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value of DNA methylation in human
esophageal squamous cell carcinoma
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Abstract

Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for
approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate
during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking
and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce
methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important
roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the
key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell
cycle, DNA damage repair, Wnt, TGF-3, and NF-kB signaling pathways, including P16, MGMT, SFRP2, DACH1, and
ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may
serve as esophageal cancer early detection marker, such as methylation of HINT, TFPI-2, DACH1, and SOX17. CHFR
methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is
associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic,
and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its

mechanisms and develop improved therapies.
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Background

Esophageal carcinoma is the sixth leading cause of
cancer-related mortality and the eighth most common
cancer worldwide [1]. Esophageal cancer has two main
subtypes-esophageal squamous cell carcinoma (ESCC)
and esophageal adenocarcinoma (EAC). ESCC is the
predominant histological type and accounts for 90 % of
the cases of esophageal carcinoma worldwide [2]. To-
bacco smoking and alcohol consumption are two major
risk factors in ESCC [3-5], while gastroesophageal reflux
disease (GERD) [6], obesity, and diet [7] were recognized
as risk factors for EAC. Despite surgery or chemo-
radiotherapy, the prognosis of esophageal cancerstill re-
mains poor with the overall 5-year survival ranging from
15 to 25 % [2, 8, 9]. The mechanisms involved in ESCC
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remain unclear. Therefore, a clearer understanding of
esophageal cancer and subsequent treatment advances
are in urgent need.

Both aberrant genetic and epigenetic changes have
been demonstrated to contribute to human ESCC initi-
ation and progression [10-12]. This review focuses on
recent advances involving DNA methylation and its clin-
ical application in human ESCC.

Epigenetic alterations induced by risk factors of ESCC

As mentioned above, nutrition and the consumption of
tobacco and alcohol contribute to ESCC carcinogenesis.
Talukdar et al. found that promoter region hypermethy-
lation is associated with tobacco consumption by analyz-
ing a group of tumor suppressor genes in human ESCC
[13]. Similar results were obtained from another group
[14]. Tobacco contains 4-(methylnitro-samino)-1-(-3-
pyridyl)-1-butanone (also known as nicotine-derived ni-
trosamine ketone (NNK)) and Benzo[a]pyrene, which
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were found to modulate DNA methylation. NNK in-
duced hypermethylation of multiple tumor suppressor
genes in liver and lung tumors of rat and mouse models
[15-17]. Another study found that NNK attenuated
DNMT1 degradation and also induced its nuclear accu-
mulation resulting in subsequent hypermethylation of
promoters of tumor suppressor genes in animal and hu-
man lung cancer [18]. Benzo[a]pyrene diol epoxide
(BPDE), a carcinogen present in tobacco smoke and en-
vironmental pollution, has been shown to induce gene
mutations (such as in P53 and KRAS genes) in vitro
[19-22]. A recent study demonstrated that BPDE induced
RARp2 promoter region methylation by recruiting DNA
(cytosine-5-)-methyltransferase 3 alpha (DNMT3A) to its
promoter region [23]. Another group identified that pro-
moter methylation of the fragile histidine triad (FHIT)
gene in ESCC was significantly associated with exposure
to tobacco smoke [24]. Methylation frequency of the mutS
homolog 3 (MSH3) gene promoter was significantly
higher in tumor samples from smokers compared to
tumor samples from non-smokers [25]. P16 methylation
is associated with occupational airborne dust exposures.
The methylation rate of p16 is 8.7 times higher in patients
that have been exposed to occupational airborne dust
compared to patients without such exposure [26].

Many epidemiological studies have consistently
shown that alcohol consumption is an etiological fac-
tor of human ESCC. ESCC has a stronger association
with alcohol consumption than cancers of other organ
sites [27, 28]. Genetic polymorphisms of ethanol-
metabolizing genes, such as acetaldehyde dehydrogen-
ase (ALDH) and alcohol dehydrogenases (ADH), are
associated with ESCC [29-31]. Tobacco use and alco-
hol drinking have synergistic effects on carcinogen-
esis, where combined use explained more than 61 %
of ESCC [32, 33]. In the liver, ethanol is oxidized to
acetaldehyde by ADH [34, 35]. Chronic alcoholism in-
creases the requirements for methyl groups and
causes dietary methyl group deficiency [36]. Defi-
ciency of S-adenosylmethionine, folate, and betaine
due to destruction by acetaldehyde is common in al-
coholics. Inhibition of methyl group transfer regulates
the expression of genes involved in carcinogenesis
[37, 38]. Several studies have shown that alcohol is
associated with global DNA hypomethylation and
tumor suppressor gene promoter region hypermethy-
lation in human esophageal, hepatic, and colorectal
cancers [39].

Aberrant DNA methylation changes in human ESCC

Global genomic DNA hypomethylation and promoter
region hypermethylation have been extensively studied
in human cancers, including ESCC [10, 11, 40-43].
Aberrant DNA methylation is involved in the major
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components of cell cycle, DNA damage repair, and
cancer-related signaling pathways.

Cell cycle-related genes

P14, p15, and pl6 are cyclin-dependent kinase (CDK)
inhibitors that negatively regulate the G1-S transition in
the cell cycle. P16 is frequently methylated in ESCC,
while methylation of p14 and p15 is relatively infrequent
in ESCC [44]. P16 is methylated in precursor lesions of
the esophagus. This suggests that P16 is involved in the
early stages of esophageal carcinogenesis.

The RAS association domain family 1A (RASSF1A) is
a microtubule-binding and stabilizing protein. RASSF1A
interacts with microtubules and inhibits M-phase cell
progression [45]. RASSFIA is frequently methylated in
ESCC [46-48]. RASSF10 is a new member of the Ras-
association family. RASSF10 inhibits cell proliferation
and induces G2/M phase arrest. RASSF10 is methylated
in 44.3 % of ESCC [49]. Checkpoint with FHA and ring
finger (CHFR) is another protein involved in mitotic
checkpoint regulation [50]. CHFR induced G2/M phase
arrest in ESCC. CHFR is frequently methylated in vari-
ous cancers [51-54]. CHER is methylated in 45 % of hu-
man invasive ESCC and infrequently methylated in
esophageal early lesions, suggesting that CHFR methyla-
tion may serve as a late stage marker in ESCC. Methyla-
tion of CHFR sensitized ESCC cells to taxanes [54].

DNA repair genes

Fragile histidine triad (FHIT) is regarded as a “caretaker,”
and loss of this caretaker function initiates the onset of
genome instability and cancer development [55]. In
some tumors that are associated with environmental car-
cinogens, alterations in the FHIT gene occur quite early
in the development of cancer [56]. FHIT is frequently
methylated in the early stages of ESCC, and aberrant
methylation of FHIT is associated with poor prognosis
and tobacco exposure [24].

The mismatch repair (MMR) system recognizes base—
base mismatches and insertion or deletion loops (IDLs)
in double-stranded DNA to degrade the newly synthe-
sized error region and re-synthesize the correct second
strand according to the template [57]. The human MMR
system includes MLH1, MLH3, MSH2, MSH6, PMSI,
and PMS2 genes. Defective MMR increases mutation
rates up to 1000-fold and leads to microsatellite instabil-
ity (MSI) to result in carcinogenesis [58]. Germline
MMR mutation gives rise to hereditary nonpolyposis
colorectal cancer (CRC) accounts for ~3 % of all CRCs.
Human MMR deficiency is mainly happened to MLHI
and MSH2 genes. By contrast with HNPCC, sporadic
cancers are rarely found to have mutations in the MLHI
or MSH2 genes. In the population-based studies, the
prevalence of MSI among CRCs is approximately 15 %.
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Mismatch repair deficiency can be inherited mutations or
biallelic MLH1 promoter region hypermethylation [59].
Methylation may be served as “second hit” for carcinogen-
esis. MLH1 is frequently methylated in sporadic CRC and
other tumors, while MSH2 was not methylated in any of
the sporadic CRCs [60-62]. In human esophageal squa-
mous cell carcinoma, MLHI and MSH2 are methylated in
33-62 % and 29-32 % of cases, irrespectively [40, 44, 63].
The expression of MLH1 and MSH2 were silenced by
promoter region hypermethylation [44, 64, 65].

O6-methylguanine-DNA methyltransferase (MGMT)
is a DNA damage repair enzyme that protects cells from
G to A mutations by removing methyl or alkyl groups
from guanine after chemical modification [66]. MGMT
is frequently methylated in human ESCC, and methyla-
tion of MGMT sensitized ESCC to temozolomide treat-
ment [44, 67].

Wnt signaling pathway genes

The canonical Wnt signaling pathway is involved in
many biological processes, including embryogenesis
and carcinogenesis [68, 69]. The activated Wnt/fB-ca-
tenin signaling pathway may induce MYC, cyclin D1,
and expression of other downstream genes, promoting
cell proliferation, and leading to carcinogenesis. Numer-
ous Wnt signaling components, including Wnt, secreted
frizzled-related proteins (SFRPs), and [-catenin, are also
of pivotal importance in the activation/inhibition of Wnt
signaling.

Wnt signaling plays an important role in esophageal
cancer initiation and progression [70]. Epigenetic regula-
tion of key genes in the Wnt signaling pathway has been
reported by several groups. SERPI is methylated in 95 %
of ESCC. SFRP2 is methylated in 83 % of ESCC, and the
expression of SFRP2 is regulated by promoter region
hypermethylation [71]. SRY-box containing gene 17
(SOX17) is reported to play critical roles in the regula-
tion of development and stem/precursor cell function
through repression of Wnt pathway activity [72]. SOX17
is frequently methylated in ESCC, and methylation of
SOX17 activated Wnt signaling. SOX17 methylation is
an early detection marker and is related to patients’ his-
tory of alcohol use [73]. Reduced expression of SOX17
is related to poor prognosis in ESCC [74]. Wnt in-
hibitory factor-1 (WIF1), one of the most important
Wnt antagonists, is frequently down-regulated by pro-
moter region hypermethylation in various types of
cancer [75, 76]. Wnt-5a antagonizes Wnt signaling by
promoting GSK-3—independent [3-catenin degrad-
ation. Wnt-5a is frequently methylated in ESCC [77].
Adenomatous polyposis coli (APC) is methylated
more frequently in human adenocarcinoma than in
human ESCC [44, 78]. The 2-year survival rate is re-
duced in APC-methylated patients [79].
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TGF-B signaling pathway genes

In cancer, transforming growth factor-p (TGF-p) signaling
regulates tumor initiation, progression, and metastasis
through a diverse repertoire of tumor—cell-autonomous
and host—tumor interactions [80, 81]. TGF-p is regarded
to be both a tumor suppressor and an oncogene [82]. In
human prostate cancer, overexpression of TGF-f en-
hanced angiogenesis around the tumor, which increased
the metastasis of prostate cancer. On the other hand,
gallbladder tumors secrete TGF-f3, which inhibits angio-
genesis and results in reduced tumor growth. TGF-p
signaling acts as a tumor suppressor during breast car-
cinogenesis, while TGF-B promotes breast cancer me-
tastasis in the later stages [83].

The role of TGE-P signaling in human ESCC has not
been extensively studied. There are only a few reports on
the epigenetic regulation of TGF-p signaling in ESCC.
The human runt-related transcription factor 3 (RUNX3),
an important component of the TGF-f signaling pathway,
is deleted in a variety of human cancers, including ESCC.
RUNX3 is frequently methylated in human ESCC [84].
Human Dachshund homologue 1 (DACHI) is a major
component of the retinal determination gene network.
Loss of DACH1 expression was found in breast, pros-
tate, lung, endometrial, colorectal and hepatocellular
carcinoma. DACHI expression was regulated by pro-
moter region hypermethylation in esophageal cancer.
The methylation frequency increased with the pro-
gression of esophageal carcinogenesis. DACHI methy-
lation is associated with poor differentiation and late
tumor stage. Both in vivo and in vitro studies have
demonstrated that DACH1 suppresses human esopha-
geal cancer growth by activating TGF-f signaling [85].
E-box protein 32 (FBXO32) is recently identified as a
TGEF-B/Smad target gene [86]. FBXO32 is methylated
in 52.3 % of human ESCC and methylation of FBXO32 is
associated with poor 5-year overall survival [87].

NF-kB signaling pathway genes

Nuclear factor-kB (NF-«kB) is a nuclear transcription fac-
tor. It was named NF-«B because it was found bound to
an enhancer element of the immunoglobulin kappa light
chain gene in the nucleus of B cells [88, 89]. The Rel/
NF-«kB transcription factor family is composed of several
structurally related proteins including five cellular pro-
teins: c-Rel, Rel A, Rel B, p50/p105, and p52/p100 [90].
Activation of NF-kB promotes cancer cell proliferation,
invasion, and metastasis [91]. Sustained activation of
NF-«B contributes to malignant progression and thera-
peutic resistance in most major human cancers [91, 92].
NE-«kB is involved in the process of carcinogenesis in-
duced by infections and carcinogens (such as 7,12-
dimethylbenz(a)anthracene (DMBA)) in various cancers,
including esophageal cancer [93—95].
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The mechanism of NF-«xB in ESCC remains to be elu-
cidated. It has been reported that inhibition of NF-kB
can increase the chemo-sensitivity of esophageal cancer
(EC) cells in vitro [96]. The NF-«B inhibitor Bay11-7082
had significant antitumor effects on ESCC xenografts in
nude mice by promoting apoptosis and inhibiting prolif-
eration and angiogenesis, as well as reducing the metas-
tasis of ESCC cells to the lungs, without significant toxic
effects [97]. There are a limited number of studies on
the epigenetic regulation of NF-kB signaling. It has been
demonstrated that the zinc finger transcription factor,
ZNF382, an inhibitor of NF-«B, is frequently methylated
in human ESCC [98].

The application of DNA methylation markers in the clinic
The best studied epigenetic modification is promoter
region hypermethylation in tumor suppressor genes.
DNA methylation represents the epigenetic biomarker
with the highest translational potential due to its stable
nature and reliable detection technologies [99]. DNA
methylation patterns of certain genes may serve as early
detection, prognostic, and chemo-sensitive markers, as
well as therapeutic targets.

DNA methylation as ESCC detection and prognostic markers
The epigenetic characteristics of ESCC are not well iden-
tified compared to other cancers, including esophageal
adenocarcinoma. As LINE-1 elements constitute ~17 %
of the human genome, the methylation status of LINE-1
represents the global DNA methylation level [100].
LINE-1 methylation has been shown to be highly vari-
able among ESCC specimens, LINE-1 hypomethylation
is a marker of a poor prognosis in patients with early
stage tumors, but not in those with advanced stage tu-
mors [101]. Loss of imprinting (LOI) of insulin-like
growth factor (IGF2) is associated with short time survival
in ESCC [102]. The ten-eleven translocation (TET) family
proteins can convert 5-methylcytosine (5-mC) to 5-
hydroxymethylcytosine (5-hmC), which is now widely rec-
ognized as the “sixth base” in the mammalian genome,
following 5-mC, the “fifth base” [103—108]. Loss of 5-hmC
is a poor prognostic marker in kidney cancer [109]. The
levels of 5-hmC are reduced in human ESCC, and the
levels of 5-hmC are related to histologic grade [110].
Promoter region hypermethylation is found frequently
in ESCC. DNA methylation changes were shown to have a
progression tendency during esophageal carcinogenesis
and progression, suggesting that DNA methylation is an
early event in ESCC. Our previous studies found that
DAPK, pl6, MGMT, MLHI, RARB2, HINI1, TFPI-2,
DACH1, and SOX17 were methylated in the precursor le-
sions of human esophageal epithelia [44, 73, 85, 111-113].
The methylation frequency increased with the progression
of esophageal cancer. CHFR methylation is a late stage
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marker of ESCC [54]. Loss of CDHI expression, a gene
encoding E-cadherin, is related to tumor invasiveness, me-
tastasis, and poor prognosis in ESCC. Methylation of
CDH1I was detected in 14-61 % of ESCC tumors, and
it was associated with the recurrence of early stage
[44, 114-117]. RASSFIA hypermethylation was signifi-
cantly correlated with poorly differentiated tumors
and advanced tumor stage [47, 118, 119]. P16 methy-
lation was associated with invasiveness and metastasis
[120]. FHIT was methylated in the early stages of
ESCC, and its methylation was associated with poor
prognosis [24]. Our recent study found that DACT2
methylation is frequently methylated in human esophageal
squamous dysplasia and ESCC. DACT?2 methylation is as-
sociated with TNM stage and lymph node metastasis.
These results suggest that DACT2 methylation may serve
as ESCC early detective and prognostic markers. NKD?2 is
frequently methylated in human ESCC, and methylation
of NKD?2 is associated with TNM stage and lymph node
metastasis (data not shown). Additional methylation
markers for ESCC are listed in Table 1. DNA methylation
may serve as a marker for early detection, tumor recur-
rence, and prognosis in ESCC.

DNA methylation as a chemo-sensitive marker and thera-
peutic target in ESCC

Methylation patterns can be useful to assess clinical out-
comes or response to chemotherapeutic agents. DNA
methylation profiling has identified tumor-specific drug
responsive markers in different cancers. The identifica-
tion of biomarkers that predict response to chemother-
apy is a component of precision medicine. For example,
MGMT methylation was found to be associated with
responsiveness to alkylator-based chemotherapy and
an increase in overall survival and time to progression
of gliomas [121]. In oxaliplatin-treated gastric cancer
patients, overall survival was longer in the MLHI
unmethylated group compared to the MLHI methyl-
ated group [60].

Many new epigenetic chemo-sensitive markers have
been found in different cancer types [122]. Meanwhile,
reports about DNA methylation patterns as chemo-
sensitive markers in ESCC are very limited. CHEFR is an
early mitotic checkpoint gene that functions as a key
player in controlling chromosomal integrity [123]. CHFR
controls cell cycle progression at the G2/M checkpoint.
Increased expression of CHFR leads to mitotic arrest.
CHFR methylation is a sensitive marker for taxanes in
human ESCC [54].

Perspective

The landscapes of cancer genomes have already had an
impact on the clinical care of cancer patients. The recog-
nition that certain tumors contain activating mutations in
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Table 1 Aberrantly methylated genes in ESCC

Gene Histological type (M%) Reference

HIN-1 LGD (31 %), MGD (33 %), (111
HGD (44 %), ESCC (50 %)

DAB2 Dysplasia (67 %), ESCC (68 %) [132]

PGP9.5 ESCC (42 %) [133]

ECRG4 ESCC (69 %) [134]

APC ESCC (50 %), EAC (92 %) [135]

FHIT ESCC (33 %) (24]

GNG7 ESCC (33 %) [136]

CDH1 ESCC (43 %) [137]

Integrin a4 ESCC (21 %) [137]

Wif-1 ESCC (35 %) [137]

MGMT LGD (23 %), MGD (17 %), [44]
HGD (11 %), ESCC (33 %)

MLH1 LGD (8 %), MGD (17 %), [44]
HGD (33 %), ESCC (23 %)

RARB2 LGD (13 %), MGD (33 %), [44]
HGD (44 %), ESCC (36 %)

TFPI-2 LGD (28 %), MGD (33 %), [112]
HGD (33 %), ESCC (67 %)

DACH!1 LGD (19 %), MGD and (85]
HGD (42 %), ESCC (62 %)

SOX17 LGD (39 %), MGD and (73]
HGD (48 %), ESCC (65 %)

DAPK LGD (28 %), MGD (25 %), [44]
HGD (11 %), ESCC (26 %)

P16 LGD (31 %), MGD (42 %), [44]
HGD (33 %), ESCC (52 %)

CHFR LGD (2.9 %), MGD (0), [54]
HGD (12.5 %), ESCC (45 %)

RASSF10 ESCC (443 %) [49]

ZNF331 ESCC (56.5 %) [138]

M% methylation rate, LGD low-grade dysplasia, MGD middle-grade dysplasia,
HGD high-grade dysplasia, ESCC esophageal squamous carcinoma

driver genes encoding protein kinases has led to the devel-
opment of small-molecule inhibitor drugs targeting those
kinases [124]. However, the landscapes of the epigenome
in all cancer types and their normal counterparts need to
be completed. The Roadmap project for methylome map-
ping may generate more reference data sets for research
and clinical use [125, 126].

Many DNA methylation markers have been reported for
early detection, prognosis, therapeutic responsiveness, and
therapeutic targets in different cancer types [127-130].
Targeting therapy based on aberrant genomic changes has
already had an impact on the clinical care of cancer pa-
tients. While the value of epigenetic modifications in per-
sonalized medicines still not extensively studied.
Epigenome-based personalized medicine may be suitable
for human cancer patients with the recognition of cancer
epigenome landscapes [131]. In ESCC, there are limited
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DNA methylation markers for early detection, prognosis,
and chemo-responsiveness. We are far from having a full
understanding of the molecular mechanisms responsible
for the initiation and maintenance of the epigenetic abnor-
malities that help drive tumorigenesis. Therefore, we must
continue to develop epigenetic biomarkers in ESCC.

Conclusions

Epigenetic regulation of tumor suppressor gene expression
plays an important role during esophageal carcinogenesis
and progression. Aberrant DNA methylation patterns may
serve as early detection, diagnostic, prognostic, and
chemo-sensitive markers. While some important genes
have already been identified to be frequently methylated
in ESCC, mapping the landscape of the esophageal cancer
epigenome has yet to be completed. Personalized therapy
based on the ESCC epigenome will be developed in the
future.
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