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Abstract

Background: DNA methylation profiling of heterogeneous head and neck squamous cell carcinoma (HNSCC)
cohorts has been reported to predict patient outcome. We investigated if a prognostic DNA methylation profile
could be found in tumour tissue from a single uniform subsite, the oral tongue. The methylation status of 109
comprehensively annotated oral tongue squamous cell carcinoma (OTSCC) formalin-fixed paraffin-embedded (FFPE)
samples from a single institution were examined with the Illumina HumanMethylation450K (HM450K) array. Data
pre-processing, quality control and analysis were performed using R packages. Probes mapping to SNPs, sex
chromosomes and unreliable probes were accounted for prior to downstream analyses. The relationship between
methylation and patient survival was examined using both agnostic approaches and feature selection. The cohort
was enlarged by incorporation of 331 The Cancer Genome Atlas (TCGA) HNSCC samples, which included 91 TCGA
OTSCC samples with HM450K and survival data available.

Results: Given the use of FFPE-derived DNA, we defined different cohorts for separate analyses. Overall, similar
results were found between cohorts. With an unsupervised approach, no distinct hypermethylated group of
samples was identified and nor was a prognostic methylation profile identified. The use of multiple downstream
feature selection approaches, including a linear models for microarray data (LIMMA), centroid feature selection
(CFS), and recursive feature elimination (RFE) support vector machines, similarly failed to identify a significant
methylation signature informative for patient prognosis or any clinicopathological data available. Furthermore,
we were unable to confirm the prognostic methylation profiles or specific prognostic loci reported within the
literature for HNSCC.

Conclusions: With genome-scale assessment of DNA methylation using HM450K in one of the largest OTSCC
cohorts to date, we were unable to identify a hypermethylated group of tumours or a prognostic methylation
signature. This suggests that either DNA methylation in isolation is not likely to be of prognostic value or larger
cohorts are required to identify such a biomarker for OTSCC.
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Background
One of the characteristic epigenetic hallmarks of cancer
is aberrant DNA methylation, the presence of a 5′-me-
thyl group on cytosine bases in the context of CpG di-
nucleotides. Across numerous malignancies, both
aberrant global hypomethylation and promoter hyper-
methylation of numerous loci have been reported to pro-
mote carcinogenesis by increasing genomic instability
and by altering gene expression [1–4]. In cancer, epimu-
tations including promoter DNA hypermethylation, are
known to occur more frequently than genomic abnor-
malities [5], and thus form an attractive target for bio-
marker discovery. Furthermore, the identification of
CpG island methylator phenotypes (CIMP) in glio-
blastomas and colorectal carcinomas have provided
proof-of-principle that methylation profiling could
provide a means to identify subsets of epigenetically
and genetically distinct diseases that are informative
for patient outcome [6, 7].
In head and neck squamous cell carcinomas

(HNSCC), both locus-specific methylation and methy-
lation profiles identified with a variety of methods
have been reported to be both biologically and prog-
nostically significant [8–14]. However, the clinical
utility of these reported hypermethylated loci has
been limited by the use of heterogeneous HNSCC co-
horts and is further complicated by the diversity of
non-reproduced loci identified by these reports [15].
Little is understood about the significance of methyla-
tion according to individual head and neck subsites,
including oral tongue squamous cell carcinomas
(OTSCC), which have the worst overall survival for
early-stage disease [16, 17]. Beyond the subset of
human papillomavirus-induced oropharyngeal carcin-
omas [18, 19], no clinically impacting molecular
markers are utilised routinely for all other head and
neck cancers. Therefore, the burden of need exists for
the identification of clinically relevant biomarkers to
assist with improved disease stratification and treat-
ment allocation.
The Illumina HumanMethylation450K (HM450K) array

provides a quantitative high throughput platform for the
genome-scale assessment of methylation [20]. This array
interrogates a total of 482,421 CpG sites located predom-
inantly in promoter regions, but crucially also includes
coverage of CpG island (CGI) shores which contain the
most differentially methylated regions in cancer [2, 21].
Thus, in comparison to a candidate gene approach, CpG
sites can be simultaneously interrogated for the purpose
of identifying potentially informative specific loci or
methylation signatures.
We sought to identify a clinically relevant methylation

profile in a large cohort of comprehensively annotated
OTSCC with the HM450K array. In addition,

methylation data from the heterogeneous cohort of
HNSCC samples generated by The Cancer Genome
Atlas (TCGA; http://cancergenome.nih.gov/) were ana-
lysed, which included a similar sized subset of OTSCC.

Results
Patient samples
The OTSCC patient cohort from the Peter MacCallum
Cancer Centre has been previously described (Table 1)
[15, 22]. Briefly, the cohort consisted of patients with in-
vasive OTSCC, with comprehensive clinicopathological
details and pre-treatment archival specimen blocks. For
this study, 109/131 samples had sufficient DNA for ana-
lysis on the HM450K array.
Level 1 raw IDAT files were downloaded from the

TCGA data portal (https://tcga-data.nci.nih.gov) on 24
June, 2013, and the clinical annotation was downloaded
on 22 July 2013. The data we used was a superset of data
used in the published TCGA head and neck cancer ana-
lysis [23]. For our analyses, the TCGA HNSCC cohort
consisted of 373 patient samples with HM450K data
available. Only limited clinical annotation was available
for these TCGA samples, thus only the variables of
overall survival status and tumour-node-metastases
(TNM) stage were used for downstream analyses. Pa-
tients with metastatic disease or those with an un-
known M category (whereby the M category indicates
the presence of metastatic disease) were excluded
from further analysis, leaving a cohort of 331 TCGA
HNSCC samples, which included 91 OTSCC. The
samples used are listed according to anatomical sub-
site in Additional file 1: Table S1. Additional file 2
lists the downloaded TCGA sample IDs, the samples
included for analysis and those also analysed in the
TCGA head and neck cancer analysis [23].
The data was grouped for interrogation in three ways.

The first group consisted of 109 OTSCC samples proc-
essed in one batch from the Peter MacCallum Cancer
Centre (“OTSCC cohort”). The second group combined
the pre-processed OTSCC cohort with the 91 OTSCC
samples from the TCGA database, which we termed the
“combined OTSCC cohort”. The final analysis was con-
ducted on the “entire cohort” of samples, comprising
109 OTSCC and all 331 TCGA HNSCC samples (total
n = 440).

Data analyses
Bioinformatics processing of the raw IDAT files was
performed utilising R statistical software (version 3.0.1,
http://cran.r-project.org/). Currently, no consensus guide-
lines exist on the optimal method of pre-processing
HM450K or the optimal method of feature selection.
Given the variety of methods accounting for the same
technical biases without clear indication of superiority
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between the techniques, for the pre-processing and subse-
quent downstream analyses described below, each method
was considered of similar quality. The workflow for the
bioinformatics analysis is summarised in Fig. 1, and the
methods of analysis for each of the cohorts is summarised
in Additional file 1: Table S2, according to the R software
library packages utilised.

Data pre-processing, filtering and normalisation of data
Due to the different pre-processing criteria and strin-
gency criteria utilised according to each R package, dif-
ferent subgroups from each cohort were defined and
were analysed separately. Details of the different criteria
utilised according to each library is outlined in the
“Methods” section and in Additional file 1: Table S2.
However, regardless of what pre-processing criteria were
utilised, the size of the refined cohort examined or the
combinations of cohorts analysed, results for the down-
stream analyses were similar.

Downstream processing and feature selection
Unsupervised feature selection
After quality control and pre-processing of 450K data
using Minfi and Methylumi, 83/109 samples from the
OTSCC cohort, 174 (83 OTSCC cohort plus 91 TCGA
OTSCC) from the combined cohort and a total of 414
samples for the entire cohort were taken through to ana-
lysis. A bimodal distribution of β values for the OTSCC
cohort and combined OTSCC cohort was observed indi-
cating the absence of a group of samples with promoter
hypermethylation (Fig. 2). Similarly, hierarchical cluster-
ing, multidimensional scaling (MDS) plots and principal
components analysis did not clearly identify a subgroup
of differentially methylated samples according to pheno-
typic data (Additional file 1: Figure S1). These findings
were again confirmed using another technique in
RnBeads to look at the clustering of data, mean silhou-
ette values. Figure 3 demonstrates the poor classification
of samples using this method and the numerous small
clusters identifiable throughout the dataset, with little
similarities between them. A silhouette value of “1”
indicates good classification of the observation into
the cluster, and a value of “0” indicates that the ob-
servation lies independent of the groupings, whilst a
negative value indicates poor classification and likely
incorrect grouping (http://stat.ethz.ch/R-manual/R-dev
el/library/cluster/html/silhouette.html) [24]. Given that
increasing the number of clusters makes the similar-
ities within the cluster worse (approaches “0”), this
suggests that the clustering of samples is based on
very subtle and small differences in methylation.
Therefore, despite increasing the OTSCC cohort size

by inclusion of the 91 TCGA OTSCC samples to create
a combined cohort of 174 OTSCC samples, DNA

Table 1 Patient and tumour characteristics [22]

Number Percent

Gender

Female 48 37

Male 83 63

Age at diagnosis (in years)

Mean 57.8

Standard deviation 15.1

Median 60

Range 21–93

<40 years 15 11

40–49 years 26 20

50–59 years 24 18

60–69 years 32 24

70–79 years 27 21

80+ years 7 5

Stage

1 37 28

2 37 28

3 15 11

4 42 32

T category

1 43 33

2 51 39

3 14 11

4 23 18

N category

0 83 63

1 14 11

2 34 26

Smoking history

No/never 39 30

Yes 88 67

Unknown 4

Alcohol >20 g/day

No/never/social 81 62

Past or current 46 35

Unknown 4

ECOG performance status

0 76 58

1 40 31

2 9 7

3 4 3

Unknown 2
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Fig. 1 Workflow for bioinformatics processing of raw data
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Fig. 2 Plot of median beta values of the combined OTSCC cohort. A plot of the median beta values for the combined cohort of 174 OTSCC
samples with outcome data, with the blue line indicating the overall median value for the group. A bimodal distribution is observed, without
evidence of a hypermethylated group of samples
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methylation data did not identify any unique subgroups
according to phenotypic data. Investigating the entire
cohort of 414 heterogeneous HNSCC samples also failed
to demonstrate clear clustering of samples according to
methylation profiles (Additional file 1: Figure S1). This
was not surprising as heterogeneous cohorts of head
and neck samples are likely to demonstrate heteroge-
neous methylation profiles.

Feature selection methods
Utilising a variety of feature selection methods, we
sought to determine if methylation was informative for
patient survival or other clinicopathological variables.
For the OTSCC cohort, the relationship between DNA

methylation and multiple phenotypic variables was in-
vestigated. This included assessment of relationship with
overall survival, smoking history, history of alcohol
excess and age <45 years versus >45 years due to the
recognition of a subpopulation of younger patients
that develop OTSCC in the absence of any risk fac-
tors [25, 26]. Of particular interest was to determine
if tumours with nodal involvement had a differential
methylation profile compared to those without, given that
nodal status (N category) is one of the most reliable clin-
ical risk classifiers of worse prognosis [27]. Analyses inves-
tigating the relationship between DNA methylation and
ECOG performance status, progression-free survival,

disease-specific survival, T category, pathological differen-
tiation status, and gender were also performed.
Based on the clinical annotation available for the

TCGA cohort, the supervised analyses for the combined
OTSCC cohort and the entire cohort only investigated
the association between DNA methylation and overall
survival status, and DNA methylation and TNM staging.

Linear models for microarray data analyses A linear
models for microarray data (LIMMA) framework was
initially utilised to interrogate the pre-processed OTSCC
cohort (n = 83). After correction for multiple testing,
significant associations between DNA methylation and
gender, age and pathological differentiation status were
identified (q values <0.05, Benjamini-Hoechberg method).
These specific variables were investigated further to see if
they were informative for patient survival. Given the small
numbers of samples in the age less than 45 years category
(less than 10 samples), only methylation status according
to gender and differentiation status were investigated for
their impact on patient outcome.
For the analysis according to differentiation status,

there were 25 patients with poorly differentiated tu-
mours compared with 58 well differentiated tumours. Of
these poorly differentiated tumours, 13 patients died.
For the analysis according to gender, there were 57 male
patients and 26 female patients, of which 27 male and
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Fig. 3 Plot of the average silhouette value according to the number of clusters. This was assessed on RnBeads using an average linkage-based
algorithm. The combined cohort demonstrates no distinct clustering according to observed methylation values. A silhouette value of “1” indicates
good classification of the observation into the cluster, a value of “0” indicates that the observation lies independent of the groupings, whilst a
negative value indicates poor classification and likely incorrect grouping
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11 female patients survived. The LIMMA framework
was used to discern if probes that significantly defined a
variable were also associated with patient survival.
However, no significant association between a tu-
mour’s differentiation status stratified according to
differential methylation profiles, and patient survival
was found (q value >0.05). Similarly, no association
was found when analysed according to patient gender
(q value >0.05).
When the combined OTSCC cohort (n = 174) was in-

vestigated with dmpFinder, after correction for multiple
testing, methylation values were found to be uninforma-
tive for survival status and TNM stage. For overall sur-
vival, 28,078 probes had a p value of less than 0.05 but
failed to reach significance (q value >0.05) after correc-
tion for multiple testing. When disease stage was used
as the classifier, 19,472 probes were identified with p
values <0.05, with one probe remaining after correction
for multiple testing. This single probe within a promoter
region corresponded to a SNP (cg17508434, a promoter-
associated CpG to the LMTK2 gene). Please refer to the
“Methods” section for information regarding filtering of
probes. In a separate analysis where filtering of SNP-
associated probes were removed, no informative probes
were identified.
Therefore, these analyses suggested that methylation

values did not inform patient outcome. The small num-
bers of events as described may have impacted these
findings.

Machine learning approaches Machine learning algo-
rithms were also employed for analyses of the data.
These were wrapped into a tool called “Genome tool-
box” (GTB), a custom R library (personal communica-
tion Dr Justin Bedo, IBM) [28, 29]. Initially, the OTSCC
cohort (n = 83) was assessed using centroid feature selec-
tion (CFS) with three-fold cross validation. A perform-
ance of 1.0 represents a 100 % chance of being able to
classify groups according to the nominated variable,
according to the number of methylation probes interro-
gated. A prediction performance of 0.5 represents a pre-
diction capability no better than chance to classify the
variable. Overall, prediction performance was poor and
ranged between 0.5 to 0.7 for classification of patho-
logical differentiation status, history of alcohol excess
and smoking history according to DNA methylation.
The prediction performance utilising other phenotypic
variables was worse. The top eight ranked methylation
probes identified to be informative for overall survival in
the OTSCC cohort (cg141693, cg079784, cg148610,
cg146787, cg184013, cg080496, cg137586, cg0322520)
failed to classify samples according to survival status in
the combined OTSCC cohort and the entire cohort.
When the alternate method of recursive feature

elimination – support vector machine (RFE-SVM) was
used, again no significant association between DNA
methylation and survival status was identified.
A similar analysis was performed using machine

learning methods for the larger combined OTSCC
cohort (n = 174), using overall survival status as the
classifying variable. For each method, ranges of tuning
parameters (kernels and lambda values) were employed to
optimise the prediction performance. However, both CFS
and RFE-SVM models demonstrated no prediction cap-
ability, with performance ranging from 0.52 to 0.58 for
both methods (whereby a prediction performance of 0.5
indicates no prediction capability beyond chance, Fig. 4).
In addition, using these machine learning frameworks,

a variety of other mathematical models were investigated
including the t test and the LIMMA method. These ana-
lyses similarly demonstrated poor prediction perform-
ance metrics supportive of the conclusion that a
prognostic methylation signature did not exist for the
cohort.

Discussion
In a uniform cohort of samples from a single head and
neck subsite, using both an agnostic approach to the
data and a number of feature selection approaches, we
were unable to identify a differentially methylated group
of samples and we were unable to identify a methylation
profile informative for clinicopathological features.
A number of previous reports have suggested the iden-

tification of prognostic signature for HNSCC, using a
variety of approaches including high throughput methy-
lation assessments [8, 11–13, 30–32]. However, the
cohorts examined were generally small, samples analysed
were from heterogeneous head and neck subsites, and
though some groups identified a hypermethylated group
of samples and prognostically informative loci, none of
these were reproducible between studies. Furthermore,
some prognostically significant probes identified corres-
pond to known SNPs [8, 11], which raises concerns re-
garding the reliability of these probes to assay DNA
methylation. Our study of a large cohort of samples
from a single subsite was unable to identify a hyper-
methylated group of samples or identify an informative
methylation signature. Interestingly, the TCGA analyses of
a heterogeneous group of 279 HNSCC samples that over-
lapped the samples we utilised (Additional file 2) identified
four groups of tumours according to DNA methylation
status, with a hypermethylated, hypomethylated, normal-
like and CpG island methylated group of samples [23].
However, the association between methylation group and
survival status was not significant ([23], Supplementary
Figure S1.5b, p = 0.05).
Technical issues relating to the HM450K platform it-

self may have impaired the identification of a methylation
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profile. The use of formalin-fixed paraffin-embedded
(FFPE)-derived DNA for the OTSCC cohort may have af-
fected findings by affecting the quality of reported methyla-
tion or the number of CpG sites assessed. In part, this was
accounted for by the use of different stringency filtering cri-
teria. In recognition of the fact that an allelic state (SNP)
may be informative for the methylation status of particular
loci and may correlate with disease states [33, 34], analyses
were performed that included and excluded all SNP probes.
However, no differences in results were observed. Perhaps
the most significant limitation of the HM450K array is that
it only interrogates ~2 % of CpGs within the human gen-
ome, and thus informative regions may be missed. At
present, there are a limited number of whole genome bisul-
fite sequencing studies, with only one cancer-related study
published which investigated a single colorectal cancer
sample [35]. Our findings may also have been limited by
the sample size of the cohort. However, this study repre-
sents one of the largest of its kind that examines a single
head and neck subsite with high throughput methodology.
We tested whether observed methylation in isolation

served as a prognostic marker or whether it correlated
with any clinicopathological feature. However, the clin-
ical impact of altered methylation is likely to be

influenced by other factors that this approach does not
account for. These other factors include whether the
quantity of detected methylation is relevant, the location
of informative CpG sites, and the known complex inter-
actions between DNA methylation and other genetic
and epigenetic factors, particularly those regulated by
the polycomb repressor group proteins [5, 36, 37].
The relationship between DNA methylation and gene

expression is complex, given the absence of a uniform
effect of the presence of methylation. This impacts the
findings of correlative analyses. Different threshold quan-
tities of methylation has been found to differentially im-
pact gene expression according to CpG location and
tissue histotype in a study by Liu et al. which examined
992 different tumour samples from the TCGA project
assessed by high throughput methylation analyses [38].
Similarly, though the functional impact of hypermethyla-
tion of CGIs in promoter regions is best understood and
is thought to usually correlate with gene repression [5],
the location of informative CpG sites is not comprehen-
sively known. Increasingly, research demonstrates that
methylation outside promoter regions is also informative
and that the presence of methylation does not always cor-
relate with gene repression [39]. Similarly, long-range
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epigenetic activation (LREA) and long-range epigenetic si-
lencing (LRES) needs to be considered, which refers to the
regional activation or silencing of often very large domains
that can be mediated by DNA hypermethylation [35, 40].
LRES and LREA may result in the differential expression
of genes, through the induction of a DNA conformational
change enlisting the use of alternate transcription start
sites or through the inhibition of transcription repression
factors, similar to that seen with the CTCF insulator pro-
teins [39–41]. Lastly, an analysis of the clinical significance
of methylation in isolation ignores the complex interplay
between the genome and epigenome. This is easily dem-
onstrated through the known significant clinical impact of
the CIMP-high phenotype in colorectal cancer and the
simultaneous presence of TP53 mutations and
BRAFV600E mutations or, similarly, the G-CIMP sub-
group of glioma tumours with concurrent IDH1 muta-
tions [6, 7]. Indeed, the TCGA analysis of 279
heterogeneous HNSCC identified a significant relationship
between hypomethylation and the loss of function muta-
tion of NSD1, but the impact on patient outcome was not
reported [23]. The interaction between DNA methylation
and other epigenetic modifiers, such as histone modifica-
tions, is also complicated by a possible bivalent state of
gene transcription, where both active marks such as
acetylation (e.g. H3K9ac), and repressive marks such as
H3K27me3, can associate with DNA methylation [5, 37,
40, 42]. This indicates that the presence of DNA methyla-
tion is not necessarily representative of a binary effect on
gene expression and thus its correlation with clinicopatho-
logical features.
Our analysis sought to determine whether methylation

in isolation heralded any prognostic information for
OTSCC patients, and to some extent, the approach did
account for some of the more complex issues discussed.
The agnostic analyses with the unsupervised feature
selection avoided assumptions made on the significance
of β values, the location of informative probes or even
the resultant impact of altered methylation. However, it
may be that methylated regions defined according to the
effect on gene expression may need to be identified
before reliable clinical correlations will be observed.

Conclusions
The detailed assessment of the methylation status of
over 450,000 CpG sites with the HM450K array in a
comprehensively annotated OTSCC cohort importantly
demonstrated that a methylation signature or prognos-
tically informative CpG sites could not be found. The
presence of DNA methylation could not stratify clinico-
pathological variables according to impact on patient
outcome. Although a number of technical factors have
been discussed, the absence of an independent prognos-
tic methylation profile likely results from the complex

and dynamic interaction of DNA methylation with other
genomic and epigenomic mechanisms of gene regula-
tion. Whole genome bisulfite sequencing in combination
with other “omic” profiling may provide additional infor-
mation regarding the biological impact of methylation.
However, within the limitations of our current under-
standing, the use of FFPE-derived DNA, and the size of
the cohort examined, our findings suggest that methyla-
tion alone is unlikely to inform patient outcome for
OTSCC.

Methods
Preparation of bisulfite-modified DNA
DNA extraction and bisulfite modification has been pre-
viously described [15, 22]. One microgram of DNA was
bisulfite modified (BS) and eluted twice, into a total
volume of 100 μL. DNA precipitation was utilised to
prepare the BS DNA for a final volume of 7 μL resus-
pended in TE buffer for processing on the HM450K
array. DNA quality post bisulfite modification and pre-
cipitation was confirmed by checking the known
CDKN2A methylation status by MS-HRM on selected
samples.

Methylation analysis
Samples were sent to the Australian Genome Research
Facility (AGRF, Melbourne, Australia) for processing on
the HM450K array as a single batch. Methodology for
the analysis has been previously published [43, 44]. Raw
IDAT files of the data generated were provided to us
by AGRF. Data from samples passing initial quality
filtering have been deposited in GEO (Gene Expres-
sion Ominibus) GSE79556.

Bioinformatics analysis
Given the absence of consensus on processing of high
throughput methylation data, we chose to approach the
data as comprehensively as possible with different soft-
ware libraries and packages (Additional file 1: Table S2).
The aim of this approach was to internally validate find-
ings with orthogonal methodology or similar method-
ology but also to optimise opportunity for identifying
significant correlations. Separate analyses were per-
formed using each package to pre-process data, and for
each refined cohort, downstream analyses were per-
formed as described below.
Bioinformatics processing of the raw IDAT files was per-

formed utilising R statistical software (version 3.0.1,
http://cran.r-project.org/). Software library packages used
included Methylumi version 2.6.1 (http://www.bioco
nductor.org/packages/release/bioc/html/methylumi.html),
Minfi version 1.6.0 (http://www.bioconductor.org/pack
ages/2.12/bioc/html/minfi.html), ChAMP version 0.99.0
(http://www.bioconductor.org/packages/2.13/bioc/html/
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ChAMP.html) [45], wateRmelon version 1.0.3 (http://
www.bioconductor.org/packages/2.13/bioc/html/wateR-
melon.html) [46], RnBeads version 0.99.9 (http://
rnbeads.mpi-inf.mpg.de/) and a custom machine learning
package (GTB version 0.0.1) [28, 29] (personal communi-
cation Dr Justin Bedo, IBM).

Pre-processing of data
We performed standard quality control assessments in-
built into the library packages utilised. The raw data
initially underwent quality control assessment through
inspection of the β value distribution plots, for the iden-
tification of outlying samples. Detection p values were
then used to identify failed probes defined as those that
did not emit a signal above background levels [45, 46].
In addition, two further quality assurance measures were
performed prior to downstream analysis; Firstly, our data
was found to be comparable and did not lie outside of
other HM450K datasets, by analysis of the cohort with
8654 publically available samples curated on Marmal-aid
(http://marmal-aid.org/, version 1.1.1) [47] (Additional
file 3). Secondly, a number of samples were also proc-
essed and analysed in replicate on the HM450K array by
AGRF, which confirmed the reproducibility of results
(data not shown). We have previously published results
from this cohort that compared the methylation analyses
of specific loci utilising four orthogonal methodologies
(HM450K array, SMART-MSP, pyrosequencing and MS-
HRM) with the TCGA HNSCC dataset, which confirmed
the reproducibility and robustness our data [15].

Filtering of the data
As there is no consensus on which probes should be re-
moved from downstream analysis, a variety of filtering
criteria was used to account for the issues described fur-
ther (summarised on Additional file 1: Table S2), thereby
refining different sized cohorts. Despite the different
sizes of the cohorts refined from the use of different cri-
teria, including and excluding SNPs, overall, downstream
analyses for these different cohorts created by the use of
different filtering and normalisation methods were simi-
lar. Factors accounted for in our approach to the filter-
ing of data are described further below.
The HM450K was initially reported to include 3091

probes interrogating non-CpG sites (context specific
probes), and 65 single nucleotide polymorphisms (SNPs)
[20]. However, in addition to these, it is recognised that
confounding of results may be introduced by the follow-
ing: an additional (unreported) 66,877 SNP probes, at or
in very close proximity to the interrogated CpG site; by
the sex chromosome probes; by consistently poor
performing probes; and by co-localising (off-target map-
ping) probes [48–52]. Whilst most studies have deter-
mined the number of confounding probes using in silico

methods, when HM450K data was compared with data
generated by whole genome bisulfite sequencing, up to
approximately 200,000 probes were found to introduce
artefactual methylation assessments and require consid-
eration of removal prior to downstream processing [52].
The sex chromosome probes introduce bias as X-
inactivation is regulated by hypermethylation, and the
copy number of X-chromosomes varies according to
gender [49]. This is additionally relevant for autosomal
probes that hybridise to the sex chromosomes. Some
probes reporting high intensity β values are noted to be
unreliable on repeated analyses, whereby methylation
values are unable to be replicated by alternative method
[48]. In addition, up to 9 % (~42,000) probes are re-
ported to co-localise to alternative sites due to homolo-
gous sequences elsewhere, such as pseudogenes [50].
Dependent on the choice of alignment stringency (for
example, the number of mismatches permitted), one
study determined that up to 29 % (~140,000) probes
misaligned when two mismatches were permitted [51].
Probes interrogating SNPs may introduce artefactual
methylation measurements dependent on the genotype
of the patient and the frequency of the polymorphism in
the population. Furthermore, SNPs may also interfere
with probe hybridisation dynamics if a SNP exists within
the probe target sequence. This may alter the observed
methylation measurements from the true extent of
methylation at these sites [48, 49]. However, specific
allelic states (SNPs) are recognised to be significantly
associated with the methylation status of certain
genes [33, 34], which argues that it may be crucial to
include SNP probes in downstream processing.

Data normalisation
Background fluorescence correction was achieved
through methods available through Methylumi and by
utilising the normal exponential using out-of-band
probes (NOOB) method. Data normalisation was also
performed to account for the significant technical biases
that result from the use of different chemistry under-
lying the two probes on the HM450K array, with the
Infinium II probes demonstrating a smaller dynamic
range with less sensitivity for methylation values at ex-
treme ranges and inferior reproducibility of methylation
values with repeated testing [53]. These biases were
accounted for within the analysis using the subset-
quantile normalisation (SQN) methods available through
Methylumi and Minfi packages [54], subset-quantile
within array normalisation (SWAN) [44], and beta mix-
ture quantile dilation (BMIQ) [55, 56].
Batch variation was corrected using the singular value

decomposition (SVD) method [57], and the ComBat
method [58] available on the ChAMP library. A custo-
mised method of pre-processing the data was also
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performed using the wateRmelon package, using the
“dasen” method of normalisation of β-intensities of each
probe type [46].

Downstream processing and feature selection
For the agnostic interrogation of data, unsupervised fea-
ture selection was performed using multidimensional
scaling (MDS) plots, hierarchical clustering, and princi-
pal components analysis. Two main supervised feature
selection approaches were used to identify differential
methylation. Firstly, a linear models for microarray data
(LIMMA) approach was used, through “dmpFinder” (dif-
ferentially methylated probe Finder) with false discovery
rates (FDR) of a p value less than 0.05 [59, 60]. RnBeads
also hosts a method of assessing methylation according
to specified regions (compared to a single probe). Sec-
ondly, machine learning methods were also used which
were based on a recursive feature elimination (RFE)
framework and incorporated recursive feature elimin-
ation – support vector machine (RFE-SVM), as well as
centroid feature selection (CFS). Both methods used a
three-fold cross validation [28]. The machine learning
approach to supervised feature selection is an empirical
method to analyse the data in its entirety, where training
and learning models to select a nominated feature are
generated by cross validation within the dataset.

Additional files

Additional file 1: Supplementary figures and tables. Figure S1.
Unsupervised clustering of analysis of OTSCC cohort and combined
OTSCC cohort of samples. A) MDS plot of the 1000 most variable
methylation values from the OTSCC cohort demonstrating no distinct
groups. B) Dendrogram of methylation values from OTSCC cohort
demonstrating at least seven distinct subgroups. C) Dendrogram of
methylation values including good quality SNP probes, from the entire
cohort of 414 samples, demonstrating at least 15 subgroups. Table S1.
The TCGA HNSCC cohort with sample numbers listed according to
anatomical subsite. Table S2. Summary of bioinformatics processing of
the different cohorts of input data. (DOC 525 kb)

Additional file 2: CSV file listing the TCGA samples utilised in our
analysis and in the TCGA head and neck cancer analysis [23]. (CSV 10 kb)

Additional file 3: Summary of additional quality assurance analyses of
our dataset against other public datasets. (DOCX 733 kb)
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