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The impact of methylation quantitative trait
loci (mQTLs) on active smoking-related
DNA methylation changes
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Abstract

Background: Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation
patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have
not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related
CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults.

Results: We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450
BeadChip array of two independent subsamples of the ESTHER study (discovery set, n = 581; validation set, n = 368)
and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple
testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly
associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active
smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the
weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active
smoking exposure or all-cause mortality.

Conclusions: Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of
epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key
factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of
special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative
population studies related to smoking-related cancers and chronic diseases.
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Background
Active smoking has been recognized as a critical life-
style factor for cardiovascular, respiratory, and neoplas-
tic diseases and contributes to the leading causes
of preventable morbidity and mortality [1, 2]. DNA
methylation, one of the main forms of epigenetic modi-
fication, is involved in the pathways of smoking and
smoking-induced diseases [3, 4]. Previous epigenome-
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wide association studies (EWASs) based on whole
blood samples have successfully discovered an increas-
ing number of tobacco smoking-related CpG sites in
various genes, such as AHRR and F2RL3 [5–7]. These
DNA methylation patterns have been shown to be use-
ful as quantitative biomarkers to reflect both current
and lifetime smoking exposure and to enhance the pre-
diction of smoking-related risks [8–11].
DNA methylation of particular genomic loci might be

influenced by neighboring genetic sequence variants
[12]. The single nucleotide polymorphisms (SNPs) that
are associated with methylation levels of CpG sites are
known as methylation quantitative trait loci (mQTLs)
[13]. This genetic effect has been determined across
different tissues [13–16] and has been highlighted in sev-
eral diseases, including neurological disorders, arthritis,
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Table 1 Study population characteristics in discovery and validation
panels (mean values (SD) for continuous variables and n (%) for
categorical variables)

Characteristics Discovery panel Validation panel p value

N 581 368

Age (years) 61.0 (6.3) 61.1 (6.4) 0.809

Sex (male) 241 (41.5%) 117 (31.8%) < 0.001

Smoking status 0.864

Current smoker 108 (18.6%) 65 (17.7%)

Former smoker 173 (29.8%) 119 (32.3%)

Never smoker 300 (51.6%) 184 (50.0%)

Pack-years of smokinga

Current smokers 34.6 (18.2) 33.1 (18.2) 0.250

Former smokers 22.0 (17.5) 19.4 (15.5) 0.033

Smoking cessation
time (years)b

16.5 (11.3) 17.2 (10.2) 0.742

Body mass indexc 0.248

Underweight or
normal weight (< 25.0)

143 (24.7%) 116 (31.5%)

Overweight (25.0–< 30.0) 290 (50.2%) 151 (41.0%)

vObese (≥ 30.0) 145 (25.1%) 101 (27.5%)

Alcohol consumptiond 0.509

Abstainer 194 (36.3%) 128 (38.0%)

Low 301 (56.4%) 188 (55.8%)

Intermediate 30 (5.6%) 17 (5.0%)

High 9 (1.7%) 4 (1.2%)

Physical activitye 0.058

Inactive 109 (18.8%) 82 (22.3%)

Low 245 (42.2%) 176 (47.8%)

Medium or high 227 (39.0%) 110 (29.9%)

Prevalence of CVD at baselinef 0.621

Prevalent 86 (14.8%) 58 (15.8%)

Prevalence of diabetes at
baselineg

0.617

Prevalent 86 (14.9%) 60 (16.6%)

Prevalence of cancer at baseline

Prevalent 33 (5.7%) 22 (6.0%) 0.744
aFor subgroups of former and current smokers; data missing for 38 and 24
participants, respectively, in discovery and validation panels; a pack-year was
defined as having smoked 20 cigarettes per day for 1 year
bFormer smokers only, data missing for 5 and 2 participants, respectively, in
discovery and validation panels; cessation time equals age at recruitment
minus age at cessation
cData missing for 3 participants in discovery panel
dData missing for 47 and 31 participants, respectively, in discovery and validation
panels. Categories defined as follows: abstainer, low [women, 0–< 20 g/d; men,
0–< 40 g/d], intermediate [20–< 40 g/d and 40–< 60 g/d, respectively], high [≥
40 g/d and ≥ 60 g/d, respectively]
eCategories defined as follows: inactive [< 1 h of physical activity/week], medium
or high [≥ 2 h of vigorous or ≥ 2 h of light physical activity/week], low (other)
fCVD cardiovascular disease. Data missing for 1 participant in discovery panel
gData missing for 5 and 7 participants, respectively, in discovery and validation panels
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and cancer [17–21]. Recently, the mQTLs have been fur-
ther reported to play a modifying role in the associations
between DNA methylation levels at specific CpG sites and
environmental exposures. For instance, Zhang et al. iden-
tified 238 mQTLs that were associated with 65 alcohol
dependence-related CpG sites in African Americans and 305
mQTLs for 44 unique CpG sites in European Americans
[22]. In 2016, Gonseth et al. found out that three of the
strongest maternal smoking-related CpG sites in newborns
were significantly associated with SNPs located in the vicinity
of each gene [23]. Thus, these hereditary traits provide a
possible mechanism by which methylation patterns could be
different under environmental exposures, if the distribution
of risk alleles differs between the exposed and the unexposed.
In addition, the linkages of epigenetic signatures to genotypes
might also further provide more mechanistic evidence on
the genetic and environmental risk factors for various forms
of diseases [24].
However, such genetic influences have not been well

addressed or even overlooked by previous EWASs of ac-
tive smoking exposure; to our knowledge, no study has
so far investigated their contributions to the methylation
intensities of active smoking-related CpG sites and
smoking-related health outcomes in the general popula-
tion. Therefore, we conducted a comprehensive analysis
in a large population-based study of older adults in
Germany with the aim of exploring the hitherto un-
known association between active smoking-related DNA
methylation and individual genetic variations. In particu-
lar, we aimed to identify the mQTLs within ± 50 kb from
each of 151 previously reported active smoking-related
CpG sites in whole blood samples [25] and to assess
their relationships with active smoking exposure and all-
cause mortality.

Results
Participant characteristics
Characteristics of the study population in the discovery
and the validation panel with respect to smoking behav-
iors and lifestyle factors are summarized in Table 1. The
average age of the participants of both subsets at the
baseline was about 61 years. About half of the partici-
pants in each subset were ever smokers (current or
former smokers), and around 18% still smoked at the
time of recruitment. Female participants included a
larger proportion of never smokers than males (discov-
ery set, 67.9 vs. 28.6%; validation set, 63.3 vs. 21.4%).
Average cumulative smoking exposure (pack-years) of
current smokers was considerably higher than that of
former smokers in both subsets (discovery set, 34.6 vs.
22.0; validation set, 33.1 vs. 19.4). Average time after
smoking cessation (years) of former smokers in both
subsets was also similar, approximately 17 years. The
majority of participants in both subsets of the study
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population were overweight or obese, reported no or
only low physical activity, and no or low amounts of
alcohol drinking. During a median follow-up time of
about 12 years (discovery set, 12.6 years; validation set,
12.2 years), 94 participants died in the discovery set
(CVD = 30, cancer = 46, other diseases = 18) and 49
died in the validation set (CVD = 17, cancer = 21, other
diseases = 11).

Identification of mQTLs for smoking-related CpG sites
For the 1396 SNP-CpG pairs consisting of 150 smoking-
related CpG sites and 909 corresponding SNPs (Fig. 1),
380 pairs were significant at a FDR < 0.05 in the
discovery panel even after controlling for covariates
(Additional file 1: Table S2; Additional file 2: Figure S1).
These 380 pairs were then replicated in the validation
panel by applying the fully adjusted mixed linear regres-
sion model. A subset of 246 pairs formed of 70 CpG
sites and 192 SNPs reached the statistical significance level
after FDR correction (FDR < 0.05; Table 2, Additional
file 1: Table S3, Additional file 1: Table S4; Fig. 2).
Eventually, 192 SNPs were designated as the mQTLs
of 70 CpG sites. The pair cg23576855/rs75509302
showed the strongest inter-relationship (FDR-corrected
p value = 8.86 e − 103). Among the 70 CpG sites, five
were highly smoking-related loci (reported ≥ 6 times;
Table 3), 14 were moderately smoking-related (4 or 5
times), and 51 were weakly smoking-related (2 or 3
times). These CpG sites with mQTLs were mainly
located in the gene body (37/70), ten were located in
transcription start sites (TSS1500) and 23 were in
untranslated regions (UTR) or intergenetic regions
(Additional file 1: Table S3). The largest number of
151 previously reported smoking-related CpG
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Fig. 1 Flowchart of selection of SNP-CpG pairs
mQTLs (n = 8) was found for locus cg06126421 within
6p21.33 (Table 3; Fig. 3). The coefficients of mQTLs
ranged from −0.54 to 0.15.
The 192 mQTLs were mainly mapped on chromo-

somes 1 (16%), 6 (10%), and 7 (25%). Three SNPs were
the most frequently identified mQTLs, rs75509392
(MAF = 0.144) for eight CpG sites within AHRR,
rs79050605 (MAF = 0.202), and rs34835481 (MAF = 0.210)
for five and six CpG sites located in GFI1, respectively
(Table 4). We assessed the effects of the mQTLs on the
DNA methylation changes as the absolute values of the
coefficient changes of smoking status between the models
without and with adjusting for corresponding mQTLs
(carrier/non-carrier) among the 246 SNP-CpG pairs (Add-
itional file 1: Table S5). Part of the mQTLs had opposite
effects on different CpG sites (Additional file 1: Table S5,
Additional file 3: Figure S2). For example, the minor allele
of the SNP rs75509302 attenuated the association of
smoking exposure with the methylation of cg11902777 by
5.2% (Additional file 1: Table S5, Additional file 3: Figure
S2). In contrast, this variant strengthened the demethyla-
tion of cg17287155 in response to different smoking be-
haviors by 2.44%.

Genetic contributions of mQTLs to the DNA methylation
changes
As shown in Additional file 1: Table S5, the associations
between smoking exposure and DNA methylation were
changed by between 0.01 and 18.96% by the mQTLs and
were categorized by the distances between genetic
variants and CpG sites and the reported frequencies of
CpG sites. We observed that the closest SNPs (distance
< 10 kb) had a slightly lower impact on DNA methylation
sites

f ±50kb of each CpG

r allele frequency 0.1

e found in the ±50kb region of cg01208318

)

nkage disequilibrium (R2 0.5)



Table 2 List of 246 significant SNP-CpG pairs (chromosomal and CpG sites positions were based on GRCh37/hg19)

Chromosome Gene CpG site Position Number of SNP candidates Number of mQTLs

1 AVPR1B cg09069072 15,482,754 13 5

GFI1 cg09662411 92,946,132 10 2

cg09935388 92,947,588 10 2

cg10399789 92,945,668 9 6

cg12876356 92,946,825 10 2

cg18146737 92,946,701 10 2

cg18316974 92,947,035 10 2

GNG12 cg25189904 68,299,493 5 2

NOS1AP cg11231349 162,050,657 4 2

TMEM51 cg21913886 15,485,346 14 9

unassigned cg03547355 227,003,061 8 2

unassigned cg12547807 9,473,751 9 1

unassigned cg21393163 12,217,630 8 2

unassigned cg26764244 68,299,511 3 3

2 2q37.1 cg05951221 233,284,402 5 1

cg03329539 233,283,329 5 2

ALPP cg23667432 233,244,439 5 2

NFE2L2 cg26271591 178,125,956 8 6

SNED1 cg26718213 241,976,081 9 4

unassigned cg27241845 233,250,371 5 2

3 GPX1 cg18642234 49,394,623 10 5

5 AHRR cg03604011 400,201 15 5

cg03991871 368,448 9 1

cg11902777 368,843 9 4

cg12806681 368,395 9 2

cg14817490 392,920 15 4

cg17287155 393,347 15 1

cg23576855 373,300 9 7

cg23916896 368,805 9 4

6 6p21.33 cg06126421 30,720,081 16 8

CDKN1A cg15474579 36,645,813 22 8

IER3 cg15342087 30,720,210 16 2

cg24859433 30,720,204 16 3

TIAM2 cg00931843 155,442,993 6 1

VARS cg17619755 31,760,629 16 8

unassigned cg14753356 30,720,109 8 2

7 C7orf40 cg03440944 45,023,330 5 1

CNTNAP2 cg11207515 146,904,206 14 7

cg25949550 145,814,306 11 8

GNA12 cg19717773 2,847,554 22 22

HOXA7 cg08396193 27,193,709 7 1

LRRN3 cg11556164 110,738,316 5 5

MYO1G cg12803068 45,002,919 10 1

cg22132788 45,002,487 10 1
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Table 2 List of 246 significant SNP-CpG pairs (chromosomal and CpG sites positions were based on GRCh37/hg19) (Continued)

TNRC18 cg09022230 5,457,226 24 3

8 ZC3H3 cg26361535 144,576,604 8 1

unassigned cg19589396 103,937,374 15 2

9 unassigned cg01692968 108,005,349 2 2

10 ARID5B cg25953130 63,753,550 6 3

11 KCNQ1 cg07123182 2,722,391 13 2

cg26963277 2,722,408 13 3

cg01744331 2,722,358 13 3

KCNQ1OT1 cg16556677 2,722,402 13 2

PRSS23 cg11660018 86,510,915 9 2

cg23771366 86,510,999 9 2

unassigned cg16611234 58,870,075 10 10

14 C14orf43 cg01731783 74,211,789 6 1

cg10919522 74,227,441 5 1

15 ANPEP cg23161492 90,357,203 19 6

SEMA7A cg00310412 74,724,919 13 9

16 ITGAL cg09099830 30,485,486 3 2

XYLT1 cg16794579 17,562,419 3 1

17 LOC100130933 cg07251887 73,641,810 6 2

STXBP4 cg07465627 53,167,407 8 4

19 CPAMD8 cg15159987 17,003,890 15 4

CRTC1 cg23973524 18,873,223 12 1

F2RL3 cg03636183 17,000,586 17 1

PPP1R15A cg03707168 49,379,127 10 4

21 ETS2 cg23110422 40,182,073 6 3

22 NCF4 cg02532700 37,257,404 8 2

Total 590 246
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levels than the mQTLs located ≥ 10 kb (Fig. 4a). Compared
with the highly smoking-related CpG sites, the mQTLs
affect the methylation levels of weakly smoking-related
CpG sites the most, and the changes of moderately
smoking-related CpG sites stayed in the intermediate
position (Fig. 4b, F = 4.91, p value = 0.008). Additionally,
potential gene-environment interactions of the 192 mQTLs
with smoking behaviors (current/never smoking) were
assessed. Only for rs75509302, a significant interaction with
smoking was observed regarding the methylation levels of
cg23576855 (Tables 5, Additional file 1: Table S6).

Associations of mQTLs with active smoking exposure and
all-cause mortality
Finally, we tested the associations of the 192 mQTLs
(carrier/non-carrier) with different measurements of
smoking exposure [ever smoking (current and former
smoking) vs. never smoking, current smoking vs. never
smoking, current smoking vs. former smoking, cumula-
tive smoking (pack-years), durations of smoking (years),
and the age of smoking initiation]. None of them was
significantly associated with any smoking indicators after
the correction of FDR (Additional file 1: Table S7).
Similarly, the 192 SNPs were not significantly associated
with all-cause mortality (death from CVD, cancer, and
other chronic diseases) based on the results of the COX
model (Additional file 1: Table S8).

Discussion
We conducted the first association study of 150 active
smoking-related CpG sites and their corresponding SNPs
located in the ± 50 kb region utilizing the genomic and
epigenomic data of 949 participants from the ESTHER
study. We found the DNA methylation levels of 70 CpG
sites to be influenced by 192 proximal SNPs. These 192
mQTLs modified the DNA methylation changes in re-
sponse to active smoking exposure, especially for the
weakly/moderately active smoking-related CpG sites, but
we did not observe any direct associations with active
smoking exposure or all-cause mortality.



Chromosome

Fig. 2 Manhattan plot of the results in validation panel. Red line, FDR-corrected p value = 0.05

Table 3 Five frequently reported (≥ 6) CpG sites and corresponding mQTLs

CpG site Frequencya Gene Chr SNP SNP positionb Minor allele Distance (bp)c FDRd MAFe

cg03636183 12 F2RL3 19 rs2227357 17,003,553 A 2967 0.048 0.125

cg05951221 8 2q37.1 2 rs790051 30,718,035 A − 1866 6.2 e − 4 0.226

cg06126421 7 6p21.33 6 rs2535324 30,727,983 C − 2046 1.8 e − 9 0.3

rs3095339 30,728,290 G 7902 2.6 e − 4 0.252

rs3131036 30,728,360 A 8209 2.6 e − 4 0.253

rs3094122 30,737,552 G 8279 3.2 e − 3 0.206

rs13217914 30,739,657 A 17,471 2.4 e − 21 0.157

rs6911571 30,753,639 T 19,576 0.007 0.16

rs4713361 30,756,066 A 33,558 1.3 e − 21 0.159

rs13201769 30,718,035 A 35,985 6.9 e − 7 0.326

cg03329539 6 2q37.1 2 rs790051 233,282,536 A − 793 0.031 0.226

rs34547337 233,300,755 T 17,426 1.5 e − 5 0.314

cg14817490 6 AHRR 5 rs75509302 365,653 C − 27,267 0.002 0.144

rs11746079 410,980 C 18,060 1.5 e − 3 0.154

rs72717419 431,996 T 39,076 0.021 0.207

rs2672725 434,981 G 42,061 0.042 0.117
aThe reported times of CpG in previous studies (based on systematic review [25])
bPositions of CpG sites and SNPs were based on GRCh37/hg19
cThe distance between SNP and CpG (SNP position–CpG position)
dThe FDR-corrected p values of SNPs in fully adjusted mixed linear regression models, which controlled for age (years), sex, smoking status, random batch effect
of methylation measurement, leukocyte distribution (Houseman algorithm), alcohol consumption (abstainer/low/intermediate/high), body mass index (BMI, underweight
or normal weight/overweight/obese), physical activity (inactive/low/medium or high), prevalence of cardiovascular diseases (yes/no), prevalence of diabetes (yes/no),
and prevalence of cancer (yes/no)
eMAF minor allele frequency
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a

b

Fig. 3 Locations of cg06126421 and eight mQTLs (carrier/non-carrier) (a) and distributions of methylation levels based on smoking status (b) in
validation panel. Red line, FDR-corrected p value = 0.05; red dot, mQTLs; yellow triangle, cg06126421; blue bar, non-carriers of minor allele; red
bar, carriers of minor allele
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The mQTLs are presented in the vicinity of active
smoking-related CpG sites. Locus cg06126421 (6p21.33)
is one of the pronounced smoking-related CpG sites
with eight mQTLs. Four of the SNPs could impair the
hypomethylation of cg06126421, while others could
accelerate this process. All of these mQTLs were located
in a genomic region relating to inflammation and/or
immune-related (malignant) diseases, such as allergies
[26], multiple myeloma [27], diffuse large B cell lymph-
oma [28], and lung cancer [29]. We also identified a
mQTL rs2227357 which could slightly promote the
demethylation of cg03636183 (F2RL3), but no mQTLs
were discovered near other well-established smoking-
related loci, like cg05575921 (AHRR) or cg19859270
(GPR15). However, eight CpG sites within the AHRR re-
gion were found to be modified by mQTLs. Among
them, cg23576855 manifested the strongest connection
with rs75509302 and was also the only hit which could
be affected by the interaction between smoking status
and corresponding mQTL. This phenomenon might be
highly contributed by the genetic feature of this locus,
which is also a CG → CA SNP annotated as rs6869832
[5, 30], and shares a very high LD with rs75509302 in
this study (R2 = 0.94). Nevertheless, to our knowledge,
the biological functions for most of the identified
mQTLs in our study are not fully understood yet and
need to be explored in further research.
The mQTLs may help to distinguish between the

genetic and environmental effects on epigenome dispar-
ities. Researchers usually observed several outliers out of
the predictive range of epigenetic signatures in EWASs
[6, 7, 9, 31]. One of the most plausible explanations is
measurement bias that may result from recall bias or
intentional underreporting [32]. Our finding provides
another possibility that the deviations of DNA methyla-
tion levels might be caused by neighboring genetic
variants. For highly smoking-related CpG sites, active
smoking is still the main driver of DNA methylation
changes. For instance, the SNP rs2227357 only contrib-
uted to about 0.01% of the changes of the methylation
level of cg03636183 (F2RL3), and the SNP rs790051
altered only 0.37% of the methylation level of cg05951221
(2q37.1). However, the mQTLs affected the methylation
levels of less robustly smoking-related loci much more.
For instance, the SNPs rs78131 and rs2741302 explained
nearly 19% of the changes of cg26963277 (KCNQ1) and



Table 4 Three most frequently identified mQTLs and corresponding CpG sites

SNP Chr SNP positiona Minor allele MAFb CpG Distance (bp)c FDRd

rs75509302 5 365,653 C 0.144 cg23576855 − 7647 3.4 e − 100

cg11902777 − 3190 1.4 e − 7

cg17287155 − 27,694 7.8 e − 5

cg03991871 − 2795 1.0 e − 4

cg12806681 − 2742 1.2 e − 4

cg23916896 − 3152 9.5 e − 4

cg03604011 − 34,548 1.1 e − 3

cg14817490 − 27,267 2.1 e − 3

rs34835481 1 92,991,624 T 0.210 cg10399789 45,956 2.2 e − 5

cg12876356 44,799 1.3 e − 3

cg09662411 45,492 1.9 e − 3

cg18146737 44,923 2.0 e − 3

cg18316974 44,589 3.0 e − 3

cg09935388 44,036 0.016

rs79050605 1 92,925,962 G 0.202 cg12876356 − 20,863 3.7 e − 4

cg18146737 − 20,739 1.1 e − 3

cg18316974 − 21,073 1.7 e − 3

cg09662411 − 20,170 1.9 e − 3

cg09935388 − 21,626 2.2 e − 3
aSNPs positions were based on GRCh37/hg19
bMAF minor allele frequency
cThe distance between SNP and CpG (SNP position–CpG position)
dThe FDR-corrected p values of SNPs in fully adjusted mixed linear regression models, which controlled for age (years), sex, smoking status, random batch effect
of methylation measurement, leukocyte distribution (Houseman algorithm), alcohol consumption (abstainer/low/intermediate/high), body mass index (BMI, underweight
or normal weight/overweight/obese), physical activity (inactive/low/medium or high), prevalence of cardiovascular diseases (yes/no), prevalence of diabetes (yes/no),
and prevalence of cancer (yes/no)
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cg27241845, respectively. While additional external val-
idation studies certainly are needed, we speculate that
this strong diversity of results might be a result of
undetermined biological interactions between the SNP
and CpG sites.
Smoking-related CpG sites have been recognized as in-

formative signatures of smoking exposure and smoking-
related health outcomes [3, 4]. Part of these 70 CpG sites
with mQTLs have been reported to be highly associated
with long-term smoking exposure [cg03636183 (F2RL3)
and cg06126421 (6p21.33)] [9, 10], aging-related health
outcomes, such as telomere length (cg21393163) [33] and
the development of frailty [cg14753356, cg19589396,
cg23667432 (ALPP) and cg25189904 (GNG12)] [34], and
were even employed to construct a comprehensive index
to predict smoking impact in buccal cells [35]. Together
with previous studies [8, 23], we suggest that future
investigations utilizing smoking-related CpG sites might
need to take the genotypes, especially the mQTLs of less
robustly smoking-related loci, into consideration to account
for their potential impact on DNA methylation levels.
Beyond the SNP-CpG associations, null associations of

192 mQTLs with active smoking and all-cause mortality
additionally imply that these novel genetic variants might
be independently associated with the DNA methylation
changes and might not be involved in the pathophysio-
logical development of smoking-related health outcomes.
Therefore, these mQTLs might have the potential to be
used in the causal inference tests between the CpG sites
and smoking-related health outcomes as instrumental
variables (Mendelian Randomization, MR) [36]. Recently,
researchers have suggested a two-stage MR test to estab-
lish the causal role of epigenetic processes in pathways of
diseases [37]. Larger population-based investigations with
longitudinal design and repeated measurements of smok-
ing exposure and epigenome data are warranted to
evaluate these potential instrumental variables and obtain
further insights into the plausibility of suggested causal
effects of DNA methylation in the development of
smoking-related diseases.
Major strengths of the present study include compre-

hensive information on a broad range of covariates in a
population-based cohort and validation in an independent
subgroup. Some limitations still have to be acknowledged
in the interpretation of study results. First, smoking-
related shifts in leukocyte distribution might affect the
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associations of DNA methylation in whole blood samples
with active smoking [38]. Hence, we adjusted for leukocyte
distribution by the Houseman algorithm to restrict poten-
tial confounding from differential blood counts to the
greatest possible extent [39]. Further studies are also
needed to evaluate to what extent our results can be
generalized to middle-aged individuals or non-Caucasians,
as the ESTHER study was conducted in the older (aged
50–75 years), almost exclusively Caucasian population in
southern Germany during a routine screening program. In
addition, our study had limited power for detecting direct
associations of mQTLs with smoking exposure and all-
cause mortality due to limited numbers of cases. Finally, we
only measured a relatively small window of genetic regions
Table 5 Impact of rs75509302-smoking interaction on the methylat

Gene CpG site SNP SNP-smoking interactionb

Genotypec Coefficient

AHRR cg23576855 rs75509302 TT Ref

CT 0.128

CC 0.268
aModel is fully adjusted for age, sex, BMI, smoking status (current and never smokin
and cancer at baseline. The methylation levels of CpG sites were responses, the SN
bThe never smoking * genotype groups and current smoking * TT group were used
cThe group of interaction between current smoking and listed genotype;
dNever smoking was used as reference
(± 50 kb) in whole blood DNA due to the consideration of
controlling for the pleiotropic effect or reverse causa-
tions from unknown genetic or epigenetic factors and
the limited coverage of OncoArray [40], more mQTLs
(cis- or trans-) for smoking-related CpG sites need to
be established by expanding the search window. Since
DNA methylation is highly tissue-specific, larger co-
horts with various human tissues are also needed for
more comprehensive evaluation of the whole landscape
of genetic impact on the epigenome.

Conclusions
In conclusion, this study identified 192 mQTLs for 70
smoking-related CpG sites. These variants might theor-
etically reflect inherited differences in epigenetic states
of people and their susceptibilities to smoking-related
health outcomes. Incorporation of mQTLs might enhance
the epigenetic-based assessments of smoking or smoking-
related health outcomes by accounting for potential con-
founding from genetic background. Our results need
to be further validated and confirmed in additional
studies with larger number of participants and more
detailed assessment of genomic and epigenomic data,
including the CpG sites that have not previously been
replicated. Along with previous investigations on the
epigenetic changes related to other environmental ex-
posures or lifestyle factors, our study adds evidence for
the complex interplays among genetic traits, epigenetic
signatures, and environmental factors.

Methods
Study design and population
Study subjects were selected from the ESTHER study,
an ongoing statewide population-based cohort study
conducted in Saarland, a state located in southwestern
Germany. Details of the study design have been reported
previously [41]. Briefly, 9949 older adults (aged 50–
75 years) were enrolled by their general practitioners
during a routine health check-up between July 2000 and
December 2002 and followed up thereafter. The current
cross-sectional analysis is based on data and biospeci-
men collected at baseline. Two independent subgroups
ion level of cg23576855a

Smoking statusd

SE p value Coefficient SE p value

−0.182 7.1 e − 3 3.8 e − 95

0.013 1.1 e − 20

0.033 2.5 e − 15

g only), alcohol consumption, physical activity, prevalence of CVD, diabetes
Ps and SNP-smoking interactions were predictors;
as references;
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were selected as the discovery and the validation panel
for DNA methylation analyses as previously described
[33]. Briefly, the discovery panel included 581 partici-
pants recruited consecutively at the start of the ESTHER
study between July and October 2000. The validation
panel included 368 participants randomly selected from
the participants recruited between October 2000 and
March 2001. The study was approved by the ethics
committees of the University of Heidelberg and the state
medical board of Saarland, Germany. Written informed
consent was obtained from all participants.

Data collection
Information on socio-demographic characteristics, life-
style factors, and health status at baseline was obtained
by standardized self-administered questionnaires. In
particular, detailed information on lifetime smoking his-
tory was obtained, including current smoking status and
intensity, age at initiation, and smoking intensities at
various ages, as well as the age of quitting smoking for
former smokers [42]. Additional information on body
mass index (BMI) was extracted from a standardized
form filled by the general practitioners during the health
check-ups. Prevalent cardiovascular disease (CVD) at
baseline was defined by either physician-reported coron-
ary heart disease or a self-reported history of a major
cardiovascular event, such as myocardial infarction,
stroke, pulmonary embolism, or revascularization of
coronary arteries. Prevalent diabetes was defined by
physician diagnosis or the use of glucose-lowering drugs.
Prevalent cancer [ICD-10 C00-C99 except non-melanoma
skin cancer (C44)] was determined by self-report or
record linkage with data from the Saarland Cancer Regis-
try (http://www.krebsregister.saarland.de/ziele/ziel1.html;
in German). Deaths during the follow-up (between 2000
and end of 2014) were identified by record linkage with
population registries in Saarland. Participants migrated
out of Saarland were censored at the date last known to
be alive. Information about the major cause of death was
obtained from death certificates provided by the local pub-
lic health offices and was coded with ICD-10 codes.

DNA methylation data
Blood samples were taken during the health check-up and
stored at −80 °C until further processing. DNA from
whole blood samples was collected using a salting out
procedure [43]. DNA methylation profiles were extracted
by the Illumina Human Methylation 450K BeadChip
(Illumina, San Diego, CA, USA). As previously described
[44], samples were analyzed following the manufacturer’s
instruction at the Genomics and Proteomics Core Facility
of the German Cancer Research Center, Heidelberg,
Germany. Illumina’s GenomeStudio® (version 2011.1; Illu-
mina, Inc.) was employed to extract DNA methylation
signals from the scanned arrays (Module version 1.9.0; Illu-
mina, Inc.). The methylation level of a specific CpG site
was quantified as a β value ranging from 0 (no methylation)
to 1 (full methylation). According to the manufacturer’s
protocol, no background correction was done and data
were normalized to internal controls provided by the
manufacturer. All controls were checked for inconsist-
encies in each measured plate. Probes with a detection
p value > 0.05 were excluded from analysis. We utilized
the Illumina normalization and preprocessing method
implemented in Illumina’s GenomeStudio®. We se-
lected the profiles of 151 smoking-related loci which
had been identified ≥ 2 times in previous smoking
EWASs for the present analysis [25].
Genotyping data
Extracted DNA from blood cells was genotyped using the
Illumina Infinium OncoArray BeadChip (Illumina, San
Diego, CA, USA). General genotyping quality control
assessment was as previously described [45]. Genotypes for
common variants across the genome were imputed using
data from 1000 Genomes Project (phase 3, Oct. 2014) with
IMPUTE2 v2.3.2 after pre-phasing with SHAPEIT software
v2.12. We set thresholds for imputation quality to retain
both potential common and rare variants for validation.
Specifically, poorly imputed SNPs defined by an informa-
tion metric I < 0.70 were excluded. All genomic locations
are given in NCBI Build 37/UCSC hg19 coordinates. All
SNPs having a MAF < 1% were excluded. After imputation,
the SNP set consisted of 9,198,808 genotyped and imputed
SNPs. PLINK v1.90 was then used to extract SNPs for the
required regions of interest [46]. As shown in Fig. 1, we first
identified SNPs within 50 kb upstream and downstream
from each of the 151 smoking-related CpG sites (470,582
SNP-CpG pairs), a window in which most SNPs with sig-
nificant cis associations with CpG sites are located [13].
The locus cg01208318 was excluded without any corre-
sponding SNPs in this restricted region. For each of the
remaining 150 CpG sites, we excluded any SNPs with ≥ 1%
missing values (n = 44,931), deviating from the Hardy-
Weinberg equilibrium (HWE exact test’s p value < 0.0001,
n = 1), with a minor allele frequency ≤ 0.1 (n = 414,671) or
with high linkage disequilibrium (LD, R2 ≥ 0.5) (Additional
file 1: Table S1). After the final quality control, 1396 SNP-
CpG pairs with strongest SNPs remained for analysis,
which were constituted of 150 CpG sites and 909 corre-
sponding SNPs (Additional file 1: Table S2).
Statistical analyses
First, major socio-demographic characteristics, lifestyle
factors, smoking behavior, and prevalence of major
chronic diseases in both the discovery and the validation
panel were summarized by descriptive statistics.

http://www.krebsregister.saarland.de/ziele/ziel1.html
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We then evaluated the associations between the
methylation intensities of the 150 CpG sites and corre-
sponding SNPs to identify mQTLs as follows. For all
SNP-CpG pairs, we used a mixed linear regression
model with methylation batch as a random effect in
which the methylation level of CpG site was the
outcome and each regional SNP was the predictor (cat-
egorical variable, coded into 0, 1, and 2 based on the
numbers of the minor allele). The model was fully
adjusted for the following covariates that have been
shown to be associated with DNA methylation changes
[47–54]: age (years), sex (male/female), smoking status
(current/former/never smoking), alcohol consumption
(abstainer, low [women, 0 to < 20 g/d; men, 0 to < 40 g/d],
intermediate [20 to < 40 g/d and 40 to < 60 g/d, respect-
ively], high [≥ 40 g/d and ≥ 60 g/d, respectively]), body
mass index (BMI, kg/m2, underweight [< 18.5, < 1% of the
study population] or normal weight [18.5 to < 25],
overweight [25 to < 30], obese [≥ 30]), physical activity (in-
active [< 1 h of physical activity/week], medium or high [≥
2 h of vigorous or ≥ 2 h of light physical activity/week],
low [other]), the leukocyte distribution estimated by the
Houseman algorithm [39], the prevalence of CVD (yes/
no), diabetes (yes/no), and cancer (yes/no) at the baseline.
After correction for multiple testing by false discovery rate
(FDR, Benjamini-Hochberg method [55]), SNP-CpG pairs
with a FDR < 0.05 were selected and then analyzed in the
validation panel. SNPs of the pairs with a FDR < 0.05 in
the validation panel were eventually identified as the
mQTL for the corresponding CpG site.
Furthermore, we tested the contributions of the identi-

fied mQTLs to the DNA methylation levels of corre-
sponding CpG sites. Due to the limited number of
individuals in the subgroup of minor homozygotes, we
recoded the SNPs in order to use the dominant model,
in which the heterozygote and minor homozygotes were
combined as the carrier of minor allele and the major
homozygotes were considered as non-carrier of the
minor allele. We compared the coefficients of active
smoking exposure (current vs. never smoking) in the
fully adjusted model without the mQTLs (β1) with the
fully adjusted model including the mQTLs (β2). The
changes of coefficients were calculated as 100% *
(β1–β2)/β1, and their absolute values were determined as
the percentage change contributed by mQTLs. The
percentage changes were categorized by the absolute
distances (bp) between CpG sites and corresponding
mQTLs and the reported frequencies of CpG sites. To
explore whether the gene-environment interactions
could modify the DNA methylation changes of smoking-
related CpG sites, we also tested whether interactions
between the identified mQTLs and active smoking
exposure (current vs. never smoking) could affect the im-
pact of smoking on the methylation levels of corresponding
CpG sites. The mQTLs, smoking status, and their inter-
action (mQTLs*smoking status) were added in the
model as predictors, and the methylation levels of CpG
sites were outcomes. After controlling for all the poten-
tial covariates, the interactions with a FDR < 0.05 were
considered as methylation-related interactions for cor-
responding CpG sites.
Finally, we examined whether the identified mQTLs (car-

rier/non-carrier) were associated with six active smoking
indicators: ever smoking (current and former smoking) vs.
never smoking, current smoking vs. never smoking, current
smoking vs. former smoking, cumulative smoking (pack-
years), durations of smoking (years), and the age of smoking
initiation. The mixed linear models were fully adjusted for
age (years), sex, smoking status, alcohol consumption, BMI,
physical activity, the prevalence of CVD, diabetes, and
cancer as described above. The mQTLs with a FDR < 0.05
were identified as smoking-related SNPs. We also assessed
the associations of the significant mQTLs (carrier/non-car-
rier) with all-cause mortality in ESTHER study. Due to the
limited number of deaths, we combined both subsets and
performed the analysis using a multiple COX regression
model. The model was adjusted for the above potential co-
variates and SNPs with a FDR < 0.05 were considered as
all-cause mortality related variants.
Data cleaning and all aforementioned statistical analyses

were performed by SAS version 9.4 (SAS Institute Inc.,
Cary, NC, USA). Manhattan plots for both panels were
plotted by R package “ggplot2.”
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