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Abstract

Background: Human methylome mapping in health and disease states has largely relied on Illumina Human
Methylation 450k array (450k array) technology. Accompanying this has been the necessary evolution of analysis
pipelines to facilitate data processing. The majority of these pipelines, however, cater for experimental designs
where matched ‘controls’ or ‘normal’ samples are available. Experimental designs where no appropriate ‘reference’
exists remain challenging. Herein, we use data generated from our study of the inheritance of methylome profiles
in families to evaluate the performance of eight normalisation pre-processing methods. Fifty individual samples
representing four families were interrogated on five 450k array BeadChips. Eight normalisation methods were tested
using qualitative and quantitative metrics, to assess efficacy and suitability.

Results: Stratified quantile normalisation combined with ComBat were consistently found to be the most
appropriate when assessed using density, MDS and cluster plots. This was supported quantitatively by ANOVA on
the first principal component where the effect of batch dropped from p < 0.01 to p = 0.97 after stratified QN and
ComBat. Median absolute differences between replicated samples were the lowest after stratified QN and ComBat
as were the standard error measures on known imprinted regions. Biological information was preserved after
normalisation as indicated by the maintenance of a significant association between a known mQTL and
methylation (p = 1.05e-05).

Conclusions: A strategy combining stratified QN with ComBat is appropriate for use in the analyses when no
reference sample is available but preservation of biological variation is paramount. There is great potential for use
of 450k array data to further our understanding of the methylome in a variety of similar settings. Such advances will
be reliant on the determination of appropriate methodologies for processing these data such as established here.
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Background
DNA methylation, the covalent addition of a methyl group
to a cytosine base, usually in a cytosine-guanine pair
(CpG), remains the most widely studied epigenetic modifi-
cation in disease. While around 70 % of CpG dinucleotides
are methylated in mammals, when clustered in groups or
‘islands’ (CGIs) they are generally unmethylated [1]. These
islands occur often at promoter regions, where methylation

has been traditionally associated with transcriptional re-
pression [2]. Less extensively studied, but potentially more
interesting, is the regulatory role of methylation at CpG
shores and within gene bodies, as these regions have been
found to be more variably methylated between tissue types
and in cancer compared to normal tissue [3, 4].
Deepening the complexities surrounding the regulatory

roles of CpG dinucleotides located in regions adjacent to
promoters, ‘shores’ and gene bodies is the knowledge that
sequence variation has a strong influence on methylation.
Gertz et al. [5] examined methylation patterns in a three
generation family and have estimated that genotype
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explains around 80 % of the variation in methylation.
Methylation quantitative trait loci or meQTLs refer to se-
quence variants across the genome driving methylation
patterns [6] and these have been mapped in a variety of
different tissues and at different stages of development in
various organisms [7–10]. Smith et al. [9] have compared
sequence variants influencing methylation patterns across
different human tissues and identified sets of meQTLs
that are tissue specific but also others that are consistent
across different tissue types and indeed across popula-
tions. Further, inherited genetic variants have been linked
to methylation changes observed in disease. Shen et al.
[11] have demonstrated that susceptibility SNPs at the
HNF1B locus in ovarian cancer are associated with altered
methylation and consequent expression of HNF1B. Also,
it has been proposed that at least a proportion of unex-
plained Lynch syndrome cases are likely to be due to epi-
genetic silencing of mismatch repair genes. Indeed, it has
been shown that the inheritance of the c.-27C>A germ-line
variant in the 5′ UTR leads to epigenetic silencing MLH1
in Lynch syndrome [12]. Thus, there is now considerable
interest in mapping inherited methylation changes influen-
cing disease susceptibility and disease course.
Genome-wide epigenetic studies have thus far largely fo-

cused on epigenetic alterations that occur in diseased tis-
sues, where epigenetic changes across the genome are
mapped through comparing ‘normal’ and affected tissues
from the same individual. Indeed, epigenetic drugs, cur-
rently in clinical use, are designed to correct the epigenetic
alterations acquired during disease development [13]. The
assumption being that these acquired epigenetic alterations
are driven by the disease process itself. More recently, it
has been hypothesised that inherited genetic variation can
drive epigenetic alterations and further that these contrib-
ute to disease susceptibility or disease course. To date, the
large majority of genome-wide methylation studies and
consequently the bioinformatic pipelines used to interpret
these data have been designed to compare diseased with
‘normal’ tissue, in order to map epigenetic changes in the
disease tissue itself. This analysis may screen out inherited
epigenetic changes that are evident both in the normal tis-
sue and the diseased tissue of the same affected individual.
There remains a need to explore inter-individual variation
of the epigenome and its contribution to disease. A power-
ful approach to examining the role of inherited variation
drivers of epigenetic change is to examine large families
where inheritance of variation driving epigenetic alter-
ations can be tracked through generations.
A number of challenges exist in the analysis of

genome-wide methylation mapping in samples and these
include technical challenges dealing with batch effects
and the underlying biochemistry employed by the array
methods. This has necessitated the development of nu-
merous pre-processing quality control methods to ensure

reliable, high-quality data generation. As most studies
examining epigenetic profiles have typically examined dif-
ferences between two distinct groups (normal vs tumour
tissue or case vs control), the majority of normalisation
methods for the 450k array are designed for these types of
data, frequently requiring two data groups to normalise
negative and positive control probes or genomic regions.
Such methods are incompatible with pedigree data, which
lack a distinct second group for normalisation. In re-
sponse to the absence of appropriate strategies, we have
developed a pipeline for optimal normalisation and pre-
processing of familial-based methylation array data.

Methods
DNA isolation and preparation
Fifty peripheral blood samples were collected from indi-
viduals representing clusters of densely aggregated cases
of affected men and close relatives from the Tasmanian
Familial Prostate Cancer study. A diagrammatic repre-
sentation of the family pedigrees is shown in Fig. 1, with
disease status indicated. Individuals are of Caucasian
descent, ranging in age from 23 to 89 years. See
Additional file 1: Table S1 for more detailed information
on clinical data and sample handling where available.
DNA was extracted from whole blood using the Nucleon
BACC3 (GE Healthcare) DNA extraction kit, following
the manufacturer’s instructions. DNA was initially quan-
tified on the Nanodrop 8000 (Thermo Scientific) and
samples with a 260:280 ratio of less than 1.80 were fur-
ther purified using the Zymo Clean & Concentrator
(TM)-5 Kit. DNA was then quantified using a Qubit®
Flourometer. One microgram of DNA was bisulphite
converted using the EZ DNA Methylation-Gold (TM)
kit (ZYmo Research), according to the manufacturer’s
instructions. Bisulphite-converted DNA (400 ng) was
then used for analysis of DNA methylation using the
450k array, according to the manufacturer’s instructions.

Data extraction, pre-processing and initial quality control
IDAT files containing the raw intensity signals from red
and green colour channels were generated using Illumi-
na’s iControl software, with all further analysis carried
out in the R environment [14]. A combination of three R
packages, minfi [15], methylumi [16] and ChAMP [17],
were used to load IDAT files into R and perform basic
quality control. Different normalisation methods require
the data to be in different formats which cannot be sub-
sequently modified once loaded into R. As such, a num-
ber of different packages were used to load data, with
the chosen package dependent on the normalisation
method tested. Methylumi was used to read data into R
in the correct format for quantile normalisation in the
lumi R package. The minfi package provides a quality
control report based on inbuilt control probes on the
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Fig. 1 (See legend on next page.)
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array (such as staining, hybridization, bisulfite conver-
sion and negative controls) as well as the ability to ex-
clude probes and samples based on probe signal
intensity. Samples failing this initial quality control were
excluded from further analysis. Replicate samples across
batches were included on the beadchips to allow assess-
ment of quality control and technical bias. Of the 50
unique samples and 8 replicates initially interrogated, 45
unique and 5 replicate samples passed quality control
metrics and were used for further analysis. Following
sample quality control, the recommended quality thresh-
olds in ChAMP were employed to exclude poor quality
probes, with a minimum detection p value of 0.05 in
more than one sample removing 6740 probes and a bead
count threshold of <3 in 5 % of samples removing a fur-
ther 478 probes. To account for sex differences in
methylation, driven particularly by dosage compensation
by X-inactivation, probes on the sex chromosomes were
removed prior to normalisation. While ChAMP includes
this option as default when loading data, most packages re-
quire manual separation, normalisation and recombination
of sex chromosomes or their complete manual removal.
Thus, to permit appropriate comparison of normalisation
methods, a homogenous set of loci across all packages was
required; therefore, sex chromosomes were removed at this
stage of analysis and not re-introduced.

Normalisation
Eight normalisation techniques were applied to the
whole dataset, as detailed in Table 1 with each method
evaluating the same samples. The probe subset chosen
for each analysis was selected following the instructions
of each individual normalisation package, which had dif-
ferent requirements. This dictated whether normalisa-
tion methods were compatible and could be used in
conjunction.
Data are presented for each method except RUV, for

which the results were not resolvable using the data gen-
erated in this study. These methods involve various de-
grees of type I and II probe scaling to account for
underlying technical differences between the probe types,
background and dye bias correction and initial between
array batch correction. Depending on the normalisation
method, data was either used in the red/green signal for-
mat (RGset), converted into methylated and unmethylated
values (MethylSet) or converted to β values by the func-
tion β =M/(M +U + 100), where M is the methylated

(See figure on previous page.)
Fig. 1 Selected pedigree clusters from four families from the Tasmanian Familial Prostate Cancer study. Four clusters were chosen from family 9
(a), two from family 11 (b), four from family 22 (c) and five from family 72 (d). Circles represent women and squares men, with individuals affected
by prostate cancer filled in black, those unaffected unfilled and individuals affected by other cancers quarter filled. Samples interrogated on the 450k array are
indicated by a red arrow head. Replicate samples are indicated by square brackets around the sample name, while the batch is indicated underneath the
sample name. Orange stars indicate samples for which good-quality Omni2.5 genotype and 450k methylation data were available

Table 1 Normalisation methods tested. The table includes a
brief description of each method, the relevant R package and
reference for further information

Normalisation method Package Reference

Quantile normalisation
The distributions of probe intensities for
different samples are made identical. Often
used in microarray analysis.

lumi [33]

Stratified quantile normalisation
Probes are stratified by genomic region then
quantile normalised with sex chromosomes
normalised separately when male and female
samples are present. No background
correction, zeros removed by outlier
function. Not recommended for cancer-
normal comparisons or other groups with
global differences.

minfi [15]

Beta-mixture quantile dilation (BMIQ)
Adjusts type II probes to type I distribution.
Recommended for all datasets.

ChAMP [27]

Subset-quantile within array normalisation
(SWAN)
A quantile distribution is created using a
subset of probes, with subsetting based on
the number of CpGs in the probe body.
Separate subsets are created for type I and II
probes. The remaining probes are then
adjusted to the subsets.

minfi [34]

Functional normalisation (FunNorm)
Uses control probes to remove unwanted
technical variation. Also diminishes batch
effects in some datasets. Suitable for use in
cancer-normal studies or where global
methylation changes occur.

minfi [29]

Dasen
Background adjustment and between array
normalisation are performed separately on
type I and II probes.

wateRmelon [20]

Noob
Uses type I probe design to measure non-
specific fluorescence in the opposite colour
channel.

minfi [35]

Remove unwanted variation (RUV)
Previously used with microarray data to
normalise via negative control genes.
Requires distinct groups such as cancer-
normal to normalise on.

RUVnormalize [36]

Batch correction: ComBat
Adjusts for known or unknown batches
using an empirical Bayesian framework.

sva [19]
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signal and U unmethylated. In some normalisation
methods, the offset of 100 is included to regularise scores
when both methylated and unmethylated values are very
low. While the β value is more biologically intuitive (it
ranges from 0 to 1 indicating the proportion of methyla-
tion at that site for the population of cells analysed), it suf-
fers from severe heteroskedasticity at very high or low
values [18]. Logit transforming to an M value removes this
unequal variance. Thus wherever possible, calculations in

this study have been performed on the M values and
transformed back to β values if required for biological in-
terpretation. Eight performance metrics were then used to
compare methods and determine the optimal normalisa-
tion approach for familial datasets. Visual tools such as
density and MDS plots and unsupervised hierarchical
clustering were used to compare the various methods be-
tween all samples and particularly replicate samples. See
Table 2 for a description of each metric.

Table 2 Qualitative and Quantitative metrics used to assess normalisation efficacy. The table includes a brief description of each
metric and which figures describe the results for that method

Method Description Figure

1 Density plot: all samples Bimodal distribution of Beta values as methylated and unmethylated
signals. Each sample is represented by a single line. A batch effect
is indicated when samples performed in the same batch have
a similar distribution.

Fig. 2a, c, e
Additional file 5: Figure S4

Density plot: three groups of
replicate samples

Bimodal distribution of Beta values as methylated and unmethylated
signals. Samples are coloured by replicate group. As each replicate
group contain the same biological information, differences in sample
distribution within groups indicate technical bias.

Additional file 3: Figure S2 (A, C, E)

Density plot: probe I and II
distribution

Bimodal distribution of Beta values as methylated and unmethylated
signals separated by Infinium I and II probe types. Provides information
about probe normalisation which is required for Infinium I and II signals
to be combined in the same analysis.

Fig. 2b, d, f

2 MDS plot: all samples Multidimensional scaling plots show a 2D projection of distances
between samples. For these plots the 1000 most variable sites have
been selected as they are the most biologically relevant for this type
of analysis. Samples cluster by similarity and as such batch effects and
familial clustering can be clearly discerned.

Fig. 3
Additional file 8: Figure S5

MDS plot: three groups of
replicate samples

1000 most variable sites are again selected, with samples coloured
by replicate group. As each replicate group contains the same biological
information, close within group clustering indicates minimal technical
bias while distantly clustered replicate samples indicate heightened
technical bias.

Additional file 3: Figure S2 (B, D, F)

3 ANOVA of the first principal
component for MDS plots

Provides a quantitative value for MDS plots. A lower p value indicates the
clustering is more significantly explained by batch. Ie. a larger p value after
normalisation indicates a reduction in batch effect.

p values displayed on Fig. 3

4 Median absolute differences
between replicate samples

For each replicate group the median M value (log of Beta values) across
all probes was calculated and the absolute difference compared between
replicate groups after various normalisation methods. A smaller absolute
difference indicates improved normalisation as more technical bias
is removed.

Additional file 6: Table S2

5 Imprinted regions:
density plots

227 probes mapping known imprinted hemi-methylated regions can
be used as a standard to measure changes in methylation levels after
normalisation. Density plots have a single distribution peak since there
is roughly 50 % methylation at these sites.

Additional file 4: Figure S3

Differentially methylated region
standard error (DMRSE)

The DMRSE measures how each sample varies from the expected
50 % methylation. Smaller error/deviation from 50 % indicates less
technical bias.

Additional file 1: Table S1
Additional file 4: Figure S3 (A, C, E)

6 Cluster dendrogram Another tool to measure clustering by sample similarity. Samples are
labelled by batch with batch effects clearly seen before normalisation
and diminished after. Red stars indicate replicate samples that are
expected to cluster most closely.

Additional file 2: Figure S1

7 meQTL association Association between methylation at cg17749961 and SNPs in a
2-Mb window.
A significant association is maintained after normalisation and
batch correction.

Additional file 5: Figure S4

8 Epigenome-wide methylation
association with age

QQ plots depicting the association between epigenome-wide
methylation and age.
Plots are performed on raw, normalised and batch-corrected data.

Additional file 9: Figure S6
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Batch correction
Since an obvious batch effect remained after normalisa-
tion, the ComBat function from the sva package [19] was
used to further remove technical bias introduced by inter-
rogating samples on the 450k array in different batches.

Genotype data
DNA from a subset of samples was extracted as described
above and interrogated on Illumina’s HumanOmni2.5-8
Beadchip according to the manufacturer’s instructions.
Quality control was performed with Illumina’s GenomeS-
tudio Software.

Statistical analysis
Eight methods, as described in Table 2, were used to com-
pare the efficacy of the various normalisation methods. In
addition to density and MDS plots, the ANOVA test and
quantitative measures, mean absolute difference between
replicates and the differentially methylated region stand-
ard error (DMRSE) measures were used. Additionally, two
approaches were taken to test the underlying biological in-
formation was preserved between samples; namely, an as-
sociation analysis between genotype and methylation at a
previously identified meQTL and an epigenome-wide as-
sociation analysis with age.
For a qualitative measure to examine effectiveness of be-

tween array normalisation, hierarchical cluster dendrograms
were generated using all probes with the hclust function
using the Euclidean distance between from the default R
package, stats. Cluster dendrograms group samples by dif-
ferences, with similar samples grouping together.
MDS plots were clustered by batch or family; then,

analysis of variance was performed on the first principal
component from a PCA on the 1000 most variable beta
values using the aov and prcomp functions in the stats
core R package. p values are displayed on the MDS plots
in Fig. 2. A lower p value indicates that clustering is
more significantly explained by batch or family, with a
larger p value after normalisation indicating a reduction
in technical bias.
Six replicate sample pairs were used to quantitatively

assess the performance of the normalisation methods, as
one sample from each pair was interrogated on a separ-
ate batch. The median absolute difference between each
pair was calculated by first taking the absolute difference
at each probe between the two replicates and then tak-
ing the median of the differences. A lower median differ-
ence indicates less technical bias, as the samples are
biologically identical.
There are 227 known imprinted regions (iDMRs) on

the 450k array, and these have previously been employed
in analysis packages such as wateRmelon as a quality
control metric [20]. These regions are expected to have
allele-specific methylation and a β value of 0.5, and

therefore deviation from this value can be examined as a
standard error-type measure, denoted DMRSE in the
wateRmelon package. The dmrse_row function was used
to measure dispersion of methylation between samples
for each normalisation method. A lower value indicates
methylation values are more tightly aligned with ex-
pected methylation levels.
While evidence of clustering according to familial rela-

tionships following normalisation correction provides
some confidence that biological integrity of the data is
preserved, to further test the preservation of biologically
relevant information, we examined detectable associa-
tions of known meQTLs in our data. Shoemaker and
colleagues have previously identified 736 CpG sites to be
associated with SNPs in cis [21]. Here, we examined
cg17749961, one of the ten most significant hits re-
ported by Shoemaker et al., in the 22 individuals, for
whom both methylation and genotyping SNP data was
available. Association analysis was performed between
this probe site and SNPs located within a 2-Mb window
adjacent to this site, using linear regression, and assum-
ing an additive disease model. Relatedness was adjusted
for by fitting a linear mixed model on the methylation of
cg17749961 and a kinship matrix, determined by the
identity-by-state function in the GenABEL R package
[22]. The residuals from this model were then used as
the outcome variable in the linear regression model with
SNPs drawn from a 370 K Illumina array. Bonferroni
correction was used to correct for multiple testing error.
To further demonstrate biological information is pre-

served after normalisation and batch correction, the as-
sociation between age and epigenome-wide methylation
was compared for raw data, stratified QN normalised
data and ComBat-corrected stratified QN data. Linear
regression models were fitted with age as the explana-
tory variable and methylation as the outcome variable,
with −log10 p values of the models plotted against
−log10 expected p values as QQ plots.

Results
Evaluation of normalisation methods to address technical
bias
Data generated from whole genome methylation analysis
employing array technology generates an output necessi-
tating application of normalisation methods to correct
for possible bias arising from within and between array
variation. Herein eight different methodologies (Table 1)
were examined and visual and quantitative metrics were
employed to evaluate their comparative performance.
High-quality methylation data was generated for 45
unique and five replicate samples from four families
using the 450k array in three separate batches (see Fig. 1
for further details). A minimum of one sample in each
of the three batches was replicated, providing five
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technical replicates in addition to the three unique sam-
ples on each batch, to permit generation of data from
analysis of the same biological sample. In data lacking
technical bias, replicate samples would be expected to
generate the most similar methylation profiles, while
methylation profiles generated from closely related

individuals should also cluster tightly compared to dis-
tantly or unrelated individuals. However, if technical bias
such as a batch effect has been introduced, this distorts
the profiles and samples no longer cluster by biological
similarity but instead the most evident grouping would
be by batch.

A B

C D

E F

Fig. 2 Multidimensional scaling plots of M values by batch and family. Multidimensional scaling plots for raw (a, b), stratified QN (c, d) and
ComBat stratified QN (e, f) M values. For each plot, the 1000 most variable probes were selected. In a, c and e, numbers represent batches and
are coloured accordingly, with clustering by batch clearly seen in a, to a lesser extent in c and removed in e. In b, d and f, numbers represent
family groups and are coloured accordingly with the clearest clustering present in f after the batch effect has been removed. p values are from an
ANOVA test for significance of batch (a, c and e) or family (b, d and f) on the first principal component from a PCA on the beta values
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Batch effect (between array variation) was examined
and the density distribution plot (Fig. 3a) of the raw β
values from all three batches reveals significant bias. The
greatest contributor to batch effect was the date on

which the BeadChips were processed, with bisulphite
conversion performed on the same day as BeadChip pro-
cessing. Employing a stratified QN (Fig. 3b) and/or
ComBat normalisation (Fig. 3c) dramatically reduced

Fig. 3 Density distribution of β values. Density plot and probe distribution of β values for raw pre-normalisation data (a, b), after stratified QN (c, d)
and with stratified QN and ComBat batch correction (e, f). For density plots (a, c, e), a single line represents a sample, with samples coloured by batch. A
clear batch effect is present in a, lessened in c and removed in e. For the probe distribution (b, d, f), one sample has been chosen with the red dashed
line indicating type I probe distribution, the blue dashed line type II and the solid black line the combined probe distribution. The probe type distribution
is also improved after normalisation, as types I and II are more closely aligned in d and f compared to b
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this observed effect. For between array biases, Fig. 3
shows the density distribution of β values for raw data
samples (A), after stratified QN (C) and after stratified
QN combined with ComBat correction (E). This is par-
ticularly evident when comparing the β value density
plots of three groups of replicate samples (Additional file 2:
Figure S1A, C and E).
Stratified QN also performs best at removing within

array biases as the distribution of probe I and II types
become more uniform (Fig. 3b, d, f ). This bias is driven
by the differing biochemistry of the probes, with type I
employing a single colour channel with a different bead
for methylated and unmethylated DNA and type II con-
taining one bead in two colour channels. The underlying
biology targeted by each probe is confounded by this
technical bias, as type I measures CpG-dense regions
(such as islands) while type II can only tolerate three
CpGs in the length of the probe. As such, type I interro-
gates a greater proportion of unmethylated to methyl-
ated DNA, while type II performs the opposite.
Removing the probe bias is imperative for accurate com-
parisons between these probe types when pooling probe
I and II data, which is necessary for accurate genome-
wide methylation information of both CpG rich and
poor regions.
In contrast, the density plots of β values for other nor-

malisation (SWAN and FunNorm) methods do not im-
prove to the same degree and in some cases greater
variation is introduced (Additional file 3: Figure S2C–G).
For example, a worsening of the batch effect is seen for
SWAN normalisation (Additional file 3: Figure S2D), com-
pared to raw data (Additional file 2: Figure S1A) and the
distribution of methylated and unmethylated signals is
inverted following FunNorm (Additional file 3: Figure S2E).
The second approach employed to examine the per-

formance of the normalisation methods was to generate
multidimensional scaling (MDS) plots. These permitted
the visualisation of the two-dimensional projection of
the differences between samples. For each plot, the 1000
most variable probes were selected, as these represent
the most pertinent biological differences between sam-
ples. M values were used as opposed to β values, the lat-
ter of which have been shown to suffer severe
heteroskedasticity at very high and low values [18].
Again, a strong batch effect is observed in the raw data
(Fig. 2a) as expected and this is removed or significantly
reduced following normalisation using stratified QN
(Fig. 2c) and ComBat (Fig. 2e) corrected data. The
strong batch effect masks the familial relationships in
the raw data; however, following the correction, cluster-
ing according to kinship is clearly evident. Similarly, the
replicate samples (in Additional file 2: Figure S1), which
group disparately in the raw data (A, B), co-locate or
cluster tightly following stratified QN (C, D) and

ComBat (E, F). The MDS plots for each normalisation
method (Additional file 4: Figure S3) also show stratified
QN followed by ComBat to be the most effective
method for removing clustering by batch.
This efficacy of normalisation methods in reducing

clustering of samples by batch was assessed quantita-
tively by ANOVA to test the effect of batch on the first
principal component. The ANOVA was repeated for
each normalisation method, using M values from the top
1000 most variable sites. Consistent with the visualised
MDS plot, the p value was highly significant demonstrat-
ing the significant association of batch in M value in raw
and stratified QN data (p < 0.01) but was not significant
following correction using ComBat (p = 0.97).
For a final qualitative measure to examine effective-

ness of between array normalisation, hierarchical cluster
dendrograms were generated. Application of stratified
QN and ComBat (Additional file 5: Figure S4) again
demonstrated superior normalisation when visualised by
this method; with raw data samples clearly clustering
into three distinct groups (Additional file 5: Figure S4A),
stratified QN resulting in improved clustering (B) while
ComBat batch correction following stratified QN com-
pletely removes the batch effect (C) permitting the de-
sired outcome with related individuals clustering
together in familial groups. Furthermore, replicate sam-
ples cluster more clearly after ComBat normalisation (C,
red stars) indicating removal of batch effects without
perturbing biologically relevant information.
To quantitatively assess the performance of these nor-

malisation methods, the median absolute difference in
M values was calculated for six replicate pairs, with one
sample from each pair interrogated on a separate batch.
With the exception of one pair, stratified QN with Com-
Bat was found to have the lowest absolute median differ-
ence between technical replicate pairs, corresponding to
the highest correlation between replicate pairs (see Add-
itional file 6: Table S2). While others such as SWAN in-
troduced an increase in the error rate relative to the raw
data values.
Finally, standard error measures for imprinted re-

gions were calculated and compared between methods
as described in the statistical analysis section of the
methods. Smaller values indicate lower errors and
more reliable data. A DMRSE of 0.0048 was calcu-
lated for the raw data, with this value increasing with
following normalisations using QN (0.0052), noob
(0.0052) and functional normalisation (0.0056). The
remaining normalisation methods generated reduced
DMSRE values with stratified QN with ComBat batch
correction again producing the smallest error values
at 0.0012. See Additional file 7: Table S3 for a full list
of DMRSE values and Additional file 8: Figure S5 for
the density plots of these probes.
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Increased power for determining true biological
associations
Critical to any normalisation method is the maintenance
of true biological differences between samples. As de-
scribed in the statistical analysis section of the methods,
a previously identified meQTL was selected to perform
association analysis with prior to and following normal-
isation. Following Bonferroni correction, a significant asso-
ciation was detected in the raw data (Fig. 4a, p value =
7.29e-06), increasing markedly after stratified QN (Fig. 4b,

p value = 3.53e-07). After ComBat (C), there was a drop in
significance compared to stratified QN and raw, yet the p
value was still highly significant (p value = 1.05e-05) indicat-
ing preservation of the biological information of interest.
The drop in significance after batch correction may be ex-
plained as confounding between batch and family, which
is removed after ComBat. Ideally, samples would be
randomised across experiments; however, the nature of fa-
milial studies is such that this is not always possible, as
samples are collected at different time points, often across
generations. To maintain maximum power, the inclusion
of all available samples is essential and, therefore, data
processing methods capable of dealing with non-ideal
datasets are required.
Epigenome-wide methylation has long been shown to

drift with age, specifically global hypomethylation and
region-specific hypermethylation are observed [23]. The
association between age and epigenome-wide methylation
was compared for raw data, stratified QN normalised data
and ComBat-corrected stratified QN data to demonstrate
that this biological information was preserved after nor-
malisation and batch correction. After normalisation
(Additional file 9: Figure S6B), there are many more sig-
nificant associations with age than in the raw data (Add-
itional file 9: Figure S6A), indicated by a greater number
of points above the expected line and a much greater
Lambda value (median of observed −log10 p values di-
vided by the median of expected −log10 p values), with an
increase from 0.838 to 1.402. There is another small in-
crease in significance after ComBat batch correction
(Additional file 9: Figure S6C) to 1.448, again indicating
improved strength in testing biological associations.

Discussion
There is currently a plethora of pre-processing methods
and R packages available for analysis of 450k array data,
and comprehensive review articles evaluating their utility
have been published [24–26]. The majority of these are
designed for specific types of sample sets, particularly
those comprised of two distinct groups such as case–
control or cancer-normal with substantial methylation
differences between the two groups. For different data-
sets, such as those from familial studies, which include
complex pedigree structures instead of two distinct
groups, these methods may be ineffective or worse, det-
rimental in that they introduce technical bias, as identi-
fied with selected methods in this paper. To correctly
normalise data, it is critical to choose the most appropri-
ate method; yet there has been little focus on developing
appropriate processing pipelines for familial methylation
array analysis, despite the current interest in inherited
drivers of methylation patterns. Further barriers are the
various format requirements and the lack of integration
to provide a seamless processing pipeline. Here, we have

Fig. 4 Association plot between SNPs and methylation. Association
between methylation at cg17749961 and SNPs in a 2-Mb window.
There is a significant association in the raw data (a, p value = 7.29e-06)
which increases after stratified QN (b, p value = 3.53e-07) and drops
slightly after ComBat correction (c, p value = 1.05e-05)
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tested eight different methods and presented a prelimin-
ary pre-processing pipeline for familial data (depicted in
Fig. 5). This pipeline creates a template to guide and ex-
pedite the analysis of familial datasets, particularly gen-
erated using the 450k array data. Sample size (n = 50) is
a limitation of this study, therefore additional familial
studies would aid in validating the pipeline.
A fundamental requirement for processing methyla-

tion array data is effective adjustment for technical bias,
including batch effects and adjusting for the two-probe
biochemistry of the array. Batch effects may be intro-
duced through bisulphite conversion or downstream
processing or variation in array quality. Various methods

have been developed to adjust for these effects, mostly
involving variations in quantile normalisation, a tech-
nique commonly used in analysis of microarray datasets
to align two different distributions so they result in iden-
tical statistical properties [26–29].
BMIQ and functional normalisation have been advo-

cated as the preferred methods for cancer studies as they
are more specific in design than quantile normalisation
and have been shown to be more effective at removing
unwanted technical bias [27, 29]. However, these
methods work most effectively on case–control or
tumour-normal datasets respectively and to the best of
our knowledge, optimal pre-processing methods for

Fig. 5 Pipeline for familial data processed on the 450k array. Each box indicates a stage of the pipeline including the R package and the data
format required/created in italics
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familial-based data, such as performed here, have not
been reported. Normalisation methods necessarily make
assumptions about data, with the accuracy of these as-
sumptions varying for different datasets. Thus, the same
normalisation method can have a vastly different effect
on different types of data and conversely, as shown here,
different normalisation methods can have vastly different
effects on the same data. It is therefore a key to select
the right normalisation method for the dataset of inter-
est. Of the eight methods tested, stratified QN was con-
sistently identified as the best normalisation method
across all visual and quantitative evaluation metrics for
use in this context. The principle underpinning this nor-
malisation is stratification by genomic region and is thus
ideal for data where the differences between adjacent
genomic loci are maintained. This is in contrast to
tumour-normal tissue datasets where there are large
blocks of dramatically altered methylation patterns
throughout the tumour genome [30]. Again not surpris-
ingly, packages that utilise differences in negative control
methylation patterns between cases and controls such as
FunNorm were not found to be effective on familial
datasets where no ‘normal’ control is available.
The inherent strengths of familial data could be further

exploited by a normalisation technique that accounts for
known relationships between samples. Such a method
could draw on pedigree information to ensure normalisa-
tion has effectively removed technical bias while maintain-
ing known biologically relevant information such as
relatedness and familial clustering by methylation. A diag-
nostic metric accounting for a known relationship could
be used to test the efficacy of pre-processing methods in a
similar manner to the standard error associated with
iDMRs from the wateRmelon package.
It may also be of importance for researchers to con-

sider the undesirable effect of non-specific binding and
the presence of SNPs in the probe body. A study from
the Weksberg lab found around 6 % of probes on the
array cross-hybridised to non-targeted genomic regions
[31]. They have catalogued these probes and suggest re-
moving them prior to downstream analysis. Their study
also demonstrates that SNPs in the probe body can
interfere with probe binding, altering the methylation
signal at around 14 % of sites. Illumina recommends all
probes containing a SNP within 10 bp of the interro-
gated CpG site ought to be removed, while others sug-
gest the ‘probe effect’ continues to the entire 50-bp
length of the probe [31, 32]. The removal of all such
probes would be undesirable for studies examining the
effect of genotype on methylation, as evidence suggests
the vast majority of these SNPs occur either at the CpG
site itself (meSNPs) or close by [32].
To overcome this issue, Zhi and colleagues suggest an

elegant approach to examine the effect of meSNPs on

methylation without the potential bias introduced by
SNPs altering probe binding [32]. The type II probes
contain only one bead type for both methylated and
unmethylated sites of interest, with the methylation sta-
tus of the loci designated by the addition of a different
coloured nucleotide (red or green) at the single base ex-
tension. As type II probes terminate one base pair before
the cytosine of the CpG dinucleotide, a mutation at the
cytosine itself would not affect probe binding. As such,
probes without SNPs in the probe body but present at
the single base extension can reliably be used to examine
the effect of meSNPs on methylation, a very useful tech-
nique for examining the effect of inherited variation on
methylation patterns.

Conclusions
Preservation of the biological integrity of information
from methylation array data is imperative and requires ap-
propriate pre-processing to minimise technical errors,
which will be dictated by the type of data. Stratified QN in
combination with ComBat batch correction performed
the best of those methods tested for normalising familial
data interrogated on 450k array. This method was ob-
served to remove technical biases while maintaining bio-
logically relevant information; allowing true biological
differences and similarities to inform our search for the
role of methylation patterns driving disease processes. The
workflow presented in this paper (highlighted in Fig. 5)
provides a streamlined methodology to pre-process famil-
ial data and may also be instructive for other datasets in-
cluding longitudinal studies where the same individuals
are repeatedly measured over time.

Additional files

Additional file 1: Table S1. Clinical data and sample extraction and
storage information. (DOCX 20 kb)

Additional file 2: Figure S1. Hierarchical cluster dendrogram for raw,
stratified QN and ComBat-corrected data. Samples are clustered by
similarity and labelled by batch. Raw data samples (A) clearly cluster into
three distinct batches while stratified QN (B) partially adjusts clustering by
batch and stratified QN combined with ComBat considerably diminishes
the batch effect (C). Red stars indicate replicate samples which cluster
more clearly in (C), indicating removal of batch effects. (PDF 449 kb)

Additional file 3: Figure S2. Density distribution of β values and
multidimensional scaling plots of M values for replicate samples. Density
(A, C, E) and MDS (B, D, F) plots of three replicate sample groups for raw
(A, B), stratified QN (C, D) and stratified QN ComBat-corrected (E, F) data.
For all plots, samples are coloured by batch 1–3 as labelled. Density plots
show the distribution of β values, which become more uniform after stratified
QN (C) and stratified QN plus ComBat (E). MDS plots show clustering of the
1000 most variable sites by M value, highlighting the decreasing variance
between replicate groups after stratified QN and ComBat (F). (PDF 7387 kb)

Additional file 4: Figure S3. Density distribution of β values for
imprinted differentially methylated regions. Density plots for raw (A),
stratified QN (C) and stratified QN with ComBat (E) for 227 probes
mapping known imprinted differentially methylated regions. Each line
represents a sample, with samples coloured by batch. As methylation at
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these loci is allele-specific there is a single density distribution rather than
the bimodal distribution seen in Additional file 3: Figure S2. The standard
error-type measure (DMRSE) diminishes with Stratified QN and ComBat,
indicating more reliable data. B, D and F show the Infinium I and II probe
distributions, which becomes more uniform with stratified QN and
ComBat. (PDF 4133 kb)

Additional file 5: Figure S4. Density distribution of β values for all
normalisation methods. Density plots of β values for various normalisation
methods: raw pre-normalisation data (A), quantile normalisation (B), BMIQ
(C), SWAN (D), FunNorm (E), Dasen (F), noob (G), stratified QN (H), raw with
ComBat correction (I) and stratified QN with ComBat correction (J). A single
line represents a sample with samples coloured by batch. The batch effect
present in the raw data (A) remains after the majority of normalisation
methods with Dasen (F) and stratified QN (H) showing the most uniform
distributions. Some methods such as quantile normalisation (B) and
FunNorm (E) flip the methylated and unmethylated signal distribution.
ComBat is effective at removing batch effects in both raw (I) and normalised
(J) data, with the best outcome seen with stratified QN with ComBat batch
correction (J). (PDF 260 kb)

Additional file 6: Table S2. Median absolute difference between
technical replicate pairs. (DOCX 14 kb)

Additional file 7: Table S3. Standard error measures for imprinted
differentially methylated regions for the various normalisation methods.
(DOCX 13 kb)

Additional file 8: Figure S5. Multidimensional scaling plots of M values
by batch for all normalisation methods. Multidimensional scaling plots for
raw (A), quantile normalisation (B), BMIQ (C), SWAN (D), FunNorm (E),
Dasen (F), noob (G), stratified QN (H), raw with ComBat correction (I) and
stratified QN with ComBat correction (J). For each plot, the 1000 most
variable probes were selected. Batches are numbered and coloured, with
clustering by batch clearly seen in the raw data (A) and removed to
varying degrees with different normalisation methods. ComBat correction
following stratified QN provides optimal batch correction removal as the
samples no longer cluster according to batch. (PDF 559 kb)

Additional file 9: Figure S6. QQ plots for the association of age and
epigenome-wide methylation. QQ plots with −log10 p values from the
linear model of methylation and age plotted against expected −log10
p values. Raw data (A), data normalised by stratified QN (B) and data
normalised by stratified QN then corrected with ComBat (C). (PDF 85 kb)
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