-up were BMI- and sex-matched to
those who remained CVD-free. In addition, smoking
status, education levels, blood pressure (systolic and
diastolic (SBP and DBP)), fasting blood glucose, total
cholesterol, high-density lipoprotein (HDL), low-
density lipoprotein (LDL), and triglyceride levels at
baseline were not significantly different by future
CVD status (P > 0.05) (Table 1). Total cholesterol to
HDL cholesterol ratio (TC/HDL) was lower at base-
line in those who remained CVD-free compared to
participants who developed CVD (CVD-free: mean =
3.7, SD = 1.1; CVD-developed: mean = 3.9, SD = 1.2;
P = 0.039) (Table 1).

Fig. 1 Study flow chart
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Platelet mtDNA methylation at baseline by future CVD
development
We analyzed 13 CpG sites distributed within 7 mitochon-
drial genomic regions (Fig. 2). Methylation at baseline was
lower in those participants who remained CVD-free com-
pared with those who developed CVD during follow-up at
nt6807 of MT-CO1 (CVD-free: mean = 10.8 ± 4.8%;
CVD-developed: mean = 12.5 ± 4.8%; P = 0.014), nt9444
of MT-CO3 (CVD-free: mean = 0.7 ± 2%; CVD-
developed: mean = 1.3 ± 1.9%; P = 0.042), and nt3254 of
MT-TL1 (CVD-free: mean = 2.4 ± 1.5%; CVD-developed:
mean = 3.0 ± 1.6%; P = 0.008) (Fig. 3a–c). No significant
differences in methylation were present for the other CpG
sites measured.

We then examined methylation at the three loci in
relation to the development of CVD during follow-up.
The odds ratios (ORs) for developing CVD during
follow-up were 1.08 (95% CI 1.02–1.16) for nt6807 of
MT-CO1, 1.22 (95% CI 1.02–1.46) for nt9444 of MT-
CO3, and 1.30 (95% CI 1.05–1.61) for nt3254 of MT-
TL1, adjusted for age, BMI, fasting blood glucose,
cholesterol ratio, SBP, and DBP (Fig. 4). Logistic re-
gression demonstrated that there were no significant
associations between mtDNA methylation of MT-
CO1, MT-CO3, and MT-TL1 and conventional CVD
risk biomarkers at the baseline, including insulin re-
sistance (HOMA-IR), age, cholesterol level, serum uric
acid, and BMI (Table S1).

Table 1 Participant characteristics at baseline

Variable All participants
(n = 200)

CVD-free at the
follow-up (n = 116)

CVD-developed at the
follow-up (n = 84)

P value

Sex (n, %)

Male 78 (39%) 44 (38%) 34 (40%) 0.716

Female 122 (61%) 72 (62%) 50 (60%)

Age (mean, SD) 62.5, ± 10 61.7, ± 9.5 63.5, ± 10.6 0.210

BMI (mean, SD) 35.5, ± 5.1 35.4, ± 4.9 35.5, ± 5.4 0.936

BMI categorical (n, %)

25.1–30.0 (overweight) 34 (17%) 22 (19%) 12 (14%) 0.762

30.1–34.9 (obesity I) 62 (31%) 33 (28%) 29 (35%)

> 35.1 (obesity II and III) 104 (52%) 61 (53%) 43 (51%)

Smoking status (n, %)

Never 89 (45%) 53 (46%) 36 (43%) 0.859

Former 91 (46%) 50 (43%) 41 (49%)

Current 19 (10%) 13 (11%) 6 (7%)

Education, years of education (n, %)

Primary school and other (< 5 years) 34 (17%) 18 (16%) 16 (19%) 0.297

Secondary school and high school (< 13 years) 129 (65%) 76 (66%) 53 (63%)

University degree (> 14 years) 32 (16%) 21 (18%) 11 (13%)

SBP, mmHg (mean, SD) 128.2, ± 13.7 129.1, ± 13.3 127, ± 14.1 0.268

DBP, mmHg (mean, SD) 78.9, ± 8.5 79.2, ± 8.5 78.4, ± 8.5 0.517

Fasting blood glucose, mmol/L (mean, SD) 5.9, ± 1.4 5.8, ± 1.4 6.0, ± 1.4 0.384

Total cholesterol, mg/dL (mean, SD) 206.6, ± 42.9 204.5, ± 42.4 209.5, ± 43.8 0.421

HDL cholesterol, mg/dL (mean, SD) 58.6, ± 15.0 60.0, ± 15.5 56.8, ± 14.3 0.141

LDL cholesterol, mg/dL (mean, SD) 128.3, ± 37.1 127.6, ± 36.0 129.1, ± 38.8 0.777

Triglyceride (TC), mg/dL (mean, SD) 126.4, ± 61.6 121.0, ± 57.6 133.7, ± 66.2 0.153

TC/HDL ratio (mean, SD) 3.7, ± 1.1 3.6, ± 0.9 3.9, ± 1.2 0.039

Framingham Risk Score, median (Q1, Q3) 18.2 (9.3, 28.9) 17.9 (9.6, 26.2) 18.3 (8.8, 30.5) 0.636

HeartScore, median (Q1, Q3) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 2.0 (1.0, 4.0) 0.232

Medication usage (n, %)

Not available 19 (9%) 6 (5%) 13 (16%) 0.039

Yes 46 (23%) 30 (26%) 16 (19%)

No 135 (68%) 80 (69%) 55 (65%)
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Utility of platelet mtDNA methylation to predict CVD risk
Receiver-operating characteristic (ROC) curves were
generated to determine the optimal threshold of mtDNA
methylation (%) for each CpG site at baseline to discrim-
inate between CVD-free and CVD-developed individuals
at follow-up (Fig. 5). Thresholds of 12% for MT-CO1
nt6807 (P = 0.049), 1.5% for MT-CO3 nt9444 (P =
0.001), and 3% for MT-TL1 nt3254 (P = 0.22) yielded

maximum discrimination between CVD-free and CVD-
developed participants (Table 2 (a)). TC/HDL choles-
terol, which differed between groups at baseline, was not
a predictor of CVD risk during follow-up (P = 0.38) (Fig.
5d, Table 2 (a)).
The threshold values that maximized sensitivity and

specificity to predict CVD risk were used to create di-
chotomous variables “methylation level above the

Fig. 2 CpG locations within mitochondrial genome. Mitochondrial DNA was linearized using BamHI. The gene names and that of the
displacement loop (D-loop), and the origin-of-replication of the light-strand (OLR) are annotated on the upper side. The nucleotide position of
the CpG sites that have been analyzed is annotated below in blue text

Fig. 3 Distribution of mtDNA methylation at baseline among individuals who remained CVD-free and who develop CVD during follow-up.
Methylation at two CpG positions for MT-CO1 (a), MT-CO3 (b), and MT-TL1 (c), examined by pyrosequencing. The top panels report the CpG sites
whose methylation significantly differs between the CDV-free and CVD-developed at follow-up. The P values were calculated by t test
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Fig. 4 Odds ratios for the estimated contribution of each CpG site to future risk of CVD. The estimated effect of mtDNA methylation at each CpG
site on the CVD outcome at follow-up, expressed as odds ratio (ORs) with 95% CI. Statistically significant positions are indicated by red asterisks.
The analysis was performed by a multivariate logistic model adjusted for age, BMI, fasting blood glucose, cholesterol ratio, SBP, and DBP

Fig. 5 ROC curves for methylation at three loci and cholesterol ratio for prediction of CVD outcome. Discrimination ability of methylation at three
CpG sites (MT-CO1 nt6807, MT-CO3 nt9444, and MT-TL1 nt3254) (a–c) and the cholesterol ratio (TC/HDL) (d) to predict CVD incidence within 5
years of baseline. Area under the ROC curve (AUC) and 95% CI values are annotated
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threshold” and “methylation level below the threshold” for
each of the significant CpG sites within MT-CO1, MT-
CO3, and MT-TL1. Using these values, overall scores were
calculated for each individual participant as follows: methy-
lation not above the thresholds at any of the three loci
(score 0), methylation above the threshold at any one locus
(score 1), and methylation above the threshold at any two
or all three loci (score 2) (Table 2 (b)). Compared with
score 0, the hazard ratio (HR) for developing CVD for score
1 was 1.38 (95% CI, 0.68–2.78) and for score 2 was 2.68
(95% CI, 1.41–5.08) (Fig. 6a). During follow-up, 65% of the
individuals with score 2 developed CVD, while only 21% of
individuals with score 0 developed CVD (Fig. 6a and Table
2 (b)). Participants with score 2 had a lower median time
without-CVD (35.1months) than participants with score 1
(54.8months). More than half of the participants with score
0 were CVD-free at the end of the follow-up period.

Comparison with existing risk prediction models
Conventional CVD risk prediction scores were calculated
at baseline using the Framingham Risk Score [35] and the
European HeartScore [36]. These scores were not different
between those who remained CVD-free and the CVD-
developed group (P = 0.636 and P = 0.232, respectively),
demonstrating the potential utility of mtDNA methylation
as a predictor of CVD development.

Sensitivity analysis
A sensitivity analysis was performed by excluding partic-
ipants who developed CVD within a year from baseline,
but this did not change the relationships previously ob-
served (Fig. 6b). The HR for those who scored 2
remained significantly higher than those who scored 1
(HR = 2.17, 95% CI 1.06–4.47) and was even higher in
comparison with those who scored 0 (HR = 2.53, 95% CI
1.12–5.72) (Fig. 6b). An additional sensitivity analysis
was performed by stratifying the CVD cases into “Mild,”
such as hypertension (n = 51), and “Severe” events, such
as ischemic heart diseases (n = 33) (Table S2). The
model was tested in the Mild subgroup and showed that
the mtDNA methylation score was a significant (P <
0.001) predictor of future risk of developing CVD. The
HR for those who scored 2 was significantly higher than
for those scored 1 (HR = 2.27, 95% CI 1.13–4.44, P =
0.021) and those who scored 0 (HR = 4.34, 95% CI 1.76–
10.73, P < 0.002). No such relationships were apparent
in the Severe subgroup of CVD events (n = 33), due to
lack of power (P = 0.086) (data not shown).

Discussion
To the best of our knowledge, this is the first study in-
vestigating platelet mtDNA methylation in relation to
the future development of CVD. In this nested case-

Table 2 MtDNA methylation thresholds for each CpG site and score for predicting CVD outcome

a. Threshold for each CpG site

Methylation Median survival
time (months)*

At risk CVD during
follow-up

CVD free Log-rank
P value

All patients 43.8 200 84 116

MT-CO1 nt6809
(% methylation)

< 12.0 47.5 114 35 79 0.049

≥ 12.0 38.3 83 47 36

MT-CO3 nt9444
(% methylation)

< 1.5 47.0 146 44 102 0.001

≥ 1.5 33.0 51 38 13

MT-TL1 nt3254
(% methylation)

< 3.0 45.7 105 37 68 0.22

≥ 3.0 42.1 94 46 48

Cholesterol ratio < 3.5 42.1 102 43 59 0.38

≥ 3.5 45.3 94 41 53

b. Score for predicting
the CVD outcome

Score** Median survival
time (months)

At risk CVD during follow-up CVD-free % CVD-developed at follow-up Log-rank P value

0 ~ 60 61 13 48 21% 0.003

1 54.8 63 21 42 33%

2 35.1 69 45 24 65%

(a) MtDNA methylation thresholds for each CpG site and outcomes of survival analysis. Survival analysis for the participants stratified according to the methylation
score at individual loci (MT-CO1, MT-CO3, and MT-TL1) and to the cholesterol ratio. (b) Score to predict future CVD events based on methylation at MT-CO1 nt6809,
MT-CO3 nt9444, and MT-TL1 nt3254.
*Median: time in months without-CVD
**Participants with score 2 (two or three CpG sites with methylation above the thresholds) had a lower median time without-CVD (35.1 months) than the
participants with score 1 (54.8 months) and score 0 (the median survival time is not reached). This analysis was performed on a total of 193 participants, for whom
the methylation percentage of all the three genes was available
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control study of 200 adults with overweight and obesity,
higher mtDNA methylation at three loci (MT-CO1 nt6807,
MT-CO3 nt9444, and MT-TL1 nt3254) in platelets was as-
sociated with higher risk of developing CVD within 5 years.
Further, participants with score 2 (high methylation at two
or three loci) developed CVD significantly sooner than the
participants with score 1 and score 0. Thus, mtDNA
methylation at the three loci may be a novel predictive bio-
marker for the future risk of developing CVD.
We have previously demonstrated changes in the mito-

chondrial epigenome among individuals with CVD, includ-
ing hypermethylation of MT-CO1, MT-CO3, and MT-TL1
[21]. Further, we have shown that mtDNA methylation
modifies the effect of particulate matter exposure and heart
rate variability, a prognostic marker of CVD [37]. We have
built on our previous work to demonstrate that mtDNA
methylation may serve as a predictor of CVD risk among
individuals with overweight and obesity. However, the field
remains at a nascent stage, with little understanding of the
mechanisms underpinning how mtDNA methylation levels

may be implicated in the etiology of CVD and/or platelet
activation. Recently, it has been demonstrated that mtDNA
methylation regulates expression of mitochondrial-derived
peptides (MDP) with cytoprotective function [38] suggest-
ing that mtDNA methylation level may be indicative of the
overall stress to which the cell is exposed. Additionally,
in vitro studies have shown that the presence of 5-
methylcytosine can alter mitochondrial transcription factor
(TFAM) binding and transcription initiation [39].
MtDNA methylation levels in blood are associated

with blood pressure and heart rate variability in individ-
uals with CVD-related environmental and occupational
exposures [18, 19, 37, 40]. However, in platelets, we did
not find any association between mtDNA methylation
level and the most common CVD risk factors including
age, BMI, blood pressure, blood glucose concentration,
cholesterol, and uric acid in individuals with overweight
and obesity. Therefore, our study supports the idea that
altered mtDNA methylation in platelets precedes the de-
velopment of CVD, and may serve as a non-invasive,

Fig. 6 The Kaplan-Meier curves for probability of remaining CVD-free by methylation score. a Time CVD-free from baseline (months) among
participants categorized by methylation at MT-CO1 nt6807, MT-CO3 nt9444, and MT-TL1 nt3254. b Sensitivity analysis in which all participants who
developed CVD within 1 year of baseline were excluded
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easy-to-access biomarker to distinguish individuals with
higher CVD risk. Adults with overweight or obesity may,
therefore, benefit from identification to facilitate early
primary prevention and monitoring to reduce their per-
sonal risk of CVD.
We observed low levels of mtDNA methylation in these

participants and subtle, but detectable, differences be-
tween individuals who developed CVD during follow-up
and those who remained CVD-free. Such subtle changes
in methylation are not confined to the mitochondrial epi-
genome, as changes in methylation of < 5% are frequently
reported in aging, in response to environmental exposures
[41], and during disease initiation [42]. It is not known
whether these small changes in DNA methylation reflect
changes in gene expression. Regardless, they may serve as
a biomarker of a cascade of other biological reactions [43–
45], such as MDP regulation [38].
Our study has limitations that merit consideration. The

outcome in our study was diagnosis of any of a heteroge-
neous group of CVDs that ranged from mild (e.g., hyper-
tension) to more severe events. Our model remained
strong in predicting the “mild” CVD events, but the lack of
statistical power prevented examination of its ability to pre-
dict more “severe” cases. Further, replication of our findings
is imperative. Such a validation would require access to data
and samples from a cohort that had collected plasma or
platelets and had follow-up data on CVD incidence as part
of a prospective study of individuals with overweight and
obesity. We utilized hospital discharge records, which are
widely used for collection of data regarding clinical diagno-
ses (e.g., for Italian healthcare administrative databases and
the WHO’s European Health Information Gateway for clas-
sification), but which can potentially under- or overestimate
the number of cases. The use of thoroughly validated ad-
ministrative databases may strengthen future studies. We
attempted a partial validation by dividing the population of
200 individuals into a test set (n = 150) and a validation set
(n = 50) with the same proportions of CVD-free and CVD-
developed at follow-up participants in both, which showed
that the mtDNA methylation markers predicted CVD risk
in both the test (P = 0.045) and validation sets (P = 0.034).
Finally, as most of the participants were Caucasian, add-
itional studies are needed to validate these findings in indi-
viduals with different ethnicities.
In conclusion, we have demonstrated that mtDNA

methylation of MT-CO1, MT-CO3, and MT-TL1 in
platelets from adults with overweight and obesity may
predict CVD risk during the following 5 years. Our find-
ings require confirmation in a larger, independent study.

Methods
Study design and sample selection
We utilized plasma samples and clinical data from the
Susceptibility to Particle Health Effects, miRNAs and

Exosomes (SPHERE) study in which 2000 participants
with overweight (25 < BMI < 30 kg/m2) and obesity
(BMI ≥ 30 kg/m2) were recruited in Milan, Italy [46].
We designed a prospective nested case-control study
using samples and data from 200 participants within the
SPHERE study without previous hospitalization for CVD
at the time of enrolment (baseline; n = 200) for whom
follow-up data for up to 5 years (median = 27months)
were available. For those who developed CVD, the
follow-up stopped after the first CVD diagnosis; for
those who remained CVD-free, the follow-up lasted until
the last update from the Italian National Health Service.
We selected 84 individuals who developed CVD in the
follow-up period, and these were sex- and BMI-matched
with 116 individuals who remained CVD-free. The
demographic and clinical characteristics of these partici-
pants are summarized in Table 1. Ethical approval was
provided by the Institutional Review Board, Fondazione
IRCCS Cà Granda Ospedale Maggiore Policlinico at
University of Milan. The ethnicity of the SPHERE study
participants was predominantly Caucasian (95.8% of
cases) [46].

Assessment of CVD risk at baseline and CVD events at
follow-up
To estimate individual CVD risk at baseline, we calcu-
lated the Framingham Risk Score which uses informa-
tion on sex, age, SBP, treatment for hypertension,
smoking, type 2 diabetes, HDL, and total cholesterol
[35]. In addition, we used the HeartScore to predict the
incidence of fatal CVD within 10 years [36, 47] using
age, sex, SBP, cholesterol, HDL cholesterol, BMI, and
smoking status.
Details of CVD events were obtained from the hospital

discharge registry of the Italian National Health Service. A
CVD event was defined as any principal or any 1 of 5 sec-
ondary diagnosis of diseases of the circulatory system (3-
digit ICD-9-CM codes from 390 to 459) [48]. A detailed list
of the CVD events and antihypertensive medications of the
participants by follow-up is summarized in the Supplemen-
tary Material (Table S2 and S3). Briefly, 47 participants
(56%) were diagnosed with hypertension and 37 partici-
pants (44%) were diagnosed with other forms of CVD in-
cluding atrial fibrillation and atherosclerosis (Table S2).

Platelet mtDNA preparation and DNA methylation
measurement
Plasma samples from 200 participants were used to isolate
platelet mtDNA as described previously [21]. Briefly, plate-
let pellets obtained by centrifugation of 200 μL plasma at
1400×g were treated with DNaseI (30U, ROCHE) to elim-
inate cell-free nuclear DNA containing nuclear mitochon-
drial DNA segments (NUMTs). The EZ DNA Methylation
Direct kit (Zymo Research) was used for extraction and
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bisulfite conversion of mtDNA simultaneously. To
maximize bisulfite conversion efficiency [49], mtDNA was
linearized with BamHI (NEB) following proteinase K treat-
ment. The bisulfite-converted mtDNA (20 μL) was stored
at − 80 °C until analysis.
Bisulfite-PCR reactions were performed using 1 μL of

bisulfite-converted mtDNA, 9 μL water, 12 μL Hot-Start
GoTaq® DNA Polymerase (Promega), 1 μL forward primer
(10 pmole), and 1 μL reverse biotin-labeled primer (10
pmole). We investigated seven regions: mitochondrially
encoded cytochrome-C-oxidases I, II, and III (MT-CO1,
MT-CO2, and MT-CO3); mitochondrially encoded tRNA
leucine 1 (MT-TL1) and tRNA phenylalanine (MT-TF); D-
loop; and mitochondrially encoded light-strand origin-of-
replication (MT-OLR). DNA methylation was measured at
two CpG sites within MT-CO1 (nucleotide (nt) positions
6797 and 6807), MT-CO2 (nt8113 and nt8117), MT-CO3
(nt9444 and nt9449), and MT-TL1 (nt3247 and nt3254);
one CpG site within D-loop (nt16383) and MT-TF (nt624);
and three within MT-OLR (nt5737, nt5740, and nt5743)
(Table S4). The provided mtDNA sequences and the nu-
cleotide positions are based on NCBI reference sequence
NC_012920.1. Amplified mtDNA PCR products were then
used for pyrosequencing reactions (PyroMark Q96 ID,
QIAGEN) as described elsewhere [18, 19, 21, 50]. Each
sample was analyzed in duplicate (Pearson’s correlation co-
efficient = 0.74 for technical replicates; coefficient of vari-
ation 12.5%), and the mean of replicates was used for
further analysis. The correlations between methylation at
different CpG sites within each gene were low (Table S5),
and we therefore treated each CpG as a separate data point.

Statistical analysis
For normally distributed demographic and clinical charac-
teristics and for DNA methylation levels, data are
expressed as mean and standard deviation, otherwise by
median and range. Frequencies and percentages were cal-
culated for categorical variables. Data for CVD-free and
CVD-developed participants at follow-up were compared
using the χ2 test for categorical data and Student’s t test
for continuous variables. Multivariate logistic regression,
adjusted for age, BMI, fasting blood glucose, cholesterol
ratio (TC/HDL), SBP, and DBP, was performed to investi-
gate the association between DNA methylation at each
locus (CpG site) and the risk of CVD during follow-up.
Estimated effects were reported as ORs and 95% confi-
dence intervals (CI) associated with an increase in 5-
methylcytosine (5mC) at each locus.
ROC curves were generated to evaluate the diagnostic

ability of the cholesterol ratio and mtDNA loci to distin-
guish between participants who were CVD-free and those
in whom CVD-developed at follow-up. The optimum
threshold was selected by the Youden Index as the one
that maximized sensitivity (SE) + specificity (SP) − 1. The

area under the ROC curve (AUC) and corresponding 95%
CI, SE, SP, and threshold were reported for cholesterol ra-
tio and for the MT-CO1 nt6807, MT-CO3 nt9444, and
MT-TL1 nt3254 positions. For each CpG site, a dichotom-
ous variable was created viz. “methylation level above the
threshold” for the specific locus and “methylation level
below the threshold.” In addition, we tested the utility of a
score built as the sum of the index value (0, 1) for each
locus (MT-CO1 nt6807, MT-CO3 nt9444, and MT-TL1
nt3254) in predicting CVD. The score has three categor-
ies: none of three loci display mtDNA methylation above
threshold (score 0), any one of the three loci has mtDNA
methylation above threshold (score 1), and any two or all
three loci display mtDNA methylation threshold (score 2).
The Kaplan-Meier survival curves and log-rank tests

were calculated by stratifying CVD cases by each locus
below or above the methylation threshold. To evaluate
the independent prognostic value of each single locus
and of their combination on future CVD cases, we calcu-
lated hazard ratios (HRs) with Cox multivariable regres-
sion models adjusted for DBP, SBP, fasting blood
glucose concentration, and cholesterol ratio. The Cox
multivariable regression was performed on a total of 193
participants, for whom the methylation percentage of
all the three genes was available. The same model was
used to evaluate the prognostic value of cholesterol ra-
tio, when evaluated as the predictor. The assumption of
proportional hazard was checked with the log [log(sur-
vival)] plot and by the time-dependent covariate test.
Cox multivariable regression models were also used to
evaluate the potential prognostic value of the Framing-
ham Risk Score and of the European HeartScore on
CVD risk.
A sensitivity analysis was performed by excluding the

participants who developed CVD within a year from base-
line in all Cox multivariable regression models. An add-
itional sensitivity analysis was performed by stratifying the
CVD cases into “Mild,” such as hypertension (n = 51), and
“Severe” events, such as ischemic heart diseases (n = 33).
However, the Severe event (n = 33) category did not pro-
vide enough power to be tested reliably (data not shown).
All reported P values were two-tailed, and those less than
0.05 were considered statistically significant. Statistical
analyses were performed with SAS software, version 9.4.
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