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Abstract

Background: The prevalence of eczema is increasing in industrialized nations. Limited evidence has shown the
association of DNA methylation (DNA-M) with eczema. We explored this association at the epigenome-scale to better
understand the role of DNA-M.
Data from the first generation (F1) of the Isle of Wight (IoW) birth cohort participants and the second generation (F2)
were examined in our study. Epigenome-scale DNA methylation of F1 at age 18 years and F2 in cord blood was
measured using the Illumina Infinium HumanMethylation450 Beadchip. A total of 307,357 cytosine-phosphate-guanine
sites (CpGs) in the F1 generation were screened via recursive random forest (RF) for their potential association with
eczema at age 18. Functional enrichment and pathway analysis of resulting genes were carried out using DAVID gene
functional classification tool. Log-linear models were performed in F1 to corroborate the identified CpGs. Findings in
F1 were further replicated in F2.

Results: The recursive RF yielded 140 CpGs, 88 of which showed statistically significant associations with eczema at
age 18, corroborated by log-linear models after controlling for false discovery rate (FDR) of 0.05. These CpGs were
enriched among many biological pathways, including pathways related to creating transcriptional variety and pathways
mechanistically linked to eczema such as cadherins, cell adhesion, gap junctions, tight junctions, melanogenesis, and
apoptosis. In the F2 generation, about half of the 83 CpGs identified in F1 showed the same direction of association
with eczema risk as in F1, of which two CpGs were significantly associated with eczema risk, cg04850479 of the PROZ
gene (risk ratio (RR) = 15.1 in F1, 95 % confidence interval (CI) 1.71, 79.5; RR = 6.82 in F2, 95 % CI 1.52, 30.62) and
cg01427769 of the NEU1 gene (RR = 0.13 in F1, 95 % CI 0.03, 0.46; RR = 0.09 in F2, 95 % CI 0.03, 0.36).

Conclusions: Via epigenome-scaled analyses using recursive RF followed by log-linear models, we identified 88 CpGs
associated with eczema in F1, of which 41 were replicated in F2. Several identified CpGs are located within genes in
biological pathways relating to skin barrier integrity, which is central to the pathogenesis of eczema. Novel genes
associated with eczema risk were identified (e.g., the PROZ and NEU1 genes).
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Table 1 Eczema status in male and female cohort participants
in the F1 and F2 generations (chi-square tests)

F1 generation

Independent variables Females Males Chi-square

(n = 244) (n = 122) P value

Eczema status Yes 37 (15.2 %) 9 (7.3 %) 0.051

No 207 (84.8 %) 113 (92.6 %)

F2 generation

Independent variables Boys Girls Chi-square

(n = 60) (n = 56) P value

Age 3 months Yes 9 (15.0 %) 2 (3.6 %) 0.048

Eczema status No 44 (73.3 %) 53 (94.6 %)

Missing 7 (11.7 %) 1 (1.8 %)

Age 6 months Yes 13 (21.7 %) 6 (10.7 %) 0.162

Eczema status No 39 (65.0 %) 43 (76.8 %)

Missing 8 (13.3 %) 7 (12.5 %)

Age 12 months Yes 9 (15.0 %) 5 (8.9 %) 0.521

Eczema status No 37 (61.7 %) 36 (64.3 %)

Missing 14 (23.3 %) 15 (26.8 %)

Quraishi et al. Clinical Epigenetics  (2015) 7:68 Page 2 of 11
Background
The increasing prevalence of allergic conditions includ-
ing eczema is a major public health concern in industri-
alized nations [1]. The prevalence of eczema is reported
to be 10–30 % in children and 1–3 % in adults of the
developed world [2]. In addition to the physical discom-
fort to the affected individual and the social burden on
their families, eczema has a huge economic impact on
nations’ health care budgets [3].
Eczema is a chronic condition involving a complex

interplay of genetic, epigenetic, and environmental fac-
tors [4–6]. So far, DNA methylation (DNA-M) remains
the most studied mechanism with potential answers to
epigenetic regulation of gene function [7, 8]. The Illu-
mina Infinium HumanMethylation450 Beadchip has the
ability to measure DNA methylation at more than 450 K
cytosine-phosphate-guanine sites (CpGs), which pro-
vides rich information for various epigenetic studies.
Epigenome-scale studies offer an immense opportunity
to understand disease pathophysiology, but there are
also concerns about the challenges associated with this
type of studies. A recent review published in 2014 by
Paul et al. highlighted the potential challenges in the
field of epigenomics [9] such as study design, method-
ologies of obtaining biologic samples, high dimensional-
ity, and highly correlated data [9, 10].
Random forest (RF) is a machine learning algorithm

used for classification and has the ability to efficiently
handle high dimensionality and highly correlated data
[11]. The R package was used in this study to screen
CpG sites potentially associated with eczema. RF is com-
posed of classification trees with each tree constructed
using randomly selected bootstrap samples. Misclassifi-
cation rates calculated based on testing samples can be
used to estimate the accuracy of the forests.
In this study, we utilized a method built upon RF to

screen specific CpGs potentially associated with eczema
using data in the first generation (F1) at age 18 years and
functionally annotated the genes of the identified CpGs
using DAVID [12] to understand the biological path-
ways. For the identified CpGs via the RF-based method,
we further examined their statistical significance on their
linear association with eczema risk at age 18 years using
log-linear models and replicated the findings from the F1
in the second generation (F2).

Results
Eczema frequencies in F1 (18 years) and in F2 (3, 6, and
12 months) generations stratified by sex indicated that
females had higher eczema prevalence than males at
18 years of age in the F1 generation, and the prevalence
switched in the newborns of the F2 generation (Table 1).
This is consistent with the gender-reversal pattern of ec-
zema reported in our earlier work [13].
In the screening process using recursive RF [14, 15],
the parameters (sampsize, mtry, and ntree—details are in
the “Statistical analysis” section) in the randomForest() R
package were selected to achieve stabilized error rates.
In total, pre-processed DNA methylation of 307,357
CpGs in the F1 generation was included in the screening.
The results of the recursive RF (Table 2, Fig. 1; details in
the “Statistical Analysis” section) Indicated that a total of
140 CpGs (after excluding 8 CpGs located on the X
chromosome) passed the screening showing potential as-
sociation with eczema. The exclusion of the 8 CpGs
were due to the potential bias measurement of DNA-M
for different genders. Nevertheless, in the following ana-
lyses (log-linear models below), we assessed whether
gender played a role in the association of DNA-M with
eczema.
Further examination of these 140 CpGs from F1 using

log-linear models indicated that 88 out of 140 CpGs had
a statistically significant linear association with eczema
at age 18 (FDR-adjusted P value <0.05) (Additional file
1: Table S1). We also tested the statistical significance of
the interaction between DNA-M and gender; none of
the FDR-adjusted P values were <0.05.
We assessed the biological pathways enriched within

the genes annotated to those 140 CpGs using DAVID
(Table 3). The most significantly enriched pathways
related to the creation of transcriptional variety through
genetic (e.g., polymorphism) and regulatory (e.g., alter-
native splicing) mechanisms. The remainder of the sig-
nificantly enriched pathways included several pathways
mechanistically linked to epithelial barrier integrity and



Table 2 The performance of recursive RF at each iteration

Iteration Number
of CpGs

(OOB-ER) Overall
misclassification

Eczema
misclassification

Non-eczema
misclassification

1 307,357 18.6 % 95.7 % 7.5 %

2 153,678 15.3 % 82.6 % 5.6 %

3 76,838 18.6 % 87.0 % 8.8 %

4 38,419 16.1 % 65.2 % 9.1 %

5 19,208 17.8 % 80.4 % 8.8 %

6 9604 14.2 % 78.3 % 5.0 %

7 4802 12.3 % 58.7 % 5.6 %

8 2401 10.7 % 52.2 % 4.7 %

9 1200 7.9 % 37.0 % 3.8 %

10 599 6.8 % 26.1 % 4.1 %

11 298 6.6 % 30.4 % 3.1 %

12a 148 5.2 % 17.4 % 3.4 %

13 74 6.3 % 19.6 % 4.4 %

14 37 9.3 % 21.7 % 7.5 %

15 18 8.5 % 26.1 % 5.9 %

16 9 10.7 % 19.6 % 9.4 %

17 3 16.9 % 28.2 % 15.3 %

OOB-ER out of bag error rate
aThe 12th iteration had the lowest misclassification error rate
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cell adhesion, which are of key importance in eczema:
examples include cadherins (protocadherin gamma,
P = 1.8 × 10−16; cadherin 6 domain, P = 1.5 × 10−10;
and cadherin N-terminal domain, P = 3.6 × 10−10), gap
junctions (P = 2.6 × 10−6), cell adhesion (cell-cell adhesion,
P = 2.7 × 10−10; cell adhesion, P = 2.2 × 10−5), tight junc-
tions (P = 1.6 × 10−5), melanogenesis (P = 7.1 × 10−5), and
apoptosis (P = 7.3 × 10−3).

Replication results
We then replicated the findings from the F1 generation
in the F2 generation. In total, 83 out of the 88 CpGs
identified in the F1 were also present in the F2 dataset
(the 5 CpG sites in the F2 were excluded after quality
control). DNA methylation at 41 CpGs (out of 83)
showed the same direction of changes with eczema in
both the F1 and F2 generations (Table 4, Fig. 2). Of these
41 CpGs, two were statistically significantly associated
with eczema risk in both generations (Table 4);
cg04850479 in the PROZ gene showed adjusted risk ra-
tio (RR) of 15.19 (95 % confidence interval (CI) 1.71 to
79.50) in the F1 and 6.82 (95 % CI 1.52 to 30.62) in the
F2 and cg01427769 in the NEU1 gene showed adjusted
RR of 0.13 (95 % CI 0.03 to 0.46) in the F1 and 0.09
(95 % CI 0.03 to 0.36) in the F2. We further assessed the
association of DNA methylation of these 2 CpGs with
corresponding gene expressions in the F2 generation.
No statistically significant associations were identified.
Among the remaining CpGs not replicated in the F2
generation, about 60 % CpGs (n = 25 CpGs) showed a
statistically significant difference in DNA methylation
between the two generations (based on two sample two
sided t tests) after adjusting for multiple testing. Since
some of the F2 generation are offsprings of subjects in
the F1 generation, the findings tend to be conservative.
The above analyses were adjusted for estimated cell type
proportions [16].
Discussion
This is the first study to explore epigenome-scale DNA
methylation patterns associated with eczema. Using data
from two generations, our study based on data of the F1
generation identified CpGs potentially associated with
eczema status using the RF technique, which was further
corroborated via log-linear models. In total, 140 CpGs
were identified via RF, which were further assessed using
log-linear models with 88 CpGs being statistically signifi-
cantly associated with eczema risk after adjusting for cell
type proportions and controlling for multiple testing.
The remaining 52 CpGs were not corroborated in log-
linear models. This is likely due to two reasons. Firstly,
the 140 CpGs were identified based on their importance
values in terms of minimizing misclassification errors
other than statistical testing [11]. It is possible that the
identified CpG sites did not have a statistically signifi-
cant main effect on eczema risk. Secondly, among the
140 CpGs, complex non-linear interactions are likely to
exist between multiple CpGs which may be difficult to
parametrically identify using log-linear models. Using F2
generation data, around 50 % (41 CpGs) of these 88
CpGs identified in the F1 generation were further repli-
cated. In particular, two CpGs showed statistically sig-
nificant results in both F1 and F2: cg04850479 in the
PROZ gene and cg01427769 in the NEU1 gene. Al-
though some studies have linked NEU1 gene with
asthma [17] via Th2-mediated airway inflammation [18,
17], and it is known that the Th2 pathway is also import-
ant for eczema [19, 20], based on our knowledge, no
study has so far spotted its role in eczema. The insignifi-
cant findings on the association of DNA methylation of
cg04850479 (in the PROZ gene) and cg01427769 (in the
NEU1 gene) is likely due to tissue-specific gene expres-
sion. That is, an early exposure has left a change in
methylation in all tissues including blood but the gene is
not expressed in blood but skin for eczema. It is also
possible that the DNA methylation of these two CpGs is
related to the production of dysfunctional transcripts.
Enrichment analysis of the CpG sites identified in the

F1 generation highlighted pathways related to the cre-
ation of transcriptional variation and several biological
pathways related to the epidermal barrier and involved
in eczema (Table 3).



Fig. 1 Misclassification error rates at each iteration of the recursive RF. OOB out of bag error rate (overall error), YES eczema, No non-eczema
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The skin barrier is crucial in maintaining skin integ-
rity, and disruption of the epidermal barrier is one of the
important mechanisms in the pathogenesis of eczema
[21, 22]. Several studies reported that skin barrier dys-
function is a result of the impairment of tight junction
function in eczema patients [23–26]. Cadherins and pro-
tocadherins are transmembrane proteins important for
cell-to-cell adhesion and epithelial integrity and have
been associated with eczema and asthma in genetic
studies [27]. Chronic eczema and several other derma-
toses are also related to hyperpigmentation of the skin
[28]. Our study detected differentially methylated CpGs
within genes in pathways relating to epidermal barrier
integrity and eczema pathogenesis, including cadherins,
gap junction, cell adhesion, tight junction, melanogene-
sis, and apoptosis (Table 3). Their biological functions
suggest these eczema-associated CpGs are of special
interest, and they are potential epigenetic biomarkers for
eczema. The detection of eczema-associated differential
methylation within pathways already known to be asso-
ciated with eczema is reasonable and suggests that epi-
genetic and genetic variation may work together to
regulate eczema-associated gene expression in the genes
identified here, as has already been observed in other
eczema-associated genes [22].
Several limitations were identified in the process of

our study. Although the 140 CpGs were chosen based
on the least misclassification error rate, it is possible that
some CpGs were incorrectly removed and vice versa.
Also, cord blood contains a small amount of maternal
cells [29], which may bias the measure of DNA methyla-
tion, but our cell type correction performed in this study
was expected to reduce the bias. Findings from the F1
generation were partially replicated in the F2 generation.
This could be due to age playing a role in the CpGs pre-
dicting eczema; adolescence transition has the potential
to revise DNA methylation. This is supported by our
comparison of DNA methylation between the F1 and F2
generations among the CpGs not replicated. Not all
CpGs selected by random forests were involved in known
eczema-associated biological pathways, which may be due
to complex interactions between the CpGs hence requires
further investigation. It is possible that some of the identi-
fied CpGs may be associated with the severity of eczema.
Hence, there is a need to further examine potential associ-
ations of DNA methylation of those CpG sites with



Table 3 Terms significantly enriched in functional annotation and pathway analysis and genes present in the pathways potentially
associated with eczema (FDR-adjusted P value; FDR = 0.05)

Term FDR-adjusted
P value

Polymorphism 4.7 × 10−145

Sequence variant 2.3 × 10−111

Alternative splicing 6.8 × 10−74

Splice variant 1.6 × 10−46

Phosphoprotein 6.2 × 10−25

Protocadherin gamma 1.8 × 10−16 PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA4, PCDHGA5, PCDHGA6, PCDHGA7, PCDHGA8, PCDHGA9,
PCDHGB1,

Disease mutation 4.9 × 10−16 PCDHGB2, PCDHGB3, PCDHGB4, PCDHGB5

Domain: cadherin 6 1.5 × 10−10 FAT1, PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA4, PCDHGA5, PCDHGA6, PCDHGA7, PCDHGA8,
PCDHGA9, PCDHGB1, PCDHGB2, PCDHGB3, PCDHGB4, PCDHGB5

Cadherin, N-terminal 3.6 × 10−10 PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA4, PCDHGA5, PCDHGA6, PCDHGA7, PCDHGA8, PCDHGA9,
PCDHGB1, PCDHGB2, PCDHGB3, PCDHGB4, PCDHGB5

Pathways in cancer 8.5 × 10−8

Membrane 1.1 × 10−7

Regulation of actin cytoskeleton 1.8 × 10−7

Long-term depression 9.0 × 10−7

Calcium ion binding 1.1 × 10−6

Plasma membrane 2.2 × 10−6

Glycoprotein 2.4 × 10−6

Gap junctiona 2.6 × 10−6 GNAS, GNAI2, GNAI3, GUCY1A3, MAP2K1, PDGFA,PRKG1

Cell-cell adhesion 2.7 × 10−6 CD164, CLDN5, CDSN,DAB1, FAT1, FGF6, PARD3, PTPRF, PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA4,
PCDHGA5, PCDHGA6, PCDHGA7, PCDHGA8, PCDHGA9, PCDHGB1,PCDHGB2,PCDHGB3, PCDHGB4,
PCDHGB5

Homophilic cell adhesion 6.1 × 10−6

Chemokine signaling pathway 1.0 × 10−5

Focal adhesion 1.3 × 10−5

Axon guidance 1.3 × 10−5 CLDN5, GNAI2, GNAI3, CSNK2B, MAGI2, MYL12B, PARD3

Tight junctiona 1.6 × 10−5

Biological adhesion 1.7 × 10−5

Cell adhesion 2.2 × 10−5 AEBP1, CD164, CD36, CLDN5, COL11A2, COL20A1, CDSN, DAB1, FAT1, FGF6, IGSF11, LAMA4, LAMC1,
NELL2, NTM, PARD3, PTPRF, PPFIA1, PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA4, PCDHGA5, PCDHGA6,
PCDHGA7, PCDHGA8, PCDHGA9, PCDHGB1, PCDHGB2, PCDHGB3, PCDHGB4, PCDHGB5

Coiled coil 2.6 × 10−5

Melanogenesisa 7.1 × 10−5 GNAS, CREB3, GNAI2, GNAI3, MAP2K1, WNT10B

Vascular smooth muscle contraction 1.1 × 10−4

Chromosomal rearrangement 2.6 × 10−4

Cardiac muscle contraction 2.7 × 10−4

Intracellular signaling cascade 4.5 × 10−4

Cell membrane 4.7 × 10−4

Cell fraction 4.8 × 10−4

Prostate cancer 6.2 × 10−4

Ion binding 6.8 × 10−4

Acetylation 7.6 × 10−4

Signal 8.3 × 10−4
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Table 3 Terms significantly enriched in functional annotation and pathway analysis and genes present in the pathways potentially
associated with eczema (FDR-adjusted P value; FDR = 0.05) (Continued)

Transmembrane 1.0 × 10−3

Mutagenesis site 1.1 × 10−3

Cation binding 1.2 × 10−3

Lysine degradation 1.4 × 10−3

Leukocyte trans endothelial
migration

1.5 × 10−3

Lysosome 1.5 × 10−3

Transcription factor binding 3.9 × 10−3

Melanomaa 4.6 × 10−3 E2F2, FGF6, MAP2K1, PDGFA

Tumor suppressor 5.0 × 10−3

Nucleotide binding 5.0 × 10−3

Endocytosis 7.0 × 10−3

Apoptosisa 7.3 × 10−3 CHP2, NTRK1, PPP3CA, RIPK1

Small cell lung cancer 7.3 × 10−3

Nucleus 1.1 × 10−2

Cell projection 1.7 × 10−2

Positive regulation of cellular
biosynthetic process

4.4 × 10−2

Transcription co-activator activity 4.9 × 10−2

aRepresents pathways which are involved in eczema with their genes
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eczema severity. For multiple CpG sites, DNA methyla-
tion was associated with eczema in the F1 generation at
age 18. These CpG sites could be risks or consequences of
eczema. However, CpGs replicated in the F2 generation
were measured in cord blood before the onset of eczema
and thus have the potential to predict eczema.

Conclusions
This is the first epigenome-scale association study of ec-
zema employing a classification technique (recursive RF),
and we identified eczema-associated CpG sites. The find-
ings added to the existing knowledge that recursive RF can
be successfully employed in drawing actionable results from
complex datasets. Genes annotated to eczema-associated
CpGs were significantly enriched in pathways related to the
creation of transcriptional variation and pathways relating
to epidermal barrier function and eczema. Furthermore,
the study identified for the first time that the PROZ and
NEU1 genes are potential predictors of eczema.

Methods
Isle of Wight birth cohort
The Isle of Wight (IoW) birth cohort was established to
study the natural history of allergic diseases among
children who were born between January 1, 1989 and
February 28, 1990 on the Isle of Wight, UK. The study
was approved by the local research ethics committee
and written informed consent was obtained from the
parents. After exclusion of adoptions, perinatal deaths,
and refusal, 1456 children (95 %) were enrolled. Chil-
dren were followed-up at ages 1 (n = 1167), 2 (n = 1174),
4 (n = 1218), 10 (n = 1373), and 18 years (n = 1313);
detailed questionnaires were administered at each
follow-up. Details of the birth cohort have been de-
scribed elsewhere [4, 30, 31]. A total of 244 women
and 122 men at age 18 years were randomly selected
from the cohort for epigenome-scale DNA methylation
studies. Ethics approvals were obtained from the Isle of
Wight Local Research Ethics Committee (now named the
National Research Ethics Service, NRES Committee South
Central – Southampton B) at recruitment and for the sub-
sequent follow-ups (06/Q1701/34).

Outcome: eczema phenotype data collection
Eczema was defined as chronic or chronically relapsing
itchy dermatitis lasting more than 6 weeks with charac-
teristic morphology and distribution [32], following
Hanifin and Rajka criteria [5].

DNA methylation
DNA was extracted from whole blood and umbilical cord
blood using a standard salting out procedure [33]. DNA
concentration was determined by Qubit quantitation. One
microgram of DNA was bisulfite-treated using the EZ
96-DNA methylation kit (Zymo Research, Irvine, CA,
USA) following the manufacturer’s standard protocol.



Table 4 The 41 CpGs that had the same direction of effect with eczema in both F1 and F2 generations based on log-linear models

CpGs F1-Risk Ratio 95 % CI-F1 F2-risk ratio 95 % CI-F2 Gene

cg00193668 17.29 2.90, 102.87 4.86 0.89, 26.4 HINT2

cg04850479a 15.19 3.07, 75.17 6.82 1.52, 30.6 PROZ

cg02641560 14.50 3.39, 62.65 1.33 0.13, 12.8 RCAN3

cg05839818 13.02 2.34, 72.26 1.3 0.13, 12.1

cg05411056 9.73 2.64, 35.81 5.61 1.44, 21.85

cg02077766 9.60 2.14, 43.07 1.29 0.38, 4.33 PTCRA

cg00667315 7.66 1.88, 31.21 1.25 0.19, 8.0

cg00900242 6.86 1.26, 37.20 6.04 0.75, 48.6

cg02583247 6.61 2.05, 21.33 1.27 0.26, 6.10 FGF6

cg01802073 6.10 1.40, 26.43 1.43 0.24, 8.61 CGRRF1

cg14839837 5.90 1.63, 21.39 2.94 0.73, 11.7 ARHGEF10

cg00354884 5.77 1.95, 17.03 1.8 0.59, 6.03 ABR

cg00158434 5.43 1.75, 16.78 2.47 0.52, 11.5 ALMS1P

cg03049303 4.73 1.44, 15.57 4.61 0.77, 27.4 C10orf76

cg24303123 4.68 1.73, 12.65 1.49 0.50, 4.46 RIPK1

cg11570082 4.46 1.85, 10.71 2.56 0.58, 11.2

cg02237186 4.26 1.24, 14.63 2.89 0.16, 51.1 RRM2

cg02654265 3.92 1.56, 9.87 0.29 0.05, 1.52

cg00369908 3.65 1.34, 9.92 4.05 0.75, 21.6 ING4

cg00722180 3.64 1.22, 0.85 2.84 0.63, 12.7 RBM25

cg02433979 2.91 1.35, 6.27 1.17 0.37, 3.68

cg00035220 2.62 1.19, 5.72 1.18 0.34, 4.03 PTPRN2

cg00252472 2.62 1.27, 5.40 1.22 0.44, 3.38

cg00306063 2.59 1.12, 5.97 2.12 0.48, 9.19 LOC100129066

cg00742851 2.23 1.16, 4.28 1.26 0.45, 3.48 LRRN1

cg02203881 2.07 1.07, 4.00 1.67 0.46, 6.02 PLA2G4D

cg00576402 0.57 0.35, 0.92 0.76 0.28, 2.07 PTPN12

cg01560119 0.41 0.21, 0.80 0.79 0.37, 1.68 SETDB2

cg01651499 0.37 0.16, 0.85 0.41 0.12, 1.34 GUCY1A3

cg02098905 0.35 0.16, 0.76 0.41 0.14, 1.12

cg04797820 0.33 0.17, 0.64 0.93 0.31, 2.76 GLT1D1

cg00247571 0.31 0.13, 0.75 0.89 0.26, 2.50

cg00071869 0.30 0.13, 0.70 0.77 0.12, 4.88 ATP1B3

cg00797821 0.29 0.10, 0.82 0.36 0.06, 2.12

cg01158447 0.24 0.09, 0.60 0.35 0.11, 1.14 SLC40A1

cg00077547 0.21 0.06, 0.70 0.91 0.25, 3.24 TMEM26

cg04980849 0.21 0.07, 0.60 0.57 0.16, 1.96 LOC145663; GATM

cg00050654 0.19 0.07, 0.51 0.71 0.20, 2.43

cg20077343 0.19 0.06, 0.58 0.25 0.03, 1.83 MUC6

cg17602756 0.14 0.03, 0.64 0.26 0.05, 1.39 SQSTM1

cg01427769a 0.13 0.03, 0.46 0.09 0.02, 0.36 NEU1
aCpG sites significantly associated with eczema in both generations. For cg04850479, the P values are 0.0006 in the F1 generation and 0.0121 in the F2 generation,
and for cg01427769, the P values are 0.0015 and 0.0007, respectively
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Fig. 2 The risk ratios of 83 eczema-associated CpGs sorted by chromosome from 1 to 21. The numbers in the textbox are chromosome indices,
which are represented by different colors in the bar graphs. The horizontal red line represents the risk ratio of one
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Epigenome-scale DNA methylation was assessed using
the Illumina Infinium HumanMethylation450 Beadchip
(Illumina, Inc., San Diego, CA, USA), which interrogates
>484,000 CpGs associated with approximately 24,000
genes. Arrays were processed using a standard protocol as
described elsewhere [7], with multiple identical control
samples assigned to each batch to assess assay variability,
and samples were randomly distributed on microarrays to
control against batch effects. The methylation level (β
value) for each CpG was determined using the Methyla-
tion module of GenomeStudio software (Illumina, Version
2011.1).
Methylation levels for each CpG site are recorded as

beta (β) values, which represent the proportion of
methylated (M) over methylated (M) plus unmethylated
(U) probes (β =M/[c +M +U], with constant c intro-
duced for the situation of too small M +U) and can be
interpreted as percentage methylation. These values
were utilized in the RF screening process described below;
however, β values close to 0 or 1 tend to suffer from severe
heteroscedasticity; therefore, logit-transformed β values
(M values, approximated by log2(β / (1-β)) [34] were used
in other analyses including log-linear models.
Pre-processing DNA methylation data
In our study, the detection P value reported by Geno-
meStudio was used as a QC measure of probe perform-
ance. Probes whose detection P values were >0.01 in
>10 % of the samples were removed [35]. Methylation
data were then pre-processed using the Bioconductor
IMA (Illumina methylation analyzer) package and Com-
Bat was used to perform peak correction and adjust for
inter-array variation [36, 37]. To ensure that our findings
were not biased by SNPs affecting measurement of
methylation levels, we excluded all probes with a poten-
tial SNP in the probe sequence. After pre-processing, a
total of 307,357 CpGs were retained in the DNA methy-
lation dataset.
Fig. 3 Flow chart of statistical analyses and the number of CpG sites after e
Statistical analysis
Pearson’s χ2 tests were used to determine if prevalence
of eczema differed between the sexes. P values were con-
sidered significant at a level of 0.05. To make sure that
our findings are not a result of confounding due to cell
types, we ran the analyses by adjusting for estimated
proportions of CD8+ T cells, CD4+ T cells, natural killer
cells, B cells, monocytes, and granulocytes. Cell type
proportions were estimated as described previously [16].
The random forest package, randomForest(), in R was

utilized to conduct the recursive RF analyses [38, 15, 14].
The parameter sampsize refers to the size of the sample of
training data sets that is to be obtained for classification.
The number of variables that are randomly sampled as
predictors at each split is called mtry, whereas, ntree is a
parameter referring to the total number of trees that are
to be grown in the forest. In order to improve the predic-
tion accuracy of the RF algorithm, these three parameters
were repeatedly altered until the lowest misclassification
rate was obtained. We decided whether to use a balanced
sampsize of equal eczema and non-eczema cases such as
20 eczema and 20 non-eczema cases or 30/30 or 40/40.
We also studied imbalanced RFs with sampsize such as
46/320 or 20/40 for the training sets by using the default
values for mtry and ntree. We then tested the prediction
accuracy of the RFs at different combinations of mtry (√p,
2*√p, 0.1p, 0.15p, 0.2p, and 0.25p) where p is number of
variables and ntree (200, 500, 1000, and 1500). Once the
optimal parameter values were selected, the recursive RF
algorithm was implemented. Mean Decrease Gini (MDG)
served as a variable importance measure (VIM) for our
study as it was shown to be more robust in previous re-
search [39].
DNA methylation at 307,357 CpGs along with sex and

eczema status in the F1 generation served as input in
randomForest(), and the CpGs were subjected to data
reduction, repeatedly dropping 50 % of variables with
the lowest VIMs until the misclassification rate showed
a significant increase.
ach analysis in the F1 and F2 generations. RRF: recursive random forest
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After testing for sampsize (both equal and unequal)
with different combinations (both with and without
eczema), we set sampsize = (31, 31), mtry = 0.2p (where
p is the available number of variables) and ntree = 500.
We applied RF to pre-processed DNA methylation data
containing 307,357 CpGs in the F1 generation, ran a
total of 17 iterations, and at each iteration, recorded the
misclassification rate (Table 2, Fig. 1). The lowest overall
misclassification error rate (of eczema and eczema-free)
was 5.2 %, with a corresponding least misclassification
rate of 17.4 % for eczema at the 12th iteration. The over-
all misclassification rate dropped from 18.6 % in the first
iteration to 5.2 % in the 12th iteration, and the eczema
misclassification error rate dropped to 17.4 % at the end
of 12th iteration from 95.7 % in the first iteration.
The CpGs identified from the recursive RF [40] were

assessed for enrichment of biological pathways using DA-
VID [12] bioinformatics tool and examined for their asso-
ciation with eczema at age of 18 years by use of log-linear
models. Multiple testing was adjusted by controlling false
discovery rate of 0.05 in the pathway analysis and log-
linear models. Since differential cell types in the peripheral
blood are known to have confounding effect on the final
result [16], we adjusted for cell type correction. For genes
of particular interest (e.g., showing statistical significance
in both generations in log-linear models), robust regres-
sions are applied to assess the association of DNA methy-
lation and corresponding gene expressions in the F2
generation. For this last test, multiple testing is adjusted
within genes based on the number of CpG sites available
of that gene.
Replication cohort
The IoW F2 generation cohort includes the offspring of
the IoW 1989 birth cohort. In the F2 generation, re-
peated measures of eczema at ages 3, 6, and 12 months
were recorded in a sample of n = 116 children. DNA
methylation was measured in umbilical cord blood. To
replicate the findings from the F1 generation, log-linear
models with repeated measures of eczema were used in
F2 generation analyses. Figure 3 represents the summary
of statistical analysis and sample size for each analysis
conducted in this study.
Additional file

Additional file 1: Table S1. Beta coefficients and P values after log-linear
model of the 140 CpGs present in the 12th iteration of the RF algorithm
output and their genetic details. Software necessary to view: Adobe Reader.
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