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Abstract

contributions.

cases where reporting bias is a concern.

Background: Recently, an alcohol predictor was developed using DNA methylation at 144 CpG sites (DNAmM-Alc) as
a biomarker for improved clinical or epidemiologic assessment of alcohol-related ill health. We validate the
performance and characterise the drivers of this DNAm-Alc for the first time in independent populations.

Results: In N = 1049 parents from the Avon Longitudinal Study of Parents and Children (ALSPAC) Accessible
Resource for Integrated Epigenomic Studies (ARIES) at midlife, we found DNAm-Alc explained 7.6% of the variation
in alcohol intake, roughly half of what had been reported previously, and interestingly explained a larger 9.8% of
Alcohol Use Disorders Identification Test (AUDIT) score, a scale of alcohol use disorder. Explanatory capacity in
participants from the offspring generation of ARIES measured during adolescence was much lower. However,
DNAm-Alc explained 14.3% of the variation in replication using the Head and Neck 5000 (HN5000) clinical cohort
that had higher average alcohol consumption. To investigate whether this relationship was being driven by genetic
and/or earlier environment confounding, we examined how earlier versus concurrent DNAm-Alc measures
predicted AUDIT scores. In both ARIES parental and offspring generations, we observed associations between
AUDIT and concurrent, but not earlier DNAmM-Alc, suggesting independence from genetic and stable environmental

Conclusions: The stronger relationship between DNAm-Alcs and AUDIT in parents at midlife compared to
adolescents despite similar levels of consumption suggests that DNAm-AIc likely reflects long-term patterns of
alcohol abuse. Such biomarkers may have potential applications for biomonitoring and risk prediction, especially in
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Background

Alcohol use and misuse are responsible for a large
proportion of the global burden of disease [1]; however,
measuring alcohol exposure in epidemiological studies
presents a number of challenges. Self-reported alcohol
intake is the most commonly used source of informa-
tion, but such measurements are fraught with both error
and bias, and generally underestimate exposure [2, 3].
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The latter is often more pronounced at higher levels of
exposure as heavy drinkers can lose track of their intake
or differentially under-report their consumption com-
pared to light drinkers, which may result in an overesti-
mation of the effects of alcohol and an underestimation
of the burden of disease. Similar bias can occur in
retrospective studies where the quality of self-reported
alcohol use can vary between cases and controls.
Objective biomarkers of alcohol intake are useful tools
for epidemiology and public health because they have
the potential to improve exposure assessment, especially
when reporting bias may be a major issue, and inform
screening and risk prediction strategies. Currently,
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alcohol biomarkers exist for exposure assessment over
short-term windows (e.g. breathalysers in toxicology) or
at high doses (e.g. liver enzymes and other blood-based
laboratory markers for excessive alcohol use) [4]. What
is lacking is a reliable biomarker reflecting the distribu-
tion of alcohol intake across the range observed in the
general population and that is capable of capturing
exposure over months and years.

DNA methylation, currently the best characterised epi-
genetic modification, which is involved in regulating
gene expression, has been found to be altered in relation
to several environmental and biological factors [5-9].
Patterns of DNA methylation represent attractive targets
for developing novel biomarkers of exposure as studies
have shown that DNA methylation levels at small num-
bers of or even individual cytosine-phosphate-guanine
(CpQ@) sites in non-invasive peripheral tissues can serve
as sensitive and specific indicators of exposure [10, 11].
Further, DNA methylation signals are stable over highly
variable timescales, with some having been observed to
persist well beyond the half-lives of existing targets for
alcohol biomarkers [12]. For example, associations ob-
served in relation to prenatal smoking exposure have
been seen to endure into childhood [13] and some effect
of the exposure appears detectable into adulthood [14].

Liu et al. developed four new blood DNA methylation-
based alcohol models (DNAm-Alcs) as biomarkers of
alcohol intake, using a large population sample (the
CHARGE consortium [15]). Of these four models, the
one comprising the highest number of CpG sites (144)
consistently showed the best performance [6]. The well-
powered analyses, good range of alcohol intake and
promising proportion of the variance explained make
this an interesting candidate biomarker. However, the
reported performance of this model is likely inflated due
to over-fitting [16]. Another limitation is the use of
cross-sectional data makes it difficult to determine the
direction of the association or to rule out genetic
confounding, which could be an issue since many CpGs
having been shown to be under genetic control [17] and
alcohol use disorders are heritable [18].

Here and for the first time, we aim to assess the out-
of-sample performance of the DNAm-Alcs by using data
at multiple time points from an independent population,
the subset of participants from the Avon Longitudinal
Study of Parents and Children (ALSPAC) included in
the Accessible Resource for Integrated Epigenomic Stud-
ies (ARIES), and further replication using the Head and
Neck 5000 (HN5000) clinical cohort. Repeated measures
of alcohol use and blood DNA methylation in two gen-
erations of the ARIES study and at different points in
the life course, including DNA methylation profiles
collected prior to own alcohol exposure, were used to
address our aims. Our first aim was to test the
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performance of the DNAm-Alcs in ARIES and HN5000.
Second, we aimed to further investigate the performance
of DNAm-Alcs in ARIES at predicting measures of alco-
hol use disorders (AUDIT scores) in different groups of
individuals (males and females at midlife and adoles-
cence), which is designed to estimate the extent to which
an individual engages in harmful patterns of alcohol
consumption.[19] Lastly, we sought to address additional
details regarding the nature of the association between
the DNAm-Alcs and alcohol use, such as duration of
alcohol use and the potential for genetic confounding,
by using measurements of alcohol and DNA methylation
at different times in the life course.

Methods

ARIES study

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a population-based birth cohort drawn from
the South West of England. Pregnant women resident in
Avon, UK, with expected dates of delivery from 1 April
1991 to 31 December 1992 were invited to take part in the
study. The initial number of pregnancies enrolled is 14,
541 (for these, at least one questionnaire has been
returned or a ‘Children in Focus’ clinic had been attended
by 19/07/99). Of these initial pregnancies, there was a total
of 14,676 foetuses, resulting in 14,062 live births and 13,
988 children who were alive at 1 year of age. Detailed in-
formation on the mothers and their offspring has since
been regularly collected [20, 21]. The study website con-
tains details of all the data that is available through a fully
searchable data dictionary and variable search tool (http://
www.bristol.ac.uk/alspac/researchers/our-data/).

Blood from 1018 mother-child pairs (children at
three time points and their mothers at two time
points) were selected for analysis as part of the Ac-
cessible Resource for Integrative Epigenomic Studies
(ARIES, http://www.ariesepigenomics.org.uk/) [22].
ARIES consists of DNA methylation profiles obtained
from 1018 mother-child pairs measured at five time
points (three time points for children: birth, child-
hood and adolescence; and two for mothers: during
pregnancy and at midlife), and on approximately 600
fathers at midlife. In this analysis, we included partici-
pants from the ARIES parental generation at midlife
(N = 1049, mean age = 50.2 + 5.4 SD) and the off-
spring generation at adolescence (N = 626, mean age
= 17.4 £ 0.9 SD) with DNA methylation, alcohol and
covariate information available (Fig. 1). The subset of
these participants with DNA methylation available at
an earlier time point, during pregnancy in the parents
(N = 518, mean age = 29.1 + 4.2 SD) and in cord
blood at birth (N = 438) and childhood (N = 601,
mean age = 7.4 + 0.1 SD) in the offspring, were
included in some analyses.
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518 mothers
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Fig. 1 Flow chart of participants within ARIES with HM450 and alcohol questionnaire data available by time-point of collection and schematic of
early versus cross-sectional analysis performed. Abbreviations: ARIES Accessible Resource for Integrated Epigenomic Studies
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HN5000 replication study

The Head and Neck 5000 (HN5000) clinical cohort
study, a clinical cohort study of individuals with head
and neck cancer, was used as an additional independent
replication population. Full details of the study methods
and overall population are described in detail elsewhere
[23, 24]. Briefly, between April 2011 and December
2014, 5511 individuals with head and neck cancer were
recruited from 76 centres across the UK. Individuals
were recruited before they started treatment unless their
treatment was their diagnostic procedure. Full ethical
approval was granted by the South West Frenchay
Regional Ethics Committee (ref: 10/H0107/57).

At baseline, participants were asked to complete a
series of questionnaires and information on diagnosis,
treatment and co-morbidity was recorded on a short
data capture form. Diagnoses were coded using the
International Classification of Diseases (ICD) version 10
[25] and clinical staging of the tumour was derived
based on the American Head and Neck Society TNM
staging [26]. Biological samples (blood, saliva and tissue)
were collected from all consenting participants, and
DNA methylation was measured for 448 individuals with
an ICD-10 coding of oropharynx cancer and complete
baseline questionnaire and data capture information
[23]. Of those, participants of European ancestry with
DNA methylation, alcohol and all covariate information
available were included in this analysis (N = 281, mean
age = 584 £ 9.9 SD)

Alcohol intake and disorder

Alcohol intake and AUDIT score [27] were available at
multiple time points for the ALSPAC participants. To
validate the performance of the DNAm-Alcs, we used
measures of alcohol intake at midlife and adolescence
taken as close as possible to the DNAm measurement,
to replicate the cross-sectional design used in the deriv-
ation and original evaluation of DNAm-Alcs. For ARIES
parents at midlife and the offspring generation at adoles-
cence, alcohol drinking frequency was assessed by re-
sponse to the question, ‘How often do you have a drink
containing alcohol’, with possible responses including
‘Never’, ‘Monthly or less’, 2 to 4 times a month’, 2 to 4
times a week’ and ‘4 or more times a week’. ‘Never’
drinking respondents were considered non-drinkers and
were included in all primary analyses. Their influence on
primary model results was examined by excluding them
in sensitivity analysis (see the ‘Statistical analysis’ section
below).

Participants were also asked to report the quantity of
their typical alcohol consumption where ‘one drink re-
ferred to Y%pint of beer/cider, a small (125 ml) glass of
wine or a single (25 ml) measure of spirit’, each of which
is roughly equivalent to one UK alcohol unit (8 g of
ethanol). Alcohol intake was then calculated by multiply-
ing participant drinking frequency by the typical quan-
tity consumed and converting from UK units/week to
grammes/day. In all statistical models, alcohol intake
was log-transformed (log (grammes/day +1)) to coerce
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its distribution to approximate normality. For categorical
analyses, drinkers were grouped according to the follow-
ing thresholds of alcohol intake: ‘non-drinkers’ reported
no alcohol consumption (intake grammes/day = 0), ‘light
drinkers’ consumed < 0 g/day < 14 for women and < 0
g/day < 28 in men, ‘at risk drinkers’ consumed < 14 g/
day < 28 in women and < 28 g/day < 42 in men, ‘heavy
drinkers’ > 28 g/day in women and > 42 g/day in men.
These categorical thresholds, which are the same as
those used by Liu et al., were selected in order to
maximise comparability between our results.

Alcohol use disorder identification test (AUDIT)
scores were taken from the same time points as the
measures of alcohol intake, cross-sectionally to DNAm
at midlife in the ARIES parental generation and in ado-
lescence in the offspring. AUDIT includes responses to
10 questions that evaluate participant alcohol misuse in
the past year, producing scores that range from 0 to 40.
Self-reported non-drinkers are included in this scale,
receiving a score of 0.

In HN5000, detailed information on alcohol history
was obtained at baseline via the self-reported question-
naire. Participants were asked about their current drink-
ing status and their use of alcohol prior to receiving
their head and neck cancer diagnosis. Respondents were
asked to report their average weekly alcohol consump-
tion of a range of beverage types (wine, spirits and beer/
larger/cider) before they were diagnosed with cancer.
From these measures, average intake of alcohol con-
sumption in units per week was derived, which we
subsequently converted to log (grammes/day +1).

DNA methylation measurements
In ARIES, cord blood and peripheral blood samples
(whole blood, buffy coats or blood spots) were collected
according to standard procedures. DNA extraction, wet
laboratory preparation and DNA methylation measure-
ment by Illumina Infinium HumanMethylation450K
(HM450) BeadChip were performed as part of the
ARIES project, as previously described [22, 28]. Briefly,
samples from all ARIES time-points were distributed
semi-randomly across HM450 slides to minimise the
potential for confounding by technical batch. Data pre-
processing was performed using the meffil package [29].
Samples failing quality control (average probe detection
p value > 0.01, those with sex or genotype mismatches)
were excluded from further analysis, and probes contain-
ing < 95% of signals detectable above background signal
(detection p value < 0.01) were also removed. Functional
normalisation [30] was performed to minimise non-
biological variation in probes.

In HN5000, blood samples were processed and frozen
upon receipt and stored at — 80 °C. Genome-wide DNA
methylation data was generated in participants using
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Infinium MethylationEPIC BeadChip (EPIC array) (Illu-
mina, USA) at the Bristol Bioresource Laboratories.
Following extraction, DNA was bisulphite-converted
using the Zymo EZ DNA MethylationTM kit (Zymo,
Irvine, CA, USA) and genome-wide methylation status
of over 850,000 CpG sites was measured using the EPIC
array according to the manufacturer’s protocol using an
[lumina iScan. All data pre-processing and normalisa-
tion was again performed using the meffil package [29],
which excluded five of the total samples for not meeting
the QC criteria.

Covariates

For the ARIES parental generation at midlife, offspring gen-
eration in both childhood and adolescence, and HN5000
participants, DNA methylation levels were adjusted for age,
sex, body mass index (BMI) and Houseman estimate white
blood cell (WBC) counts by residualizing on these factors
by ordinary least squares (OLS) regression prior to calcula-
tion of DNAm-Alcs [31, 32]. Levels from pregnancy were
not adjusted for sex, as only female participants had DNA
methylation available, but were adjusted for age, WBC
counts and pre-pregnancy BMIL. The adjustment set for
DNA methylation at birth included gestational age (weeks),
child sex, birthweight (grammes) and WBC counts calcu-
lated using a cord blood reference set [33]. Indicator
variables for self-reported current smoking at midlife for
the ARIES parents and for having ever/never smoked a
cigarette in adolescence for the offspring were used in
sensitivity analyses.

DNA methylation alcohol score

We computed DNA methylation-derived alcohol scores
(DNAm-Alcs) using coefficients made available from the
lasso models estimated by Liu and colleagues [6], predict-
ing the relationship between DNA methylation and alcohol
intake. Four DNAm-Alcs were examined using different
sets of coefficients that varied according to the lasso tuning
parameters considered by the original authors and the
number of CpG sites they utilised as inputs (5, 23, 78 and
144 CpGs). All CpG sites with coefficients used in the
smaller DNAm-Alcs were subsets of the CpGs used in the
DNAm-Alcs with larger sets of coefficients. DNAm-Alc
values were computed as weighted scores by multiplying
each set of Liu et al. coefficients against the DNA methyla-
tion levels of ARIES and HN5000 participants at the corre-
sponding CpG sites, and summing these values as follows:

DNAm-Ale = » " B,CpG,

DNA methylation levels were residualised from the linear
effects of the covariates described above prior to computing
DNAm-Alc. We provide software for producing all four
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DNAm-Alc estimates using our freely available dnamalci R
package (https://github.com/yousefil38/dnamalci).

Statistical analysis

Opverall performance of DNAm-Alc scores in predicting
continuous measures, including alcohol intake and
AUDIT score, was assessed by R* or the percent of the
variance in the outcome variable explained. For binary
outcome measures, receiver operating characteristic
(ROC) curves were generated and area under the curve
(AUC) was calculated using the pROC package [34] to
evaluate predictive performance. Linear relationships be-
tween DNAm-Alcs and AUDIT scores from different time
points were evaluated using OLS regression. Models
involving differing numbers of explanatory parameters were
compared using the OLS-derived adjusted R* in order to
account for the discrepancy in model degrees of freedom.

We further performed sensitivity analyses to check the ro-
bustness of our results to the impact of smoking and the in-
clusion of non-drinkers. To this end, we ran cross-sectional
models using DNAm values that had been residualised using
concurrent smoking as an additional covariate, and exclud-
ing participants identified as self-reported non-drinkers.

As an additional comparison, we re-fit linear models
with the same sets of CpGs used in each DNAm-Alc, as
well as age, sex and BMI as explanatory variables. This
provided an inflated assessment of prediction due to
over-fitting, as has been described in detail by Hattab
et al. [16], but allowed direct comparison to the per-
formance of the models originally implemented by Liu
et al. In these re-estimated models, adjusted R* from the
OLS model was again used to compare models with
different numbers of covariates.

All statistical analysis was performed in R version
3.3.1 [35].

Results

Validation of DNAm-Alcs

The four DNAm-Alcs evaluated, using 5-144 CpGs, ex-
plained between 3.9 and 7.6% of the variation in alcohol
intake in our sample of N = 1049 ARIES participants at
midlife, using DNA methylation levels independent of
age, sex and BMI (Table 1; Fig. 1). Results were nearly
identical when adjusting for concurrent smoking (3.8—
7.6%; Additional file 1) or excluding participants who
had reported being non-drinkers (3.8-7.6%; Additional
file 2). Although mean self-reported alcohol intake was
similar between ARIES adolescents and their parents at
midlife (mean intake = 8.1 + 10.2 and 8.2 + 8.8 g/day, re-
spectively, Fig. 2), DNAm-Alcs explained a much lower
percentage of the variation in adolescent alcohol intake,
with a maximum of 0.8% for the 144 CpG DNAm-Alc.
Again, this result did not change substantially when
accounting for smoking or when excluding non-drinkers.
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Table 1 R? between DNAm-Alcs and measures of alcohol use,
alcohol intake (log(g/day +1)) and AUDIT score, in ARIES parents
at midlife and offspring at adolescence

R2
N 5CpGs 23 CpGs 78 CpGs 144 CpGs

Midlife

Alcohol intake 1049  3.85 435 6.82 763

AUDIT 1013 489 5.56 8.68 881
Adolescence

Alcohol intake 626 0.14 0.31 0.76 0.80

AUDIT 620 0.01 0.08 0.94 1.19

DNAm-Alcs DNA methylation alcohol biomarkers, AUDIT Alcohol Use Disorders
Identification Test, ARIES Accessible Resource for Integrated
Epigenomics Studies

In each of these analyses, prediction performance was
positively correlated with the number of CpG sites in-
cluded in the model. That is, the 5 CpG DNAm-Alc
consistently explained the least variation, the 144 CpG
explained the most, with the 23 CpG and 78 CpG
models ordered in between.

Replication in an independent UK-based population of
adults with oropharyngeal cancer, N = 281 participants
from HN5000, found each of the four DNAm-Alcs ex-
plained higher levels of variation in alcohol intake than
observed in ARIES, with adjusted R ranging from 8.9%
to 14.3% (Additional file 3). While this population was
similar in age to the ARIES participants at midlife (mean
age = 584 + 9.9), their levels of alcohol consumption
were considerably higher (mean intake = 28.0 + 31.3 g/
days).

Similar trends but with consistently stronger correla-
tions were observed in ARIES parents at midlife when the
coefficients of the CpG sites included in the DNAm-Alcs
were re-estimated in ARIES, to allow direct comparison
with performances based on re-estimated models reported
by Liu et al. (Additional file 4). By this approach, adjusted
R* ranged from 8.8 to 17.3% for each of four CpG co-
variate sets, including the independent explanatory effects
of age, sex and BMI that jointly contributed an adjusted
R of 4.8%.

Assessment of the ability of DNAm-Alcs to distinguish
heavy drinkers from non-drinkers and heavy drinkers
from light drinkers by ROC analysis produced AUC
values ranging from 0.48 to 0.57 and 0.55 to 0.57, re-
spectively, in ARIES adults at midlife (Fig. 3). Prediction
performance did not differ by the number of CpG sites
included in DNAm-Alc: the 23 CpG DNAm-Alc pro-
duced the largest AUC, 0.57, in resolving heavy versus
non-drinkers, and both the 78 and 144 CpG DNAm-
Alcs had identical AUCs at predicting heavy versus light
drinkers. DNAm-Alcs had similar performance at identify-
ing at risk drinkers from light or non-drinking individuals,
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with AUCs from 0.49 to 0.53 (Additional file 5). In ARIES
adolescents, AUCs ranged from 0.53 to 0.60 and 0.47 to
0.55 for heavy versus non-drinkers and light drinkers,
respectively, meaning some performed no better than
chance alone (AUC = 0.50). Trends at resolving at risk
drinkers were again comparable, ranging from 0.48 to
0.55. While the score with the best predictive performance
was the 144 CpG DNAm-Alc, with an AUC of 0.60 for
heavy versus non-drinkers, there was again no trend ob-
served in the predictive performance as CpG coefficients
were added to the DNAm-Alcs, the same 144 CpG
DNAm-Alc in fact performing the poorest in comparing
heavy versus light drinkers (AUC < 0.50).

As had been the case for predicting continuous alcohol
intake, the DNAm-Alcs were also better at discriminating
alcohol intake categories in the HN5000 replication than
in either ARIES sample, with AUCs ranging from 0.68 to
0.77 and 0.64 to 0.75 for heavy versus non-drinkers and
light drinkers respectively (Additional file 6).

DNAm-Alc and AUDIT score

At midlife, DNAm-Alcs explained from 4.9 to 8.8% of the
variation in participant AUDIT scores, a measure of alcohol
use disorder (Table 1). In fact, every DNAm-Alc with a par-
ticular number of CpGs explained more of the variation in
AUDIT than for alcohol intake. On average, DNAm-Alcs
explained 1.3% more variation of AUDIT than alcohol in-
take in midlife. These DNAm-Alcs explained a comparable
but slightly greater amount of variation in AUDIT when
performing additional adjustment for smoking or following
the exclusion of non-drinkers, from 5.0 to 9.0% and 5.5 to
9.8%, respectively (Additional file 1; Additional file 2).

In adolescents, DNAm-Alcs explained substantially
less variation in AUDIT than at midlife, reaching only a
maximum of 1.2% for the 144 CpG biomarkers. Despite
this decrease in total variance explained among adoles-
cents, the DNAm-Alcs continued to correlate slightly
better with AUDIT than with alcohol intake, explaining
0.05% more on average. Similar relationships with
AUDIT were once again observed when adjusting for
smoking and excluding non-drinkers.

As with alcohol intake, we observed a trend of consist-
ent improvement in prediction performance for AUDIT
with additional CpG sites: the 144 CpG DNAm-Alc score
always performing the best and the 5 CpG DNAm-Alc
performing worst.

The ability of the DNAm-Alcs to distinguish high (> 15)
versus low AUDIT score categories in ROC analysis
produced AUCs that ranged from 0.67 with the 5 CpG
DNAm-Alc to 0.80 for the 78 CpG score in ARIES partici-
pants at midlife (Fig. 3). These AUC values were uni-
formly higher than those observed for all DNAm-Alcs at
predicting ARIES heavy drinkers from light or non-
drinkers using alcohol intake derived cutoffs. In ARIES
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adolescents, the DNAm-Alc prediction of high versus low
AUDIT individuals was much more comparable with
performance observed using intake-based categories, with
AUC:s ranging from 0.51 to 0.56.

Earlier versus cross-sectional DNAm-Alc and AUDIT

To determine whether the relationship observed be-
tween DNAm-Alc and AUDIT using cross-sectional data
could be explained by genetic confounding, we com-
pared the predictive performance of DNAm-Alc based
on methylation of blood drawn earlier in life, at a period
of expected low or no alcohol use, to the predictive per-
formance of DNAm-Alc based on methylation of blood
drawn later in the same participants, at the same time as
completion of the AUDIT questionnaire. If DNAm-Alc
from blood drawn earlier in life is shown not to be
associated with later AUDIT, this would then rule out
both genetic and earlier environment confounding of the
cross-sectional DNAm-Alc—AUDIT relationship. A
schematic flow-chart describing this analysis is provided
in Fig. 1.

In the ARIES mothers, we compared the effects of the
144 CpG DNAm-Alc measured during pregnancy to
those of DNAm-Alc measured cross-sectionally to
AUDIT, 21.1 years later on average during midlife in N
= 518 participants with DNAm-Alc at available at both
time points and AUDIT at midlife (Table 2). Mean
AUDIT in this subsample did not differ from the full set
of ARIES participants at midlife (8.26 versus 8.06, p =
0.33), albeit with a slightly smaller maximum (21 versus
26). We found no evidence for a relationship between
DNAm-Alc during pregnancy and AUDIT at midlife,
both when considered as a single independent variable
(8 = 0.15, p = 0.56) and when adjusting for DNAm-Alc
at midlife (5 = 0.14, p = 0.57). Conversely, we observed a
strong relationship between DNAm-Alc at midlife and
AUDIT (B = 1.63, p < 0.001) even when accounting for
pregnancy DNAm-Alc (8 = 1.66, p < 0.001).

For ARIES children, we were able to compare the
cross-sectional DNAm-Alc/AUDIT relationship in ado-
lescence to DNAm-Alc measured at two earlier no/low
drinking time points in the same individuals: in child-
hood (n = 601) and at birth (n = 438). Again, mean
AUDIT in each of these subsamples did not differ mark-
edly from the full distribution (p = 0.74 and p = 0.25,
respectively). AUDIT in adolescence appeared to be in-
dependent of DNAm-Alc in childhood (p = 0.88), in-
cluding after adjusting for adolescent DNAm-Alc (p =
0.44). However, the cross-sectional relationship between
DNAm-Alc and AUDIT in adolescence, while small in
total magnitude (adjusted R* = 1.2), persisted with simi-
lar effect size when adjusting for childhood DNAm-Alc
(B = 0.94 compared to S = 0.99). While DNAm-Alc at
birth showed some suggestive evidence of a relationship



Yousefi et al. Clinical Epigenetics (2019) 11:163

Page 8 of 12

Table 2 DNAm-Alc and AUDIT score in the sub-sample with repeated DNAmM-Alc measurements. Estimates of the effect of DNAmM-
Alc on AUDIT at a time point prior to AUDIT measurement (childhood, birth and pregnancy), at a time point cross-sectional to
AUDIT (adolescence and midlife), and with the effect of prior and cross-sectional DNAm-Alc modelled simultaneously. see the

‘Methods' for details

Dependent variable Independent variable(s) (DNAmM-Alc score) N B SE p value Adjusted R?*
AUDIT at adolescence ~ Childhood 601 - 006 037 0.879 -0.16
~ Adolescence 0.94 033 0.005 1.17
~ Childhood + adolescence - 0.29, 0.99 037,034 0.44, 0.004 1.11
AUDIT at adolescence ~ Birth 438 0.70 038 0.064 0.56
~ Adolescence 093 040 0.021 0.99
~ Birth + adolescence 0.56, 0.83 0.38, 041 0.138, 0.042 127
AUDIT at midlife ~ Pregnancy 518 0.15 0.26 0.557 -0.13
~ Midlife 1.63 0.25 < 0.001 7.38
~ Pregnancy + midlife - 0.14, 1.66 0.25, 0.26 0.574, < 0.001 7.25

AUDIT Alcohol Use Disorders Identification Test, DNAm-Alcs DNA methylation alcohol biomarkers

with AUDIT in adolescence when considered alone (5 =
0.70, p = 0.06), this effect attenuated when adjusted for
cross-sectional DNAm-Alc (5 = 0.56, p = 0.14). We con-
sidered whether the suggestive relationship between
DNAm-Alc levels at birth and AUDIT in adolescence
could have been driven by maternal drinking during in
utero development, but this did not appear to be the
case in follow-up analysis that added examination of
maternal DNAm-Alc during pregnancy and which failed
to show effects independent of DNAm-Alc at birth
(Additional file 7).

Discussion

Using a population-based longitudinal study with re-
peated measures of alcohol use and blood DNA methy-
lation in two generations and an additional independent
replication population, we conducted in-depth valida-
tions of the DNAm-Alc biomarker scores developed by
Liu et al, including their 144 CpG recommended
DNAm-Alc score [6]. Our results confirmed the utility
of this biomarker as a measure for alcohol consumption
in the general population, albeit with slightly decreased
explanatory power than initially reported in adults with-
out substantial levels of consumption. Performance was
closer to the initial assessment in our replication analysis
using a population with much greater average levels of
intake. Further, we demonstrated the DNAm-Alc score
shows a stronger correlation for sustained alcohol use
compared to shorter-term alcohol use, as evidenced by
the higher proportion of the variance explained at mid-
life than in adolescence, and for AUDIT score compared
to cross-sectional weekly alcohol intake. Additionally, by
observing that an earlier measure of DNAm-Alc repeated
in the same participants appears independent of later
drinking behaviour, we show that this DNAm-derived
score captures information reflective of alcohol-use expos-
ure and behaviour, beyond genetic determinants alone (i.e.

ruling out genetic confounding as the primary explanation
of the results).

We observed stronger relationships between the
DNAm-Alcs and AUDIT score, that captured additional
behaviours related to alcohol dependency, compared to
simple intake that the DNAm-Alcs were developed to
predict. However, this may suggest that biological or
behavioural factors reflecting individual adaptation to
alcohol use are additionally being represented in the
epigenetic response. This feature of the DNAm-Alcs
may improve the utility of such scores in a clinical
context, where alcohol dependency traits are likely more
medically relevant than simple intake alone. However,
we cannot exclude the possibility that the additional ex-
planatory capacity we observed of DNAm-Alcs for alco-
hol dependency-related features could also be linked to
measurement error. For example, the dependency be-
haviour captured by the AUDIT measures may be more
stable over time and thus more accurately capture long-
term alcohol use, whereas cross-sectional self-report of
alcohol intake is likely to be noisier due to the additional
variability of drinking behaviour itself over time, as well
as the measurement error introduced by trying to recall
“average” recent drinking behaviour.

Compared to the variance of alcohol intake explained
by the DNAm-Alcs in Liu et al’s initial report [6], we
observed a fairly systematic reduction. This was ex-
pected, given the criticism described by Hattab et al.
[16] that the evaluation of the DNAm-Alcs performed
by Liu et al. suffered from statistical overfitting due to
re-estimation of coefficient values in testing data. Thus,
while the adjusted R* of the 144 CpG DNAm-Alc in the
adult analyses in that study were seen to range from
12.0 to 13.8%, in our validation computed using the
independently estimated Liu et al. coefficients in a com-
parable sample—ARIES parents at midlife—we observed
roughly half the explanatory capacity of that score (Table
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1, adjusted R* = 7.63%). Further, when we reproduced the
validation approach of Liu et al. in the same ARIES sam-
ple, we again observed performance metrics similar in
magnitude to their initial findings (e.g. adjusted R* of
12.47% for the 144 CpG model in addition to the explana-
tory effect of age, sex and BMI), suggesting that the per-
formance decrease we observed when applying the
independently estimated coefficients to ARIES was due to
the elimination of effects due to over-fitting. Importantly,
we have facilitated future application of the correct, inde-
pendently estimated Liu et al. DNAm-Alc coefficients
through our freely distributed R software package,
dnamalci (https://github.com/yousefil38/dnamalci).

While the DNAm-Alc showed limited explanatory
capacity in ARIES, its performance was markedly im-
proved in our HN5000 replication population, achieving
14% of variation explained (Additional file 3). Partici-
pants in this study differed from our ARIES population
in several important ways, including that they were all
oropharyngeal cancer cases, slightly older, and had a
little more than three times greater and more variable
average alcohol intake. With the data available, we could
not determine which factors were most responsible for
the improved DNAm-Alc performance in HN5000, but
it is at least possible that the biological impact of greater
alcohol abuse in this group may be contributing.

We also observed reduced capacity of the DNAm-Alcs
to predict categories of drinkers by alcohol intake in
ARIES compared to the estimates by Liu et al. (Fig. 3).
In fact, the best performing DNAm-Alc in ARIES—AUC
= 0.60 with the 144 CpG score for heavy versus non-
drinkers—had a lower AUC than any DNAm-Alc for re-
solving heavy from light or non-drinkers at initial report.
The lowest that had been observed there being AUC =
0.67 for heavy versus light using the 5 CpG score in the
ARIC study. However, our ability to evaluate prediction
performance was severely limited in power by the small
number of participants falling into the higher categories
of intake, with only a maximum of N = 14 heavy or N =
67 at-risk drinkers for any of our comparisons. Interest-
ingly, we did observe some ability of the DNAm-Alcs to
resolve participants with different categories of AUDIT
score, specifically high (> 15) versus low AUDIT individ-
uals, at midlife where we had also seen the strongest
relationship in continuous analysis. The two best-
performing DNAm-Alcs in this regard, the 78 and 144
CpG biomarkers, had AUCs of 0.80 and 0.79 which is in
a range comparable to that reported by Liu et al. for in-
take categories. The ability to discriminate categories of
alcohol was again improved when replicating in HN5000
compared to ARIES, reaching a maximum AUC = 0.77
for the 144 CpG score at identifying heavy from non-
drinkers. As mentioned previously, this population dif-
fered from AREIS in several ways, including having a
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greater number of participants in the higher intake cat-
egories (e.g. N = 153 in the heavy intake group) which
may have contributed to this improved performance.

Our assessment of the timing of the relationship be-
tween alcohol use and the DNAm-Alcs, the third aim of
our study, observed that these scores captured an epi-
genetic response largely independent of confounding
from genetic or environmental predisposition to alcohol
dependency. This was most clearly observed in the
ARIES mothers, who had a strong relationship between
DNAm-Alc and AUDIT when both were measured in
participants at the same time but for whom almost no
relationship was observed for DNAm-Alcs calculated
from DNAm measured roughly 20 years previously, at a
time when alcohol consumption was much lower during
the women’s index pregnancy (Table 2). This was true
both when the earlier DNAm-Alcs were considered on
their own, or when mutually adjusted for the cross-
sectional DNAm-Alc. If DNAm-Alc values were being
driven largely by stable genotype-methylation relation-
ships, as one might predict a priori given that DNAm
levels are often highly correlated with nearby genetic
polymorphisms [17], we would expect to observe a con-
sistent relationship between such biomarker scores and
alcohol dependency in the same participants regardless
of the timing of the DNAm collection. However, this
was not the case: when DNAm-Alcs were drawn at the
earlier time point, no independent relationship was ob-
served. We saw a similar trend among ARIES offspring
in childhood and adolescence. Given the lack of such an
observed relationship, we cannot distinguish between
several possible explanations that might be consistent
with the results, including low or no alcohol use during
the earlier time points considered, decay of the alcohol-
DNAm relationship over time or altered patterns of
drinking during the interim period.

Further, our analysis of repeated measures of DNAm-
Alcs in the same participants across time and the
comparisons of these across populations with different
drinking behaviours and a different drinking history
(young and middle-aged), helped identify the duration of
exposure potentially reflected by these biomarkers. The
DNAm-Alcs appeared to reflect more than just concur-
rent intake over a short-term window, like that captured
by a breathalyser. The correlation observed between
DNAm-Alcs and intake/AUDIT in ARIES adolescents
with comparable levels of alcohol use to adults over a
shorter time frame was much smaller than that of ARIES
parents at midlife with longer histories of alcohol use
(Table 1). This suggests that DNAm-Alcs may capture
longer-term patterns of alcohol abuse, perhaps cumula-
tively (the ALSPAC parents having been using alcohol
for over two decades, while their children are very recent
users). It also suggests that the alcohol dependence and


https://github.com/yousefi138/dnamalci

Yousefi et al. Clinical Epigenetics (2019) 11:163

problem drinking components of the AUDIT scores
could be driving these associations more than the actual
alcohol consumption levels per se (alcohol behaviour in
midlife being more likely to score highly on these com-
ponents in British populations) [36]. However, this could
not be evaluated specifically by our current study. While
effects in adolescents were systematically smaller than
for adults, they did appear to be more than just back-
ground noise: showing associations independent of the
effects in those same participants at earlier time points
with no likely alcohol exposure, at birth and 7 years of
age (Table 2).

The results of our current study should be interpreted
in the context of the following limitations: (1) Tissue
specificity—DNA methylation measured in peripheral
blood WBCs was used both for the original development
of the DNAm-Alcs and our current validation. Blood
may not be the tissue most directly relevant for assessing
the impacts of alcohol abuse (as opposed to, e.g. liver or
brain). However, alcohol is absorbed by peripheral-blood
and is relevant to the direct assessment of alcohol expos-
ure. Further, blood-based biomarkers may be more clin-
ically useful, less invasive and more readily accessible
than liver or brain tissue. (2) 5-Hydroxymethylcytosine
(5hmC)—Our study was limited to DNA methylation
measured as 5-methylcytosine (5mc) at the 144 CpGs in
the DNAm-Alcs developed by Liu and colleagues. As
such, we were not able to determine whether 5hmC may
have been acting as an intermediate or additional regula-
tor of any of the biological processes described. How-
ever, a recent study suggests that the amount in blood
samples will be quite small: 5hmC was detected at only
< 8% CpG sites whereas 5-mc was detected at > 80%
[37]. (3) Measurement bias and measurement error—
Cross-sectional measurement of alcohol use by self-
report may be too crude an approximation of the bio-
logically relevant exposure, due to the variability of alco-
hol behaviour over time. This has the potential to bias
our estimates towards the null, particularly for alcohol
intake as it is more variable than the AUD risk assessed
by AUDIT. The latter includes a measure of, but is not
limited to, alcohol consumption, but also reflects symp-
toms of dependence and indicators of alcohol-related
problems. Previous reports have shown that AUDIT
scores are more stable (than alcohol use reports) and
particularly so in midlife compared to young adulthood,
and this is probably attributable to a more variable
nature of alcohol use in younger age [38]. Further, vari-
ability in some individual’s alcohol use behaviour or
reporting over time, combined with uncertainty about
the temporality of alcohol-related changes in DNAm,
could also contribute to measurement error. Such error
could also potentially bias our results should it have
occurred differentially. These mechanisms could play
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differing, possibly opposing roles at different points
throughout the life course, e.g. if under-reporting may
be more common during pregnancy or true drinking be-
haviour may be especially variable during adolescence.
(4) Residual confounding—We acknowledge the possi-
bility of residual confounding in particular by unmeas-
ured covariates acting in a time-dependent manner, i.e.
exhibiting onset between the collection ages we have
considered. (5) Statistical power—Although we had ad-
equate power to perform most replications of the Liu
et al. study, comparisons including heavy and at risk
drinkers did suffer from low numbers of ARIES partici-
pants in these category. (6) Generalisability—Our study
was limited to participants of European genetic ancestry,
similar to those populations used by Liu et al. in their
original development of the DNAm-Alcs. As such, our
findings regarding DNAm-Alcs are not readily generalis-
able or valid for populations of other ancestries.

Our study also had notable strengths, including access
to repeated DNAm measurements in participants drawn
from a prospective, population-based, longitudinal birth
cohort. These repeated observations, some of which
were collected at time points prior to or during limited
alcohol use, were unique in structure and allowed as-
sessment of the role of genetic confounding that would
not have been possible with many other study designs.

Conclusions

While we find that the DNAm-Alcs do not always pre-
dict alcohol intake as well as initially hoped, our revised
evaluation in a large population-based sample demon-
strates that they do still capture non-trivial amounts of
information about the biological impacts related to alco-
hol use. Importantly, our results using AUDIT score ra-
ther than intake alone suggest that these biomarkers
may explain additional variation in alcohol use disorder
beyond alcohol consumption. Although DNAm signals
often correlate strongly with local polymorphisms, our
analysis in repeated measures from two separate genera-
tions was able to find strong evidence that DNAm-Alcs
are largely independent of genetic confounding. The
stronger relationship we observed between DNAm-Alcs
and AUDIT in parents at midlife compared to offspring
in adolescence despite similar levels of cross-sectional
consumption suggests that DNAm-Alc may reflect the
biological impact of alcohol use over time. This was
echoed in our findings from HN5000 which showed the
strongest DNAm-Alc—intake relationship and was the
population with the greatest amount of consumption.
Overall, we confirm Liu et al’s initial conclusion that
DNAm-Alcs may have clinical utility as a test for detect-
ing heavy alcohol consumption, with some evidence that
such markers track long-term patterns of alcohol use
rather than recent intake.
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