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Abstract

therapeutic relevance.

The development of type-2 diabetes mellitus (T2DM) and its complications is largely due to the complex interaction
between genetic factors and environmental influences, mainly dietary habits and lifestyle, which can either accelerate
or slow down disease progression. Recent findings suggest the potential involvement of epigenetic mechanisms as a
crucial interface between the effects of genetic predisposition and environmental factors. The common denominator
of environmental factors promoting T2DM development and progression is that they trigger an inflammatory response,
promoting inflammation-mediated insulin resistance and endothelial dysfunction. Proinflammatory stimuli, including
hyperglycemia, oxidative stress, and other inflammatory mediators, can affect epigenetic mechanisms, altering the
expression of specific genes in target cells without changes in underlying DNA sequences. DNA methylation and
post-translational histone modifications (PTHMSs) are the most extensively investigated epigenetic mechanisms.
Over the past few years, non-coding RNA, including microRNAs (miRNAs), have also emerged as key players in
gene expression modulation. MiRNAs can be actively released or shed by cells in the bloodstream and taken up in
active form by receiving cells, acting as efficient systemic communication tools. The miRNAs involved in modulation of
inflammatory pathways (inflammamiRs), such as miR-146a, and those highly expressed in endothelial lineages and
hematopoietic progenitor cells (angiomiRs), such as miR-126, are the most extensively studied circulating miRNAs in
T2DM. However, data on circulating miRNA signatures associated with specific diabetic complications are still lacking.
Since immune cells and endothelial cells are primarily involved in the vascular complications of T2DM, their relative
contribution to circulating miRNA signatures needs to be elucidated. An integrated approach encompassing different
epigenetic mechanisms would have the potential to provide new mechanistic insights into the genesis of diabetes
and its severe vascular complications and identify a panel of epigenetic markers with diagnostic/prognostic and
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Review

Introduction

Type-2 diabetes mellitus (T2DM) is a chronic multifac-
torial metabolic disease caused by a complex interaction
between environmental and genetic factors [1]. T2DM is
a source of disability and morbidity related mainly to
vascular complications which underlie the development
of retinopathy, nephropathy, neuropathy, ischemic heart
disease, and peripheral vasculopathy [2, 3]. Endothelial
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dysfunction (ED) is the key etiological factor that in-
duces moderate to severe vascular complications and
has been proposed as a key therapeutic target in T2DM
patients [4, 5]. Early exposure to hyperglycemia can in-
volve disease progression and late complications, per-
petuating ED despite the achievement of improved
glycemic control; the phenomenon has been called
“metabolic memory” [6]. A variety of mechanisms con-
tribute to metabolic memory, including increased pro-
duction of advanced glycation end-products (AGEs),
AGE-receptor (RAGE) overexpression, increased anion
superoxide formation, mitochondrial protein glycation,
mitochondrial (mt)DNA damage, protein kinase C
(PKC) activation, and polyol pathway and hexosamine
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flux alterations [6]. As a consequence of metabolic
memory, the risk of diabetic complications escalates over
time despite combined treatment with glucose-lowering
drugs, anti-hypertensives, and anti-inflammatory agents
[7]. Notably, the concept of metabolic memory refers
mainly to vascular stress and damage persisting after
glucose normalization; recent evidence shows that oscil-
lating glucose may be more harmful than hyperglycemia
itself [8].

A number of genes involved in susceptibility to T2DM
and its complications have been identified by linkage
studies, candidate gene association studies, genome-wide
association studies, and meta analyses in diverse ethnic
groups [9]. At present, however, genetic testing cannot
accurately predict the clinical risk of T2DM and/or its
complications, suggesting that the disease is not entirely
accounted for by genetic predisposition [10, 11].

Recent data suggest that epigenetic mechanisms may
be a crucial interface between the effects of genetic pre-
disposition and environmental factors [12, 13]. Transient
hyperglycemia may mediate persistent gene-activating
events underlying metabolic memory and sustain ED,
despite the achievement of a good glycemic control [14].

DNA methylation and post-translational histone modi-
fications (PTHMs) are the most extensively investigated
epigenetic mechanisms involved in metabolic memory.
PTHMs and DNA methylation can become irreversible
over time, explaining the long-lasting detrimental effects
of metabolic memory, which induce T2DM vascular
complications even after improvement of glycemic
control.

Epigenetic mechanisms may thus at least partly ex-
plain the link between factors acting during fetal life and
the later risk of developing T2DM [15]. In mammals,
the DNA methylation pattern is largely established dur-
ing embryo development [16, 17]. Once formed, DNA
methylation patterns must be maintained during cell
division to preserve cell identity, even though some
changes are observed during chronological aging [18].
Therefore, factors acting during prenatal life capable of
inducing epigenetic modifications in different tissues
and organs, such as malnutrition or stress, may have a
long-term effect by increasing the risk of T2DM and
coronary heart disease in later life [19]. It is therefore
conceivable that epigenetic modifications in fetal life set
a range of parameters—such as insulin sensitivity and se-
cretion, hepatic glucose production, and synthesis and
release of hormones involved in glucose and insulin
metabolism—affecting the risk of T2DM development in
adult life.

Additional epigenetic mechanisms have recently been
identified. Non-coding RNA, including microRNAs
(miRNAs), have emerged as key factors in gene-expression
modulation and could play a role in the modulation of
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metabolic memory. More than 2000 human miRNAs have
been identified, making them one of the most abundant
classes of epigenetic regulatory molecules [20]. MiRNAs
were previously thought to act mainly as negative regula-
tors of gene expression by binding to 3-UTR regions of
their target protein-coding mRNAs in a sequence-
dependent manner [21]. However, a growing body of evi-
dence supports the notion that miRNAs are not only
post-transcriptional regulators of gene expression. Indeed,
they can indirectly modulate the methylation of promoter
or coding sequences by targeting enzymes involved in
methylation [22] and can directly repress or stimulate
target-gene transcription by direct binding to promoter
regions, a phenomenon that has been designated RNA
activation (RNAa) [23]. Interestingly, a class of 24
nucleotide-long plant miRNAs (ImiRNAs) are capable of
recruiting methyltrasferases, thus directly modulating
DNA methylation [24]. ImiRNAs bound to AGO4 pro-
teins interact with the nascent transcripts transcribed
from their own loci or target genes, thereby recruiting de
novo cytosine methyltransferase DRM2 to methylate adja-
cent DNA [24]. Furthermore, miRNA genes are exten-
sively regulated at the level of promoter methylation,
transcription, and processing [23].

Importantly, miRNAs can be actively released or shed
by cells in the bloodstream and taken up in active form
by receiving cells, acting as efficient systemic communi-
cation tools. Thanks to their easy detection in serum
and plasma, stability under a variety of storage condi-
tions, and ability to be measured by sensitive, specific as-
says (e.g., quantitative RT-PCR), they are emerging as
minimally invasive, inexpensive biomarkers of complex
processes like age-related diseases including T2DM and
its complications [25].

MiRNAs are being demonstrated to be functional bio-
markers capable of co-ordinating multiple pathways and
modulate virtually all cellular responses to environmen-
tal stimuli according to each individual’s genetic makeup.
Factors associated with diabetic complications, such as
hyperglycemia, oxidative stress, and inflammation, can
induce deregulation of epigenetic mechanisms, resulting
in modification of circulating miRNA profiles. Conse-
quently, the expression of specific genes in target cells,
especially in endothelial and vascular smooth muscle,
can be changed without inducing modification in the
underlying DNA sequence [14].

Circulating miRNAs are thus expected to be inform-
ative, easily accessible, and cost-effective candidate bio-
markers of the age-related disease development and
progression, enabling assessment of the health status of
individuals both at the level of specific tissues/organs
and at the systemic level [25]. Only an integrated ap-
proach that considers different epigenetic mechanisms
as a whole may have the potential to provide new
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mechanistic insights into the genesis of the vascular
complications of diabetes and identify a panel of epigen-
etic markers, “epi-markers”, with diagnostic/prognostic
relevance. Circulating miRNAs as well as DNA/histone
methylation/acetylation can be considered as candidate
“epi-markers”. Innovative therapeutic strategies for the
chronic complications of T2DM should focus on delet-
ing metabolic memory by targeting enzymes involved in
methylation/acetylation of DNA and histones and by
modulating miRNA expression levels.

Here, we review the latest data on epigenetic mecha-
nisms in relation to their ability to modulate T2DM pro-
gression, discuss the possibility of using epi-markers as
diagnostic and prognostic markers of T2DM and its
complications and provide an up-to-date perspective on
the potential of using circulating miRNAs as biomarkers
of T2DM and its complications.

Epigenetic mechanisms involved in the persistence of
metabolic memory and in the development of T2DM
complications
Aging is associated with a chronic systemic inflamma-
tory state, named inflammaging, which greatly contrib-
utes to diabetes onset and progression [26, 27]. The
similarity of the risk factors for cardiovascular disease
(CVD) and diabetes has generated the hypothesis of a
shared inflammatory basis [28]. The repeated stimula-
tion of innate immune response over time and the accu-
mulation of senescent cells during aging are the main
contributors to inflammaging. Senescent cells can acquire
a phenotype that is closely related to the senescence
phenotype, named senescence-associated secretory pheno-
type (SASP) [29]. Even though senescence does not neces-
sarily entail SASP acquisition, as demonstrated by the fact
that ectopic expression of the cyclin-dependent kinase in-
hibitor p16INK4a induces senescence in the absence of a
functional SASP, the phenotype is commonly associated
with both replicative and induced senescence [30, 31].
Albeit in growth arrest, senescent cells remain meta-
bolically active, secreting several different bioactive mol-
ecules, i.e., cytokines, growth factors, metalloproteinases,
and other metabolites that contribute to induce and
maintain a proinflammatory microenvironment [32].
The inflammatory phenotype, which is typical of the
cells involved in immune responses, including endothe-
lial cells (ECs), triggers the activation of nuclear factor
kappa B (NF-kB)-dependent signaling, which induces
transcription of a number of genes involved in the
modulation of inflammatory response, including adhe-
sion molecules, such as VCAM-1, and cytokines, such as
interleukin (IL)-1, IL- 6, and TNFa [33]. Notably, these
genes are chronically activated in cells from diabetic pa-
tients [34, 35]. Even though the mechanisms involved in
the maintenance of inflammaging are not completely
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clear, emerging evidence suggests that epigenetic mecha-
nisms could be involved, contributing to the development
of diabetes and its vascular complications [36]. Since co-
ordinated changes involved in chromatin remodeling are
detected days after exposure to hyperglycemia even after
restoration of normoglycemic conditions, such epigenetic
modifications may be involved in maintaining metabolic
memory. A number of studies are currently exploring epi-
genetic mechanisms in the expression of proinflammatory
genes. Notably, modulators of methylation status, histone-
modifying enzymes, and specific miRNAs may provide a
novel strategy to prevent T2DM and its complications.

Recent data have disclosed glucose-mediated changes
in the transcription and activation of NF-kB in ECs and
peripheral blood cells exposed to transient hypergly-
cemia, or obtained from diabetic patients. In particular,
some epigenetic alterations have been observed in the
NEF-kB promoter region, leading to increased expression
of NF-kB subunit p65, such as: 1) recruitment of the his-
tone methyltransferase Set7 and increased monomethy-
lation of H3K4 (lysine 4 of histone 3) [37, 38]; 2)
increased recruitment of the histone demethylase LSD1
and reduced H3K9 methylation; and 3) histone acetyl-
transferase (HAT)-mediated histone H3K9 hyperacetyla-
tion. Moreover, CREB-binding protein (CBP) and CBP-
associated factor (P/CAF) are NF-kB coactivators pos-
sessing intrinsic HAT activity and are involved in NF-kB
activation [39]. Reversible acetylation of NF-kB subunits
induces an intranuclear molecular switch controlling the
duration of NF-kB transcriptional response [40]. There-
fore, histone acetylation/deacetylation through HAT could
constitute an innovative therapeutic strategy to counteract
hyperglycemia-induced inflammation [41]. Of interest, in
human aortic endothelial cells (HAECs), Set7 silencing
prevented H3K4 monomethylation and abolished NF-kB-
dependent oxidant and inflammatory signaling, suggesting
that Set7 could be targeted to erase metabolic memory
and avoid vascular complications [42, 43].

Increasing data have disclosed glucose-mediated changes
in the transcription of other genes expressed in ECs and
involved in modulation of inflammation. In particular,
rapid histone H3K9/K14 hyperacetylation is associated
with enhanced expression of HMOXI1 (heme oxygenase
(decycling) 1), IL-8, and matrix metalloproteinase 10
(MMP-10) in HAECs exposed to hyperglycemia [44].

Histone H3K9 acetylation has been detected in
monocytes from diabetic patients as having TNFa over-
expression and enhanced activation of cyclo-oxygenase
(COX)-2, which have an important role in the induc-
tion and maintenance of inflammatory processes [41].
In conclusion, H3K9 hyperacetylation of a variety of
gene promoters (e.g.,, HMOX1, IL-8, MMP-10, TNFa,
and COX-2) is a common feature of vascular and im-
mune cells in diabetic patients [41, 44].
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Interestingly, epigenetic mechanisms are closely inter-
connected, and specific miRNAs can modulate epigen-
etic signatures through different mechanisms, including
targeting of methyltransferases [45]. In myocardial vas-
cular smooth muscle cells from diabetic mice, miR-125b
elevation induced repression of the methyltransferase
Suv39hl, which in turn was associated with reduced
H3K9me3 expression in the promoter region of inflamma-
tory genes such as MCP-1 and IL-6, resulting in increased
expression of the cytokines [46]. The methylation status of
the miR-125b gene can be controlled by DNA methyl-
transferase 1 (DNMT1) [47]. DNMT1 overexpression may
result from activation by reactive oxygen species and
hyperglycemia in different cell models [47, 48]. However, a
direct link between DNMT1 and miR-125b in diabetes re-
mains to be demonstrated.

Genome-wide analysis of lysine-methylation changes
in THP-1 cells, a human monocyte cell line, exposed to
hyperglycemia and in monocytes from diabetic patients
has documented differential changes in H3K9 dimethyla-
tion at PTEN-coding and IL-1A promoter regions [49].
However, it is unclear whether the diabetic environment
triggers the same epigenetic modifications in ECs.

The above epigenetic studies have often described an
association of different PTHMs with mediators that are
involved in the vascular complications of diabetes. Chro-
matin immunoprecipitation (ChIP) combined with DNA
array analysis (ChIP-on-chip) has been used for years to
acquire genome-wide information on histone modifica-
tions [50]. Wider high-resolution maps of DNA methyla-
tion (methylome), not focusing on one particular
modification/residue, can now be obtained using next
generation sequencing devices [51, 52], and could pro-
vide insights into disease pathogenesis and identify bio-
markers or potential drug targets.

Genome-wide methylated DNA immunoprecipitation
sequencing (MeDIP-seq) in whole-blood-derived DNA
from 27 monozygotic twin pairs has disclosed a large
role for MALT1 (mucosa-associated lymphoid tissue
lymphoma translocation protein 1) gene in T2DM inci-
dence [53]. MALT1 is involved in NF-kB activation
through the formation of the Carmal-Bcll10-Maltl
(CBM) complex, which is essential for activation of I
kappa B kinase (IKK) [54]. A similar approach to the
complications of diabetes could provide a signature with
strong predictive potential for patients at risk of its vas-
cular complications.

Other epigenetic mechanisms have also been described
in association with T2DM, such as reduced Long Inter-
spersed Nucleotide Element 1 (LINE-1) DNA methylation
[55]. DNA methylation measured in LINE-1 sequences
has been considered a surrogate marker for global genome
methylation. Low methylation in LINE-1-repetitive ele-
ments has been associated with chromosomal instability
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as well as inflammatory process [56]. Notably, lower
LINE-1 DNA methylation levels in peripheral blood cells
were associated with a higher risk of T2DM, independ-
ently from other classic risk factors, highlighting the po-
tential role for these epigenetic biomarkers as predictors
of T2DM risk or other related metabolic disorders [55].

Circulating miRNAs as biomarkers of T2DM and its
complications

The common denominator of environmental factors
identified as risk factors for the most common age-
related diseases, including T2DM, is that they trigger
an inflammatory response [57]. Notably, the chronic
low-grade systemic inflammation occurring during
physiological aging accelerates the development of the
age-related diseases, including T2DM [58]. Proinflamma-
tory cytokines receptors, NOD-like Receptors (NLRs) and
Toll-like receptor (TLR) pathways play a significant role
in the pathogenesis of inflammaging and inflammation-
mediated insulin resistance [59-61]. TLR ligands, such as
free fatty acids and lipid derivatives from adipocytes and
skeletal muscle, activate the TLR pathway inducing NF-kB
activation, thus promoting inflammation-mediated insulin
resistance and inflammation-mediated ED [61]. TLRs
pathway genes are modulated by different epigenetic
mechanisms, including miRNAs, the shortest non-coding
RNAs involved in gene expression modulation. MiRNAs
are expressed by all living cells and can be secreted or re-
leased by cells within small membranous vesicles (e.g.,
exosomes, microparticles, and apoptotic bodies) or pack-
aged in high-density lipoproteins (HDLs), or RNA-binding
proteins (e.g., Argonaute) [62—65]. MiRNAs circulate in
the bloodstream in a remarkably stable form [66, 67]. Even
though in most instances where the origin of circulating
miRNAs is unclear, they have been extensively studied as
possible biomarkers for a wide range of human diseases,
such as cancers, CVD, and immunological, neurodegener-
ative, and metabolic diseases, including diabetes [68].

We recently defined a number of miRNAs involved in
the modulation of TLR pathways as “inflammamiRs”
[25]. Notably, the majority of inflammamiRs have been
detected not only in tissue but also in plasma and other
body fluids, suggesting that they could be involved in the
cross-talk between tissues and organs that characterizes
systemic inflammation. MiR-146a is the best characterized
inflammamiR; it is involved in restraining inflammation,
switching off the acute inflammation after removal of the
harmful stimulus [69]. Under chronic stimulation, it is
overexpressed in different cell types, including ECs and
white blood cells [70, 71]. Altered, either increased or de-
creased, miR-146 expression has been associated with sev-
eral diseases, including diabetes [72-78]. MiR-146a is
down-regulated in peripheral blood mononuclear cells
(PBMCs) of T2D patients [72, 73], whereas in plasma of



Prattichizzo et al. Clinical Epigenetics (2015) 7:56

T2DM patients, both reduced and increased miR-146a
expression have been described [74-76]. Since different
cell types can contribute to circulating miRNA levels,
and since hyperglycemia is expected to have different
effects on different cell types, contributing to the circu-
lating miRNA pool, miRNA expression is necessarily
different in PBMCs and serum. Notably, increased levels
of circulating miR-146a have been reported only in
newly diagnosed, treatment-naive T2DM patients. MiR-
146a expression has also been assessed in animal
models of diabetes, like diabetic mice. A positive correl-
ation has been described between miR-146a levels, NF-
kB activation, and levels of inflammatory mediators [77,
78]. Moreover, miR-146b-3p, of the miR-146 family,
is altered in the vitreous of diabetic patients with
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retinopathy [79]. The epigenetic modulation of NF-kB
transcription/activation in immune cells or ECs is an
example of how different epigenetic mechanisms can
synergistically interact to maintain a specific phenotype,
i.e., metabolic memory, over time (Fig. 1). It may be hy-
pothesized that in the presence of proinflammatory
stimulation, induced by chronic hyperglycemia, miR-
146a fails to restrain the increased levels of inflamma-
tory markers (Fig. 1la—b). Despite the eventual achieve-
ment of glycemic control, the persistence of epigenetic
modifications induced by the transient hyperglycemia,
such as H3K9 monomethylation in the p65 promoter
region, induces an increased NF-kB transcription, which
in turn, maintains a weakly increased expression of the
proinflammatory mediators (Fig. 1c).

Optimal diabetes therapy
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Fig. 1 Glycemia-associated epigenetic mechanisms involved in NF-kB proinflammatory activity. Panels a-b. Cells exposed to high glucose exhibit
upregulated expression of the NF-kB subunit of p65 gene, monomethylation of histone 3 at lysine 4 (H3K4), and demethylation of H3K9 in the
p65 promoter region. Moreover, hyperglycemia induces NF-kB transcription factor activation through stimulation of upstream pathways,
increasing the synthesis of inflammatory mediators (IL-6, VCAM-1, MCP-1) and the expression of anti-inflammatory microRNAs, e.g., miR-146a.
Under persistent hyperglycemic conditions miR-146a cannot restrain the effect of upstream proinflammatory stimuli on NF-kB activation. Panel
¢ shows that anti-diabetic agents can reduce proinflammatory stimuli on the NF-Kb pathway, restraining p65 activation and miR-146a expression
but does not alter H3K4 monomethylation and H3K9 demethylation in the p65 promoter region. The phenomenon may explain why the
cardiovascular complications of diabetes progress even in presence of optimal glycemic control. AGE, advanced glycation end-products; DAMP,
damage-associated molecular patterns; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; RAGE, receptor for advanced glycation
end-products; VCAM-1, vascular cell adhesion molecule-1; TLR-4, toll-like receptor 4
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This strongly suggests that a consistent reduction of
NE-kB activity in immune cells and ECs of diabetic pa-
tients requires a reduction in both NF-kB transcription
and activation through modulation of DNA methylation,
histone modifications, and miRNAs expression.

Genetic variability at miR-146a loci seems to be unre-
lated to T2DM incidence; inconclusive data were re-
ported on the association between single nucleotide
polymorphism (SNP) rs2910164 of miR-146a gene and
T2DM incidence in a large cohort of Chinese Han sub-
jects [80, 81]. However, miR-146a/rs2910164 and fasting
glucose have been reported to exert significant com-
bined effects on ischemic stroke susceptibility [81].

Other miRNAs involved in inflammatory pathway
modulation have been associated with diabetes. In a re-
cent, important meta-analysis, 40 circulating miRNAs,
including miR-126, miR-375, miR-29a, miR-34a, miR-
103, miR-107, miR-132, miR-142-3p, and miR-144 are
significantly deregulated in T2DM [82]. MiR-126 is the
most extensively studied circulating miRNA in T2DM.
It promotes vascular regeneration by functioning as
an angiomiR and by modulating the mobilization of
hematopoietic stem/progenitor cells. A number of re-
ports have shown its down-regulation in diabetic pa-
tients [83—85]. We previously reported that circulating
levels of miR-126 increase during physiological aging
and that the phenomenon is paralleled by increased
miR-126 synthesis and release in ECs undergoing senes-
cence in vitro [84]. When we compared diabetic pa-
tients to age-matched healthy controls, we found
reduced circulating miR-126 levels in T2DM patients,
especially the oldest ones [84], suggesting that circulat-
ing miR-126 behaves differently in aging and diabetes.
This apparent paradox can partially be explained by hy-
pothesizing that the aging/senescence-associated miR-
126 up-regulation is a senescence-associated compensa-
tory mechanism that is blunted when ECs are exposed
to high glucose levels; a phenomenon that probably oc-
curs in T2DM patients.

No clear data are available on circulating miR-126 in
relation to diabetes complications. Increased levels of
circulating miR-126 have been reported in patients with
coronary artery disease (CAD) [86], and in a recent pro-
spective study, miR-126 levels were found to be posi-
tively associated with incident myocardial infarction
[87]. However, significantly reduced miR-126 levels were
found in circulating microparticles from CAD patients
with T2DM [88]. Overall, these data suggest that differ-
ent circulating miR-126 levels may be found in diabetic
patients with cardiovascular complications compared
with those with other diabetic complications.

MiR-21 is an extensively studied miRNA in tumor re-
search, since it has been identified as an oncomiR. Not-
ably, our group first identified it as an inflammamiR
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[89]. MiR-21 down-regulation has been described in
serum and in endothelial progenitor cells of diabetic pa-
tients [83]. Regarding diabetic complications, increased
miR-21 levels have been reported in diabetic patients
with proliferative diabetic retinopathy [90]. Moreover, a
tissue-specific increase in miR-21 has been reported in
different hyperglycemic environments [91, 92]. Interest-
ingly, miR-21 up-regulation in glomerular tissue seems
to be a compensatory mechanism to counteract kidney
failure in diabetic patients [93].

Analysis of plasma miR-375 expression showed that it
was down-regulated in patients with impaired glucose
tolerance (IGT) compared with those with normal glu-
cose tolerance (NGT), whereas patients with frank
T2DM showed an opposite trend, with significantly in-
creased circulating miR-375 compared with healthy sub-
jects [94]. Analysis of the methylation status of the miR-
375 gene in the same cohort of patients disclosed that it
was increased in IGT patients compared both with NGT
and T2DM patients. This suggests the possibility of dif-
ferent epigenetic modifications in relation to disease
stage, and differential expression of circulating miRNAs
is found in diabetic patients with different degrees of
glycemic control [84, 94].

Overall, even though some circulating miRNAs appear
to be candidate biomarkers for T2DM (i.e. miR-126),
only few data are available on specific circulating miR-
NAs as biomarkers of diabetic complications [95]. Since
several tissues can be involved in diabetic complications,
it is conceivable that they provide a different relative
contribution to circulating miRNA signatures.

A list of miRNAs differentially expressed in plasma,
serum, or whole blood from T2DM patients compared
with healthy subjects is reported in Table 1, and a list of
miRNAs differentially expressed in tissues from patients
with the complications of diabetes or in human cell lines
exposed to hyperglycemia is reported in Table 2.

Future prospects

The continuous interactions between each individual’s
genetic makeup and environmental factors result in a
spectrum of states that range from healthy aging to age-
related impairment and disease. The major age-related
diseases, including T2DM, may well be characterized by
molecule combinations whose identification would take
us a little closer to discovering the biomarkers of health
deterioration during aging. Circulating miRNAs, and
probably other cell-free nucleic acids, and their shuttles
(exosomes and protein/lipoproteins) provide an efficient
inter-tissue and inter-organ cross-talk system as well as
an integrated reservoir of information relating to all
body tissues and organs. The hypothesis that epigenetic
modifications may underpin metabolic disorders, includ-
ing T2DM, and that specific circulating miRNA signatures
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Table 1 Circulating miRs differentially expressed in T2DM

patients and healthy subjects

Circulating Expression Sample type Refs  miR
miRs in T2DM classification
patients vs. CTR
let-7a Down Plasma [9%6] O
let-7f Down Plasma [96] O
let-7i Down serum [971 O
miR-124a Up serum 98] 1
miR-125b Down Plasma [85] O, 1
miR-126 Down Plasma [85] A l,O
Down Plasma [99]
Down Plasma [83]
miR-130b Down Plasma (85] O
miR-140-5p Up Plasma [85]
miR-142-3p Up Plasma 851 1,0
miR-144 Up Peripheral [74] O, 1
blood
miR-146a Up Serum 98] I,A O
Up Plasma [76]
Down Serum [97]
Down Peripheral [74]
blood
Down Serum [75]
miR-150 Up Peripheral [74] 1A O
blood
miR-15a Down Plasma [83] O
miR-182 Down Peripheral [74] O
blood
miR-186 Down Serum 971 O
miR-191 Down Serum [971 O
Down Plasma [83]
miR-192 Down Plasma 851 O
Down Serum [97]
Up Peripheral 74
blood
miR-195 Down Plasma [85] A O
miR-197 Down Plasma [83] O
miR-199a Up Plasma [100] O
miR-20b Down Plasma 831 A O
miR-21 Down Plasma 831 O, I, A
miR-222 Up Plasma [85] O, A
miR-223 Down Plasma 831 1,0, A
miR-23a Down Serum [971 O
miR-24 Down Plasma [83] Ol
miR-28-3p Up Plasma [83]
miR-29a Up Serum 98] O
Up Peripheral [74]
blood
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Table 1 Circulating miRs differentially expressed in T2DM
patients and healthy subjects (Continued)

miR-29b Down Plasma [83] O
miR-30d Up serum 98] O
miR-320a Down Plasma [83] O
Up Peripheral [74]
blood
miR-326 Up Plasma [96] O
miR-34a Up Serum @8] O, A, I
miR-375 Up Serum [98] O
miR-423-5p Down Plasma [85]
miR-486 Down Serum 971 O
Down Plasma [83]
miR-503 Down serum (1011 O, A
Up Plasma [102]
miR-532-5p Down Plasma [85]
miR-9 Up Serum [98] O
miR-96 Down Serum [971 O

CTR, healthy control subjects; /, inflammamiRs; O, oncomiRs; A, angiomiRs. This
classification is based on the amount of relative literature, and some miRNAs
can be classified in more than one group

can have predictive/diagnostic/prognostic relevance in
T2DM and related complications is fairly recent. Even
though emerging evidence has documented specific circu-
lating miRNA signatures in T2DM, the role of circulating
miRNAs in diabetic complications is still largely unex-
plored. The issue should be investigated in large samples
of T2DM patients with and without diabetic complica-
tions. Since immune cells and ECs are involved in the
most common T2DM complications, their relative contri-
bution to circulating miRNA signatures needs to be eluci-
dated. The investigation of circulating microparticles,
including exosomes, in the context of T2DM and its com-
plications is a topical field of inquiry. Exosomes can trans-
port and deliver to target cells not only proteins, but also
nucleic acids including miRNAs, DNA, ribosomal RNAs,
circular RNAs (circRNAs) and long non-coding RNAs
(InRNAs). Exosomes of endothelial origin could be a
source of information on the health status of ECs, serving
as reliable systemic biomarkers of ED. Moreover, miRNA-
associated exosome administration might be a therapeutic
approach to mitigate endothelial activation in T2DM, to
avoid or delay the harmful effects of ED-related T2DM
complications.

Conclusions

A range of interventions, including lifestyle modification
programs and/or pharmacological treatment, can improve
diabetes outcomes. However, these interventions are
not sufficient to avoid the onset of the long-term com-
plications of T2DM, and current diabetes parameters
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Table 2 Cellular miRs differentially expressed in human diabetic and healthy tissue, or in human cell lines exposed to normoglycemic
and hyperglycemic conditions

MiRs Expression levels mMRNA targets Cell types Refs miR classification
Diabetic retinopathy
miR-146a Down Fibronectin HUVECs [103] |, A O
miR-146b-3p Down ADA2 Vitreous of diabetes patients, macrophages [79] 0
miR-200b Down VEGF HUVEC [104] O, A
miR-195 Up SIRT1 HRECs, HMECs [105] A O
Diabetic nephropathy
miR-192 Up ZEB 172 Glomeruli from renal biopsies [106] O
miR-377 Up Pak1, Sod1/2 NHMCs [107] O, A
miR-29a/b/c Down Col1, Col4 h. conditionally immortalized podocyte [108] 0
miR-21 Up PTEN, RAS40 hMCs [91] Ol A
Up TIMP3 human kidney biopsy [92]
miR-155 Up h. kidney biopsy, HRGECs [109] |, O, A
miR-146a Up h. kidney biopsy, HRGECs [109] I, A O
miR-215 Down SIP1/ZEB2 h. conditionally immortalized podocytes [110] (0]
miR-135a Up TRPC1 kidney tissues, HMC [111] )
Macrovascular diabetic complications
miR-16 Down Cox-2 THP-1 monocytes [112] O
miR-503 Up Ccnel-Cdc25A HUVEC, HMVEC [102] O, A
miR-133 Down Rho-A, Cdc42 h. embryos/fetuses cardiac cells [113] I, A
miR-223 Up Glut4 Left ventricular biopsies [114] |, O, A
miR-221 Up C-kit HUVEC [115] O, A
miR-492 Down Resistin HUVEC [116] O, A

H, human; HMC, immortalized human mesangial cell; HRECs, HMECs, human retinal and dermal microvascular endothelial cells; HRGECs, human renal glomerular

endothelial cells; NHMCs, normal human mesangial cells. /, inflammamiRs; O, oncomiRs; A, angiomiRs. This classification is based on the amount of relative

literature, and some miRNAs can be classified in more than one group

are inadequate to predict the likelihood of developing
vascular complications by T2DM patients. Therefore,
understanding not only genetic variability, but also the
mechanisms involved in the interplay of DNA methyla-
tion, histone modifications, and miRNAs and their cu-
mulative effect in the context of T2DM and metabolic
memory will significantly contribute to the development
of novel therapeutic interventions that can delay the
harmful effects of the diabetic milieu. Since epigenetic
changes are potentially reversible, they are interesting
opportunities as targets of new treatments. Combinator-
ial therapies with conventional drugs and miRNA- or
anti-miRNA-treatments are already in progress. MiR-
NAs targeting methyltransferases or HATs could be
used to modulate the epigenetic mechanisms involved
in the maintenance of metabolic memory. Moreover,
identification of a panel of circulating “epi-markers”, in-
cluding circulating miRNAs, could revolutionize the
management of diabetic patients, enabling the identifi-
cation of those at increased risk of complications, who
require a broader or more aggressive therapy. Many

miRNA candidates have already emerged, but further
studies are required for their validation in adequate co-
horts of T2DM patients with different complications.
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