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Abstract

The melanoma antigen gene (MAGE) proteins are a group of highly conserved family members that contain a common
MAGE homology domain. Type I MAGEs are relevant cancer-testis antigens (CTAs), and originally considered as attractive
targets for cancer immunotherapy due to their typically high expression in tumor tissues but restricted expression
in normal adult tissues. Here, we reviewed the recent discoveries and ideas that illustrate the biological functions
of MAGE family in cancer progression. Furthermore, we also highlighted the current understanding of the epigenetic
mechanism of MAGE family expression in human cancers.
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Background
The first member of the melanoma antigen gene (MAGE)
was discovered in 1991, when Van der Bruggen et al.
performed experiments to identify tumor antigens from
melanoma cells [1]. The human MAGE family was divided
into two categories in the light of their chromosomal loca-
tion and expression pattern [2–4]. Nowadays, MAGE fam-
ily was well known as tumor-associated antigens and
comprises more than 60 genes, which share a conserved
MAGE homology domain (MHD) [5]. Type I MAGEs are
relevant cancer-testis antigens (CTAs) which contain
MAGE-A, -B and -C subfamily members [6], and therefore
are rarely expressed in normal adult tissues, but highly
expressed in various cancers, including melanoma, breast
cancer, prostate cancer, lung adenocarcinoma, esophageal
squamous cell carcinoma, gastric cancer, bladder cancer,
ovarian cancer, hepatocellular carcinoma, and brain cancer
[7–16]. Type II MAGEs contain the MAGE-D, -E, -F, -G,
-H, -L, and necdin genes, which are not limited to the X

chromosome and are expressed in various tissues, such as
brain, embryonic, and adult tissues [2–4].
MAGE family has specific functions in normal develop-

ment and tumor progression. Type I MAGEs express nor-
mally only in testis or placenta, and their restricted
expression suggests that they may function in germ cell
development. Many studies have consistently showed that
MAGE-A family may play an important role in spermato-
genesis and embryonic development [4]. MAGE-B4 was
found to be expressed during premeiotic germ cell differ-
entiation, indicating that MAGE proteins may also play a
role in developing oocytes [17]. MAGE-A proteins were
detected by immunohistochemistry in the early develop-
ment of the central nervous system (CNS) and the spinal
cord and brainstem of peripheral nerves, revealing that
MAGE-A protein was also involved in neuronal develop-
ment [18]. Type II MAGEs are highly expressed in the
brain and participate in various neural processes. These
MAGE proteins might perform important functions in
differentiation and neurodevelopment, thus their loss of
function leads to a range of cognitive, behavioral, and de-
velopmental defects [4]. However, the biological functions
and underlying regulatory mechanism of MAGE family
expression in cancer is still not fully understood. The
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known tumor-related functions of MAGE family were
summarized in Table 1.
In this review, we summarized these exciting advances

and discoveries concerning the biological functions of
MAGE family in cancer progression. We also take a
comprehensive look at the current understanding of the
epigenetic mechanism of MAGE family expression in
human cancers. This provides an outlook on cancer
therapeutic approaches that target MAGE family.

Biological functions of MAGEs in cancer progression
MAGEs function as regulators of E3 RING ubiquitin ligases
Some studies have explored the function of MAGE
proteins in cancer cells, and they were observed to pro-
mote cancer cell survival, tumor formation, and metasta-
sis [19, 20]. Members of all type I MAGE protein
families promoted tumor cell viability and inhibited cell
apoptosis, therefore providing a growth advantage to
melanoma and other malignancies [21]. MAGE-A3 and
A6 were critical for cancer cell survival, and MAGE-A3/
6-TRIM28 E3 ubiquitin ligase complex was found to
degrade AMPKα1 resulting in downregulating AMPK
signaling during tumorigenesis [22].
Recently, multiple MAGE proteins were found to form

complexes with RING domain proteins, such as MAGE-
A2/C2-TRIM28, MAGE-B18-LNX, MAGE-G1-NSE1
complexes, etc. [23, 24]. RING domain is a cysteine-rich
domain that normally forms a cross-brace structure that
typically coordinates two zinc ions [25]. RING domain
proteins are proved to be a big E3 ubiquitin ligase fam-
ily, which bind to and localize E2 ubiquitin-conjugating
enzymes to substrates for ubiquitylation [26, 27]. MAGE
proteins bind directly to RING domain proteins and act
as scaffold of RING domain proteins to their substrates,
thus regulating the ubiquitin ligase activity of RING
domain proteins (Fig. 1). In particular, MAGE-A2, -A3,
-A6, and -C2 were found to bind TRIM28, also known as
KAP1, TIF-1beta or Krip125, therefore inducing the deg-
radation of tumor suppressor p53 [23]. Recently, Potts
and their colleagues reported MAGE-A3/6-TRIM28 com-
plex ubiquitinates and degrades the tumor suppressor
AMPKα1, thus leading to the inhibition of autophagy and
activation of mTOR signaling [22, 28]. MAGE I binding to
KAP1 induced the poly-ubiquitination and degradation of
the substrate ZNF382 [29]. ZNF382 is one of KRAB
domain zinc finger transcription factors (KZNFs) family
member, which is involved in cell apoptosis and tumor
suppression [30]. KZNFs bind the KAP1 protein and dir-
ect KAP1 to specific DNA sequences where it suppresses
gene expression by inducing localized herterochromatin
characterized by histone 3 lysine 9 trimethylation
(H3K9me3). The binding of MAGE to KAP1 induces
the degradation of ZNF382 leading to the decreased
KAP1 binding to ID1 and the increased expression of

oncogene ID1 [29]. Thus, it appears that cancer-specific
up-regulation of MAGE family triggers ubiquitination and
degradation of multiple tumor suppressors, such as p53,
AMPKα1, and ZNF382 through binding to RING domain
protein KAP1, promoting tumorigenesis and aggressive
growth. Therefore, identification of novel small molecules
that inhibit protein–protein interactions between MAGE
and KAP1 may be a potential therapeutic strategy for can-
cer-bearing MAGE expression [31].
RING-box protein 1 (Rbx1), another RING domain

containing protein, is a RING component of the largest
E3 ligases SCF complex [32]. SCF complex consists of
Rbx1, Cullin1, Skp1, and F-box protein family, and
degradation of SCF-dependent proteolysis can cause a
variety of diseases including cancer [32–34]. MAGE-C2
binds directly to Rbx1 and inhibits ubiquitin-dependent
degradation of cyclin E, and promotes melanoma cell
cycle progression at G1-S transition [35]. In addition,
MAGE-A2 was reported to associate with MDM2, a
RING finger-type E3 ligase that mediates ubiquitylation
of more than 20 substrates including mainly p53,
MDM2 itself, and MDM4. And the interaction of
MAGE-A2 with MDM2 inhibits the E3 ubiquitin ligase
activity of MDM2, thus increasing the level of MDM4.
However, it does not affect p53 turnover mediated by
MDM2 [36]. MAGE-A11 interacts with Skp2, the sub-
strate recognition protein of the Skp1-Cullin1-F-box E3
ubiquitin ligase, and increases Skp2-mediated degrad-
ation of cyclin A and p130, but decreases Skp2-mediated
degradation of E2F1 and Skp2 self-ubiquitination by
sequestering and inactivating Skp2 via forming an
E2F1-MAGE-A11-Skp2 complex [37].

MAGEs function as transcriptional regulators
The binding of MAGE-C2 to KAP1 increases the inter-
action between KAP1 and ATM, and increased KAP1-
Ser824 phosphorylation. Therefore, MAGE-C2 may
promote tumor growth by phosphorylation of KAP1-
Ser824 and the enhancement of DNA damage repair
[38]. KAP1 seems to function as a molecular scaffold
that coordinates at least four activities necessary for
gene-specific silencing, including (a) targeting of spe-
cific promoters through the KRAB protein zinc finger
motifs; (b) promotion of histone deacetylation via the
NuRD/histone deacetylase complex; (c) histone H3-K9
methylation via SETDB1; and (d) recruitment of HP1
protein [39]. KAP1 also regulates DNA repair through
the phosphorylation of KAP1-Serine 824 (Ser824) by
ataxia-telangiectasia-mutated (ATM) kinase [40] (Fig. 2-1).
As a scaffolding protein, KAP1 interacts with p53 and acts
as a co-repressor of p53 expression and function. MAGE
suppression decreases KAP1 complexing with p53, in-
creases acetylation of p53, and activates p53 responsive re-
porter genes. Class I MAGE protein may promote tumor
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Table 1 The known tumor-related functions of MAGE family

Type Subtype Gene name Highly expressed tumor type Biological functions

MAGE-I MAGE-A MAGE-A1 Melanoma; gastric cancer; endometrial cancer;
esophageal squamous cell carcinoma;
head and neck cancer

Activating p-C-JUN directly or through ERK-MAPK
pathways; Repressing transcription by binding to
SKIP and recruiting HDAC1

MAGE-A2 Glioma; breast cancer Degradation of P53, MDM2, MDM4; Increasing
ER-dependent signaling

MAGE-A3 Non-small-cell lung cancer; hepatocellular
carcinoma

Degradation of P53, AMPKα1; Enhancing
TRIM28-dependent degradation of FBP1

MAGE-A4 Hepatocellular carcinoma; lung cancer Inactivate the oncoprotein gankyrin

MAGE-A5 Head and neck cancer; non-small-cell lung cancer Not well characterized

MAGE-A6 Breast, colon, and lung cancer Degradation of P53, AMPKα1

MAGE-A7 Non-small-cell lung cancer Not well characterized

MAGE-A8 Bladder cancer Not well characterized

MAGE-A9 Head and neck cancer; hepatocellular carcinoma;
esophageal squamous cell carcinoma; breast,
colorectal, lung, bladder cancer

Not well characterized

MAGE-A10 Breast cancer; stomach cancer; melanoma;
esophageal and head and neck squamous
carcinoma; bladder, lung, hepatocellular carcinoma

Not well characterized

MAGE-A11 Breast cancer; esophageal squamous cell
carcinoma; head and neck cancer; non-small
cell lung cancer; prostate cancer

Increasing Skp2-mediated degradation of cyclin
A and p130; Decreasing Skp2-mediated
degradation of E2F1 and Skp2 self-ubiquitination;
Increasing the AR transcriptional activity

MAGE-A12 Prostatic carcinoma and colorectal cancer;
melanoma, bladder, lung, esophageal
carcinoma; head and neck cancer

Promoting the ubiquitination of p21

MAGE-B MAGE-B1 Hepatocellular carcinoma Not well characterized

MAGE-B2 Hepatocellular carcinoma Not well characterized

MAGE-B3 Colorectal cancer Not well characterized

MAGE-B4–18 Not well characterized Not well characterized

MAGE-C MAGE-C1 Cutaneous melanoma; breast, lung cancer Not well characterized

MAGE-C2 Hepatocellular carcinoma; breast, lung
cancer; melanoma; gastrointestinal
stromal tumors

Enhancing TRIM28-dependent degradation
of FBP1; Inhibiting degradation of cyclinE;
Increasing KAP1-Ser824 phosphorylation

MAGE-C3–7 Not well characterized Not well characterized

MAGE-II MAGE-D MAGE-D1 Breast cancer Not well characterized

MAGE-D2 Melanoma; gastric, colorectal cancer;
hepatocellular carcinoma

Suppressing TRAIL-induced apoptosis

MAGE-D3 Not well characterized Not well characterized

MAGE-D4 Glioma; hepatocellular carcinoma
Colorectal, esophageal, lung cancer

Not well characterized

MAGE-E MAGE-E1 Glioma Not well characterized

MAGE-E2–3 Not well characterized Not well characterized

MAGE-F MAGE-F1 Colorectal, ovarian, breast, cervical
cancer; melanoma and leukemia

Not well characterized

MAGE-G MAGE-G1 Not well characterized Not well characterized

MAGE-H MAGE-H1 Breast cancer; colorectal cancer Upregulating mir-200a/b expression via
association with p73

MAGE-L2 MAGE-L2 Not well characterized Not well characterized

NECDIN NECDIN Melanoma, prostate and breast cancer;
leukemia; urothelial carcinoma

Repression in a STAT3-dependent manner
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development at least in part through inhibiting p53 activa-
tion [21]. In addition, MAGE-A proteins can directly
interact with p53. This direct interaction may occlude the
binding of p53 to p53-responsive promoters, lead to the
decreased p53-dependent transcription, cell cycle arrest,
and apoptosis [41]. In multiple myeloma, the interaction
of MAGE-A proteins with p53 was shown to inhibit apop-
tosis through repression of bax and stabilization of survi-
vin [42]. MAGE-A proteins also inhibit p53 transcription
functions, at least in part by recruiting HDAC3 to the
binding sites of p53 promoter, leading to resistance to
anti-tumor agents [43]. MAGE-A1 was reported to re-
press transcription through binding to ski interacting pro-
tein (SKIP), a transcription regulator, and recruiting
HDAC1 [44]. Through forming complex with p53 and es-
trogen receptor α (ERα), MAGE-A2 represses p53 path-
way and increases ER-dependent signaling, therefore
contributing to tamoxifen-resistance of ER-positive breast
cancer [45] (Fig. 2-2).

MAGE-A11 was found to play a crucial role in the an-
drogen receptor (AR) signaling network in prostate cancer.
MAGE-A11 forms a complex with AR by binding
NH2-terminal FXXLF motif of AR and increases the AR
transcriptional activity by modulating AR interdomain
interaction [46, 47]. The increased expression of MAGE-11
facilitates prostate cancer progression by enhancing AR-
dependent tumor growth [48]. Epidermalgrowth factor
(EGF) stabilizes the AR-MAGE-A11 complex and increases
androgen-dependent AR transcription activity through the
site-specific phosphorylation of Thr-360, and subsequent
ubiquitinylation of Lys-240 and Lys-245 within MAGE
homology domain [49]. Further studies showed that the
interaction between AR and MAGE-A11 is mediated by
AR NH2-terminal FXXLF motif binding to a highly con-
served MAGE-A11 F-box (residues 329-369) in the MAGE
homology domain, and that the interaction is modulated by
serum stimulation of mitogen-activated protein kinase
phosphorylation of MAGE-A11 Ser-174 [50] (Fig. 2-3). In

Fig. 1 MAGEs function as regulator of E3 RING ubiquitin ligases. MAGE genes were activated by some epigenetic regulation factors such as DNA
demethylation, histone acetylation, decreased nucleosome occupancy, and altered expression of non-coding RNAs. Then they were translated to
proteins which could bind directly to RING domain proteins and act as scaffold of RING domain proteins to their substrates, thus regulating (increase
or decrease) the ubiquitin ligase activity of RING domain proteins, which plays an important role in tumor development.
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addition, MAGE-A11 also functions as a transcrip-
tional coregulator through interacting with progester-
one receptor (PR), steroid receptor-associated p300
and p160 coactivators, and contributes to cell cycle
progression through interacting with p107 and E2F1
transcription factors which are important for cell
cycle progression and induction of apoptosis [51, 52].

Epigenetic regulation of MAGE family in cancer
As a CTA subfamily, type I MAGE-A gene expression
is restricted to cancer cells and testis. However, the
precise regulatory mechanisms of MAGE family ex-
pression are still not fully understood. Epigenetic
regulation seems to play an important role in MAGE
expression.

DNA methylation plays critical role in the regulation of
MAGEs expression
Contrary to the high homology of MAGE genes, their
promoters are less homologous. These promoter regions
contain some binding sites for the transcription factors.
The hypermethylation of these sites may be involved in
the silence of MAGE genes. For example, the promoter
of MAGE-A1 gene contains binding sites for the tran-
scription factors Ets and Sp1, whereby the Ets proteins
are responsible for the high transcriptional activation.
The hypermethylation of CpG dinucleotides on the
MAGE-A promoters may prevent the binding of these
activators to their motif, and consequently inhibiting the
promoter activity [53, 54]. MAGE-A1 promoter was re-
ported to be highly methylated in somatic tissues. In
contrast, it is largely unmethylated in male germ cells

Fig. 2 MAGEs function as transcription regulators. (1). MAGEs regulate KAP1 activity as transcription activator. a KAP1 functions as a molecular
scaffold for gene-specific silencing by targeting of specific promoters through the KRAB protein zinc finger motifs, promotion of histone deacetylation
via the NuRD/histone deacetylase complex, histone H3-K9 methylation via SETDB1 and recruitment of HP1 protein. b MAGE-C2 binds
KAP1 and increases ATM-induced phosphorylation of KAP1-Serine 824 (Ser824), thus enhancing DNA damage repair and tumor activation.
(2). a MAGEs binding to KAP1 induces p53 degradation and repression of p53 targeted genes. b MAGE-A proteins can directly interact
with p53 leading to obstruction of p53 binding to p53-responsive promoters. c MAGE-A proteins also inhibit p53 transcription functions
by recruiting HDAC3 to the binding sites of p53 promoter. (3). MAGEs promote prostate cancer progression via increasing AR activity.
MAGE-A11 binds NH2-terminal FXXLF motif of AR and increases AR transcriptional activity by modulating AR interdomain interaction. EGFs
stabilize AR-MAGE-A11 complex through the site-specific phosphorylation of Thr-360 and subsequent ubiquitinylation of Lys-240, Lys-245
within MAGE homology domain.
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and in tumor cells that express this gene [55]. Moreover,
the expression of MAGE-A1 can be induced by the
demethylating agents in cells that do not express this
gene. These observations suggested that DNA methyla-
tion is an essential component of MAGE-A1 repression
in somatic cells. MAGE-A11 expression is increased
during prostate cancer progression and castration-recur-
rent growth of prostate cancer, which is resulted from
the hypomethylation of CpG sites directly proximal to
the MAGE-A11 transcription start site (TSS) [54].
MAGE-A11 expression is also correlated with DNA hy-
pomethylation at its TSS in epithelial ovarian cancer,
which is associated with the global DNA hypomethyla-
tion [54]. The demethylating agent decitabine was able
to reduce MAGE-A11 promoter methylation levels. Its
promoter activity is partially dependent on the transcrip-
tion factor Sp1. Sp1 inhibitor mithramycin A (MitA)
could cause a dose-dependent reduction in MAGE-A11
promoter activity and endogenous MAGE-A11 expres-
sion. In addition, DNA demethylating agent-mediated
MAGE-A11 induction could be inhibited by MitA treat-
ment [56]. Taken together, DNA methylation plays a
primary role in MAGE-A11 gene silencing.
In mammalian, DNA methylation is regulated by two

DNA methyltransferases (DNMTs) families: the so-called
“de novo” methyltransferase of DNMT3 family and the
“maintenance” methyltransferase DNMT1 [57]. In colon
cancer cells, genetic knockout of DNMT1 caused moderate
activation of X-link cancer/germline (CG-X) genes includ-
ing MAGE-A1, NY-ESO-1, and XAGE-1, and DNMT3b
knockout had a negligible effect on CG-X gene activation.
However, double knockout of DNMT1 and DNMT3b
caused dramatic hypomethylation of promoters and robust
induction of these CG-X genes [58]. Similarly, in MZ2-
MEL cells, down-regulation of DNMT1, but not DNMT3A
and DNMT3B, induced the activation of MAGE-A1 gene,
suggesting that DNMT1 has a predominant role for methy-
lation maintenance of MAGE-A1 [59]. Therefore, both
DNMT1 and DNMT3 family, participate in, and are
necessary for, effective CpG island hypermethylation of
MAGE genes.
Some methyl-CpG-binding domain (MBD) proteins,

which are able to bind methylated DNA, have been
reported to contribute to the silencing of MAGE-A
genes as modulator [60]. Most hypermethylated pro-
moters are occupied by MBD proteins, whereas
unmethylated promoters generally lack MBDs. Treat-
ment of demethylating agents causes hypomethylation
of CpG islands, MBD release, and gene re-activation,
reinforcing the notion that the association of MBDs
with methylated promoters is methylation-dependent
[61]. In all MBD-containing proteins, MBD1 differs
from other members due to its unique structure and
specific function in gene regulation. Except for the

conserved MBD domain at its N-terminal, it also has
a transcriptional repression domain (TRD) at its
C-terminal [62]. These two domains are related to the
interaction between MBD1 and other proteins. However,
the MBD domain mediates the binding of MBD1 to the
methylated DNA, but the TRD domain regulates the tran-
scriptional repression of target genes. In addition, MBD1
has two or three specific CXXC domains distinct from
other MBD-containing proteins. The number of CXXC
motifs varies among different MBD1 isoforms and de-
pends on whether MBD1 binds to the unmethylated
DNA. The first two CXXC domains (CXXC1 and CXXC2)
allow MBD1 to bind to the methylated DNA, but the
presence of the third CXXC domain (CXXC3) enables
MBD1 to bind to DNA irrespective of its methylation sta-
tus [63]. MBD1 binds to methylated as well as unmethy-
lated MAGE-A gene promoters, and leads to the
repression of the promoters. Repression of unmethylated
genes depends on the third CXXC domain, and repression
of methylated genes requires the MBD domain.
MBD1mut, which lacks the MBD domain and harbors
a non-functional TRD, showed no effect on MAGE-A
gene expression [60]. The isoform MBD1v1 which
contains the additional third CXXC domain could re-
press MAGE-A gene promoters regardless of their
methylation status. However, although MBD1v3 lacks
the third CXXC domain, it also has a weak repression
on the unmethylated MAGE-A gene promoters, sug-
gesting that the two other CXXC domains may also
contribute to the repression of unmethylated
MAGE-A promoters, however, with a weaker affinity
[60]. These two kinds of binding to both methylated
and unmethylated DNA enable MBD1 to act in differ-
ent epigenetic regulations for MAGE-A genes. An-
other methyl-CpG binding protein, MeCP2, was also
found to regulate MAGE-A11 expression in ESCC
progression [64].
MAGE-A gene promoters contain Ets motifs, and

the transcription factor Ets has been shown to be re-
sponsible for the high transcriptional activation of
MAGE-A1 [65]. Ets-1 over-expression could result in
the activation of MAGE-A promoters. However, the
trans-activator Ets-1 could not abrogate the MBD-1
mediated suppression, suggesting that binding of
MBD1 to the unmethylated MAGE-A gene promoter
lead to gene repression which could not be abrogated
by Ets-1 [60]. MAGE-A11 was also reported to be
stimulated via DNA demethylation, histone acetylation
and histone methylation, resulting in strengthened
ESCC proliferation [64]. These data revealed why pro-
moter demethylation results in the activation of
MAGE-A genes. In general, DNA methylation is
dominant over other epigenetic mechanisms for CTA
(including MAGE) gene repression [66].
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Post-translational modifications of histone play accessory
roles in the regulation of MAGE expression
DNA methylation is intertwined with the post transla-
tional modification of histone [67]. Although hyperme-
thylation of CpG-rich MAGE-A promoters plays a
crucial role in the silencing of MAGE-A genes, several
studies have shown that up-regulation of MAGE-A
genes could not be always observed, although tumor
cells were treated by the DNA methylase inhibitor DAC.
Histone deacetylases inhibitor trichostatin A (TSA) was
able to significantly up-regulate DAC-induced MAGE-A
gene transcription, although treatment of several tumor
cells with TSA alone had only small influence on
MAGE-A gene expression, suggesting that histone dea-
cetylation, which leads to a compact and transcription-
ally inactive chromatin structure, also contributes to the
repression of MAGE genes [58, 68]. The increased abun-
dance of Ac-H3K9 at MAGE-A gene promoters corre-
lates with increased MAGE-A gene expression. In
addition, dual DNMT1/DNMT3b knockout resulted in
large increases of AC-H3K9 level at MAGE-A pro-
moters, which correlated with increased MAGE-A ex-
pression in cells [58]. Fibroblast growth factor receptor
2-IIIb (FGFR2-IIIb) could suppress MAGE-A3/A6 gene
expression through increasing histone deacetylation and
histone methylation in thyroid cancer [69]. These studies
suggested that not only DNA hypermethylation but also
histone deacetylation is responsible for the mechanism
underlying MAGE-A gene silencing. Histone deacetyla-
tion could lead to a compact and transcriptional inactive
chromatin structure, which is involved in the partial
repression of MAGE-A genes in tumor cells and may
impede their activation. However, in the DNA hyper-
methylated cells, MAGE-A genes could not be induced
by TSA, suggesting that DNA methylation plays a
primary role in MAGE-A gene repression, and histone
deacetylation plays an accessory role in cells with hyper-
methylated MAGE-A genes (Fig. 3).
Histone lysine methylation also affects MAGE genes ex-

pression in cancer cells [70]. The increased level of
H3K9me2 at MAGE-A promoters correlates with a lack of
gene expression, whereas an increased abundance of
H3K4me2 at these promoters correlates with increased
MAGE-A gene expression [59]. MAGE-A high-expressed
tumor cells exhibited increased occupancy of RNA poly-
merase II, enrichment of euchromatin/activation marks
such as H3K4Me2, H3K4Me3, H3K79Me2, total H3Ac,
H3K9Ac, toal H4Ac, and H4K16Ac, with decreased occu-
pancy of SirT1 as well as polycomb repressor complex
(PRC-2) components (KMT6, EED, and SUZ12), and asso-
ciated PRC-2 mediated repression mark, H3K27me3 [64].
Knockdown of LSD-1 (KDM1) and JARID1B (KDM5B)
that mediate demethylation of mono-, di-, and trimethy-
lated H3K4, or the histone lysine methytransferase KMT6

that mediateds trimethylation of H3K27 significantly
enhanced DAC-mediated activation of MAGE-A genes in
lung cancer cells [70]. DZNep, as an EZH2 inhibitor, could
decrease KMT6 and H3K27me3 levels within MAGE-A
promoters, and significantly enhanced DAC-mediated in-
duction of MAGE-A genes (Fig. 3).

Nucleosome occupancy in the regulation of MAGE
expression
Nucleosomes are the basic structural units of eukaryotic
chromatin [71]. Increasing evidences revealed that
nucleosomes and their position, in concert with other
epigenetic mechanisms, such as DNA methylation, his-
tone modifications, changes in histone variants, as well
as small noncoding regulatory RNAs, play essential roles
in the control of gene expression [72]. Most importantly,
nucleosomes are depleted at promoter, enhancer, and
terminator regions, which allow the access of transcrip-
tion factors and other regulatory proteins [73, 74]. Nu-
cleosome occupancy and positioning are dynamic processes
during development as well as in response to different
environmental conditions. Therefore, nucleosome position-
ing and occupancy are determined by combined action of
DNA sequence features, transcription factors, chromatin
remodelers, and histone modifications [75]. Nucleosome
positioning can direct DNA methylation patterns, whereas
DNA methylation also can dictate nucleosome occupancy
at numerous genomic loci in human cancer cells [76]. For
the epigenetic regulation of MAGE-A11, DNA methylation
regulates nucleosome occupancy specifically at the − 1
positioned nucleosome of MAGEA11. Methylation of
a single Ets site near the transcriptional start site cor-
related with − 1 nucleosome occupancy and, by itself,
strongly repressed MAGEA11 promoter activity. Thus,
DNA methylation regulates nucleosome occupancy at
MAGEA11, and this appears to function cooperatively
with sequence-specific transcription factors to regulate
MAGE-A11 gene expression [56].

Crosstalk between DNA methylation, histone modifications,
and nucleosome occupancy
In addition to performing their individual roles, DNA
methylation, histone modifications, and nucleosome occu-
pancy work together at multiple levels to determine gene
expression status [77]. The crosstalk between DNA methy-
lation and histone modifications can occur in two ways.
Firstly, DNA methylation established can lead to the
recruitment of MBPs and other transcription regulatory
proteins. These proteins can recruit the “writers” of histone
modifications followed by the recruitment of “readers” and/
or “erasers”. Secondly, histone modifications can directly or
indirectly recruit the methyl writers (such as DNMTs) to
establish DNA methylation. Furthermore, DNA methyla-
tion and nucleosome positioning appear to be linked with
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transcription factor binding and gene expression in a com-
plex manner [78, 79]. The crosstalk between DNA methyla-
tion, histone modifications, and nucleosome occupancy
further enhance the complexity of epigenetic regulation of
MAGE gene expression, which determines and maintains
their function in cancer cells (Fig. 3).

Non-coding RNAs including microRNAs (miRNAs) and
competing endogenous RNA (ceRNA) regulate MAGEs
expression in cancer progression
It has been demonstrated that approximately 5–10% of
the sequence is transcribed in human genome. Among
transcripts, about 10–20% are the protein-coding RNAs,
and the rest 80–90% are non-protein-coding RNAs
(ncRNAs). MAGE family was also regulated by ncRNAs.
MiRNAs, a novel class of gene regulator, are a class of
small non-coding RNAs of ∼ 22 nucleotides in length that
regulate gene expression through post-transcriptional si-
lencing of target genes [80]. Sequence-specific base pairing
of miRNAs with 3′ untranslated region (3′UTR) of target

mRNA within the RNA-induced silencing complex results
in the degradation or translational inhibition of target
mRNAs [81]. There also exist a lot of miRNAs-binding
sites at the 3′UTR of MAGE gene mRNAs. MiR-34a was
reported to directly bind the 3′UTR of several MAGE-A
mRNAs including MAGE-A2, -A3, -A6, and -A12, and
thus inhibiting the expression of MAGE-A members [82].
In addition, miR-874 could directly bind the 3′UTR of
MAGE-C2 and at least in part negatively regulate the
expression of MAGE-C2 in cancer cells [83]. In addition,
miRNAs can also modulate epigenetic regulatory mecha-
nisms in cells by targeting enzymes responsible for DNA
methylation or histone modifications, which potentially
could indirectly influence MAGE expressions [84, 85].
For many years, it is believed that miRNAs regulate

gene expression in a simple “miRNA→mRNA→protein”
pattern. However, in recent years, it has been found that
some RNAs contain the same conservative miRNA bind-
ing sites and reduce miRNA availability for its mRNA
targets by competing for miRNA binding as “miRNA

Fig. 3 Model of epigenetic regulation of MAGEs in cancer progression. MAGE family can be activated by DNA hypomethylation, histone acetylation,
histone methylation, and nucleosome depletion, eventually contributing to oncogenesis. At the same time, MAGEs might be regulated by ceRNA
network through miRNAs as the mediators.
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sponges” or “miRNA decoys” [86, 87]. Based on these
finding, the competing endogenous RNA hypothesis was
proposed [88]. According to the ceRNA hypothesis, the
role of miRNAs in regulating gene expression has thus
been amended from that of an “initiator” to a “mediator,”
and the regulation pattern has been amended from “miR-
NA→mRNA” to network-based “ceRNAs→miRNAs→mR-
NAs” [89]. Long non-coding RNAs (lncRNAs), circular
RNAs (circRNAs), mRNAs and pseudogene transcripts are
all revealed to act as ceRNAs and regulate the target genes
by competing for the same miRNAs in the available
miRNA pools [90–93]. In our recent study, MAGE-A
family was found to be regulated by the circRNA-
miRNA-mRNA axis in ESCC progression [94]. Taken
together, MAGE family might be regulated by ceRNA
network through miRNAs as the mediators (Fig. 3).

Conclusion
MAGEs are expressed in a variety of human cancers,
and drive tumor progression through various mecha-
nisms, which eventually results in the tumor growth,
metastasis, and recurrence. Although recent studies have
made great progress towards elucidating the epigenetic
regulation of MAGE family, the transcriptional programs
controlling their aberrant expression are still not fully
understood and much yet is to be discovered. More
mechanism studies concerning MAGE function and
regulation will provide some new alternative strategies
targeting MAGEs in multiple types of cancers.
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