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Abstract

Pathway Analysis (Ingenuity System Inc, CA, USA).

those previously implicated in psychosis.

antipsychotics.

Background: The mechanism of action of olanzapine in treating schizophrenia is not clear. This research reports
the effects of a therapeutic equivalent treatment of olanzapine on DNA methylation in a rat model in vivo.
Genome-wide DNA methylation was assessed using a MeDIP-chip analysis. All methylated DNA immunoprecipitation
(MeDIP), sample labelling, hybridization and processing were performed by Arraystar Inc (Rockville, MD, USA). The
identified gene promoters showing significant alterations to DNA methylation were then subjected to Ingenuity

Results: The results show that olanzapine causes an increase in methylation in 1,140, 1,294 and 1,313 genes and a
decrease in methylation in 633, 565 and 532 genes in the hippocampus, cerebellum and liver, respectively. Most genes
affected are tissue specific. Only 41 affected genes (approximately 3%) showed an increase and no gene showed a
decrease in methylation in all three tissues. Further, the two brain regions shared 123 affected genes (approximately
10%). The affected genes are enriched in pathways affecting dopamine signalling, molecular transport, nervous system
development and functions in the hippocampus; ephrin receptor signalling and synaptic long-term potentiation in the
cerebellum; and tissue morphology, cellular assembly and organization in the liver. Also, the affected genes included

Conclusions: The known functions of affected genes suggest that the observed epigenetic changes may underlie the
amelioration of symptoms as well as accounting for certain adverse effects including the metabolic syndrome. The
results give insights into the mechanism of action of olanzapine, therapeutic effects and the side effects of
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Background

Schizophrenia is one of the most devastating of psychi-
atric disorders [1]. The treatment of schizophrenia re-
quires the suppression of hallucinations, delusions,
agitation and the behavioural problems that accompany
these symptoms [2]. Psychotherapy and rehabilitation
can be undertaken when the acute symptoms start to
subside through antipsychotic drug treatment.

The first antipsychotic drug, chlorpromazine, intro-
duced in the early 1950s, was a major breakthrough be-
cause, unlike previously used sedative drugs, it could
ameliorate hallucinations and delusions without overly
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sedating the patient [3]. Many other antipsychotic drugs
were subsequently introduced [4], but these have not
significantly advanced the treatment of schizophrenia.
The early promise of the second-generation antipsy-
chotics (atypical antipsychotics), such as clozapine and
olanzapine, has been replaced by an acceptance that they
are no more effective than the first-generation drugs [5].
However, second-generation antipsychotics have recently
shown positive effects on verbal cognition [6]. Second-
generation drugs have fewer neurological side effects
but, unfortunately, many induce weight gain and the
metabolic syndrome [7-10].

Our current understanding of the cause of schizophre-
nia is based on the pharmacological effects of the anti-
psychotic drugs used to treat the illness: they all bind to
post-synaptic dopamine receptors especially D2 and the
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affinity at D2 receptors is both necessary and sufficient
for the antipsychotic effects [11]. This, coupled with the
observation that drugs that release dopamine into the
synaptic cleft can induce the positive symptoms of
schizophrenia (behaviours and feelings that are not real
but imaginary), led to the hypothesis that excessive
dopamine transmission in certain brain regions may
cause the symptoms of schizophrenia [12]. A post-
synaptic blockade occurs rapidly after a person ingests
an antipsychotic drug. In contrast, the therapeutic effects
of antipsychotics take days or weeks to accrue [13]. This
suggests that downstream effects are important. One
possibility is that the post-synaptic dopamine blockade
causes a downstream cascade that has a therapeutic ef-
fect through altered gene transcription [14,15]. A down-
stream effect, such as altered transcription, would
explain the delay in the onset of therapeutic action.
Other clinical observations also demonstrate the need
for a more complex model than a post-synaptic dopa-
mine blockade. Patients frequently fail to respond to
an antipsychotic but subsequently show a robust re-
sponse to a different drug despite the fact that both
block the D2 receptor [16]. Moreover, many patients
with schizophrenia show only a partial response to
antipsychotics or fail to respond at all [17]. A refine-
ment of the dopamine hypothesis proposes that an
increase of D2 levels in the striatum may cause hallu-
cinations and delusions and reduced D1 levels in the
frontal lobes may cause cognitive deficits [18,19]. This
model is compatible with the delayed treatment effect
but cannot explain the individual responsiveness to
antipsychotics.

Epigenetic changes are another mechanism used to ex-
plain these clinical observations. They also offer an alter-
native therapeutic target for this serious disease: after 50
years of frustration we need to move our focus beyond
post-synaptic dopamine receptors. Epigenetic changes
associated with a drug can alter the expression of a sin-
gle or variable number of genes without altering the
gene sequence(s) [20]. Specifically, DNA methylation is a
core epigenetic mechanism that involves the covalent
binding of a methyl group to the 5-carbon position of
cytosine leading to altered gene expression [21]. It is in-
fluenced by stochastic events including exposure to a
variety of environments such as drug treatment [22,23].
If DNA methylation plays a role in drug response, the
drug or its metabolite must modify the methylation pro-
file of the genome [20].

Limited research demonstrates that antipsychotic
drugs can alter DNA methylation and gene expression
[24]. However, most of this research has been conducted
using variable post-mortem human brain tissues [25]
and inappropriate non-brain cell types [26] that are not
always ideal. Therefore, we have assessed the effects of a
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therapeutic equivalent dose of olanzapine (2.5 mg/kg per
day for 21 days), a commonly used antipsychotic, on
DNA methylation in rat brains using rat methylation ar-
rays. The results demonstrate for the first time that the
effect of olanzapine on DNA methylation is widespread
and tissue specific, which may account for its efficacy
and adverse effects.

Results

First, we assessed the locomotor activity of rats split into
olanzapine-treated and vehicle-treated groups. Activity
was significantly decreased (P =0.001) in the olanzapine-
treated group compared to the vehicle-treated group
(Additional file 1: Figure Sla). Further, olanzapine-treated
rats significantly increased in weight (2 = 0.004) compared
to the control group (Additional file 1: Figure S1b). Sec-
ond, we assessed gene-specific DNA methylation across
(almost) all genes in response to olanzapine treatment on
two brain regions (hippocampus and cerebellum) and the
liver, as detailed below.

Olanzapine causes widespread and tissue-specific
changes in genome-wide methylation in rats in vivo
Widespread changes in gene-specific DNA methylation
were apparent in all three tissues studied (hippocampus,
cerebellum and liver), as shown by the heat map for the
hippocampus (Figure 1A). The results identified genes
where there was an increase or a decrease in methyla-
tion in drug-treated rats compared to controls. Specific-
ally, almost twice as many genes showed an increase
compared to the genes that showed a decrease in methy-
lation, in response to olanzapine in each of the three tis-
sues (Additional file 2: Table S1A, Additional file 3:
Table S1B, Additional file 4: Table S2A, Additional file 5:
Table S2B, Additional file 6: Table S3A and Additional
file 7: Table S3B). Also, the set of genes affected differs
across the three tissues. Approximately 75% of genes
with an increase (Figure 1B) and over 90% of the genes
with a decrease (Figure 1C) in methylation, following
olanzapine treatment, were specific to a given tissue.
Further, there was a small number of genes with a
similar pattern of increase (total 164) or decrease (total
24) in the two brain regions and a smaller number
with an increase (41) in all three tissues. The tissue-
specific results are novel and were further assessed as
follows.

Pathways and associated network functions of genes that
had changes in methylation in the hippocampus
following olanzapine treatment

The genes (Additional file 2: Table S1A and Additional
file 3: Table S1B) that had an increase (Table 1a) or a de-
crease (Table 1b) in methylation in the rat hippocampus
following olanzapine treatment were assessed by pathway
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Figure 1 Heat map of differential DNA methylation and the number of genes showing a) increased and b) decreased methylation.
(A) Heat map of differential DNA methylation enrichment peaks of genes in the hippocampus, following olanzapine treatment of rats. The
average normalized log,-ratio scan values were used to calculate the M' value (M' = Average(log,MeDIPE/InputE) — Average(log,MeDIPC/InputC))
for each probe. Venn diagrams depicting the number of genes that show an increase (B) or decrease (C) in methylation in brain tissues and the

liver, following olanzapine treatment of rats.

analysis. Genes with increased methylation were predom-
inantly enriched in the dopamine-DARPP32 feedback in
cAMP signalling canonical pathway (P=1.6 x 107°). The
associated network functions that were affected included
metabolic diseases and neurological disorders (Table 1,
Additional file 1: Figure S2). In addition to the changes
caused by olanzapine in methylation in psychosis-
related canonical pathways, the results showed de-
creased methylation of genes involved in CDC42 and
calcium signalling (P=2.5x107>) in the hippocampus.
These genes affect nervous system development and func-
tion. Also, the cellular effects of sildenafil (Viagra) were
revealed as an interesting canonical pathway (P = 9.8 x 107°)
for the 123 genes that had increased methylation as a re-
sult of olanzapine treatment in the two brain regions
(Additional file 1: Figure S3).

Pathways and associated network functions of genes that
had changes in methylation in the cerebellum following
olanzapine treatment

We also analysed genes that had increased methylation
in the cerebellum (Additional file 4: Table S2A and
Additional file 5: Table S2B). The most significant path-
way identified for the cerebellum was for ephrin receptor
signalling (P=5.23 x 10~*) (Table 2a; Figure 2). Synaptic
long-term potentiation (P =2.94 x 10~), which is impli-
cated in learning and plasticity, was among the most sig-
nificant pathways identified (Additional file 1: Figure S4).
Moreover, pathways involved in signalling (Erk/Mapk, cir-
cadian rhythm and protein kinase A) were identified
(Table 2a). Interestingly, genes with reduced methylation
were also involved in pathways such as ephrin B signalling
(Table 2b).
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Table 1 Top pathways and associated networks identified by pathway analysis for the hippocampus following

olanzapine treatment

(a) Top canonical pathways (Genes with increased methylation) P-value No of molecules®
Dopamine-DARPP32 feedback in cAMP signalling 165% 1073 20/157 (0.127)
CD27 signalling in lymphocytes 242107 11/54 (0.204)
Oestrogen-mediated S-phase entry 256% 107 6/26 (0.231)
Role of JAK2 in hormone-like cytokine signalling 338x10°° 7/34 (0.206)
Associated network functions

Metabolic disease, endocrine system and developmental disorders 35

Cell cycle, cellular growth and proliferation, cell death 24
Molecular transport, neurological disease, cell-to-cell signalling 10

(b) Top canonical pathways (Genes with decreased methylation) P-value No of molecules
CDC42 signalling 252%10° 11/131 (0.084)
Prostanoid biosynthesis 255% 107 3/9 (0.333)
Calcium signalling 592x107° 12/178 (0.067)
D-myo-inositol (1,3,4,5,6)-tetrakisphosphatebiosynthesis 6.18x 107 8/48 (0.167)
Associated network functions

Developmental disorder, cell death and survival, cellular development 12
Molecular transport, nervous system development and function 10
Carbohydrate metabolism, cell morphology, lipid metabolism 9
Cellular development, skeletal, muscular and cardiovascular system development and function 8

?For the top canonical pathways, the ratio is the number of molecules in a given pathway that meet the cut-off (P<0.01) divided by the total number of

molecules in the pathway.

Pathways and associated network functions of genes that
had changes in methylation in the liver following
olanzapine treatment

The results from a non-brain tissue sample also showed
that the effects of olanzapine are not restricted to brain
regions; it may also affect liver the (Additional file 6:
Table S3A and Additional file 7: Table S3B). Genes that
had an increase (Additional file 8: Table S4a) or a de-
crease (Additional file 8: Table S4b) in methylation in
the liver, were in several pathways including lipid metab-
olism, cell death and organ morphology. Such genes
include DRDI1/DRD2, NMDAR and PTEN (Additional
file 1: Figure S5).

Discussion

There are a number of methods to test the effects of
antipsychotic drugs, including the locomotor activity test
[27] and the prepulse inhibition test [28]. In this study,
we used the locomotor activity test. Significantly reduced
locomotor activity in olanzapine-treated rats in this ex-
periment (Figure 1A,B) has suggested that the drug ad-
ministration paradigm employed was sufficient to cause
therapeutically relevant effects in rats. Comparable
therapeutic doses in rats were effective in previous studies
and resulted in locomotor-suppressive effects [27]. More-
over, the significant increase in weight of olanzapine-
treated rats in this and previous studies [29] indicated that

the paradigm adapted might also be capable of causing
metabolic disturbances, as seen in patients taking olanza-
pine for a long time [30]. Interestingly, the molecular
results showed that olanzapine treatment caused genome-
wide DNA methylation changes (Figure 1). Further, the
results showed that most genes affected were tissue
specific (hippocampus, cerebellum or liver). Also, the
gene-specific methylation changes affected a number of
networks that were tissue-specific, as expected. More im-
portantly, the identified networks support two known ef-
fects of olanzapine, discussed in the following sections.
The first is the recovery from psychosis [31] and the sec-
ond is the adverse effects [32] of olanzapine. Olanzapine-
induced DNA methylation changes in genes involved in
canonical pathways may alter the associated network
functions. However, further study is required to analyse
the effects (on a protein level) of, specifically, the gene-
specific methylation changes on each identified network.
We argue that the two manifestations could be attrib-
uted to tissue-specific alterations that disturb the coordi-
nated expression of genes critical in the identified
networks (Tables 1 and 2). This model is backed by a
number of observations. First, the phenotypic effect of
olanzapine is not immediate; rather it takes days or
weeks after the initiation of treatment [13]. This may be
the time that is needed for gene-specific methylation to
alter the expression of the specific genes [33,34]. Also,
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Table 2 Top networks identified by pathway analysis for the cerebellum following olanzapine treatment

(a) Top canonical pathways (Genes with increased methylation) P-value No of molecules®
Ephrin receptor signalling 523%x 107 24/176 (0.136)
Erk/Mapk signalling 159% 107 24/184 (0.130)
Circadian rhythm signalling 194%107° 8/33 (0.242)
Protein kinase A signalling 261107 41/372 (0.110)
Synaptic long-term potentiation 294%107° 17/113 (0.150)
Associated network functions

Cardiovascular disease, cell signalling, small molecule biochemistry 25
Cellular development, tissue morphology, cardiac dilation 23
Molecular transport, protein synthesis, protein trafficking 12
Behaviour, nervous system development and function 11
Neurological disease, psychological disorders, cell-to-cell signalling 10

(b) Top canonical pathways (Genes with decreased methylation) P-value No of molecules
Ephrin B signalling 40x107° 7/72 (0.097)
G beta gamma signalling 41%x107° 8/99 (0.081)
Germ cell-Sertoli cell junction signalling 50x107° 11/148 (0.074)
tRNA splicing 83x107° 4/32 (0.125)
Tetrahydrofolate salvage from 5, 10 methenyltetrahydrofolate 86x107° 2/6 (0.333)
Associated network functions

Cell death and survival, cellular development 14
Energy production, lipid metabolism, small molecule biochemistry 14

DNA replication and repair, development, carbohydrate metabolism 14

Neurological disease, cellular function and maintenance, molecular transport

11

For the top canonical pathways, the ratio is the number of molecules in a given pathway that meet the cut-off (P <0.01) divided by the total number of

molecules in the pathway.

patients may not respond to this drug, depending on
their CYP 1A2 genotype, which can metabolize this drug
[35] or acquire resistance. Patients may need to take a
different type of antipsychotic drug [16]. During this
time, a patient may be affected by metabolic disorders,
weight gain and related adverse effects [30]. We will dis-
cuss the specific mechanisms of the effects of olanzapine
in the following section.

Olanzapine-based psychosis recovery may involve
changes in gene methylation

We argue that an increase or a decrease in methylation
of specific gene promoters, following olanzapine treat-
ment, may decrease or increase their transcriptional effi-
ciency [36,37], specifically for the hippocampus, which is
one of the primary sites responsible for psychotic
symptoms [15,38,39]. Further, the pattern of transcrip-
tional efficiency may also be modulated by other
factors such as chromatin structure and elongation ef-
ficiency [38,40,41]. We acknowledge that the prefrontal
cortex and nucleus accumbens, which are also impli-
cated in psychosis [40,42,43], may need to be investi-
gated in future studies.

We note that in the hippocampus, dopamine-
DARPP32 feedback in the cAMP signalling pathway (P =
1.6 x 107%) was the most significant pathway identified.
Neurons in the midbrain release dopamine, which modu-
lates cAMP (cyclic adenosine 3,5-monophosphate) pro-
duction by activating dopamine receptors [44]. These
results suggest that the antipsychotic effects of olanzapine
may involve alterations in gene-specific methylation that
leads to the dysregulation of genes involved in dopamine-
DARPP32 feedback in the cAMP signalling pathway
(Figure 3). This includes several differentially methylated
genes such as Drd1/5 and NosI. The dopamine blockade
leads to the progressive reduction of psychosis while its
disturbance leads to psychosis [45]. All antipsychotics
block post-synaptic D2 receptors [11]. A serotonin-
dopamine antagonist was formulated following the syn-
thesis of second-generation antipsychotics [11]. However,
patients frequently fail to respond to one antipsychotic
but respond to a different drug even if both block the D2
receptor [16]. Also, schizophrenia patients may partially
respond to an antipsychotic or do not respond at all [17].
This may be due to several factors, and one possibility
would be the delay in the onset of therapeutic actions
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partly or fully influenced by the downstream effects, such
as altered transcription [14,33]. As such, the differentially
methylated genes involved in the dopamine-signalling
pathway may stop or reduce transcription and gene ex-
pression [14,21,33]. In fact, decreased expression of
DARPP32 in the prefrontal cortex has been reported in
schizophrenia patients [43,46,47]. Also, DNA methylation
differences have been observed in the dopamine D2 recep-
tor gene within and between pairs of monozygotic twins
discordant for psychoses [48] and there is an overwhelm-
ing evidence for the involvement of dopamine in psychosis
including schizophrenia [19].

Further studies on the effects of drugs may help to
identify the genes and pathways that underlie psychosis.
For example, a decreased expression of CDC42 was re-
ported in the cerebral cortex of schizophrenic patients

in post-mortem studies, and this has been implicated in
defects in dendritic spines in cortical neurons in the pa-
tients [49]. CDC42 can reorganize septin fibre formation,
which is thought to stabilize actin filaments needed for a
normal spine shape and synaptic plasticity, as reviewed
in Ide and Lewis [49]. However, cautious interpretation
of the results is important because actual epigenetic
changes in schizophrenic patients may represent changes
in methylation status [50].

Our results show that olanzapine caused an increase
or a decrease in the methylation of genes previously im-
plicated in schizophrenia (Table 3), which may reflect
the fact that olanzapine could alleviate psychiatric symp-
toms via mechanisms involving DNA methylation.
Among the genes that decreased in methylation in the
hippocampus is Map6, which is implicated in schizophrenia
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Figure 3 Dopamine-DARPP32 feedback in cAMP signalling is a significant canonical pathway in an olanzapine-treated hippocampus.
An asterisk indicates a gene previously implicated in schizophrenia (from Ingenuity Pathway Analysis).

[51] and is involved in molecular transport, nervous sys-
tem development and function (Additional file 1: Figure
S6). This emphasizes that methylation may serve an inter-
mediary role whose actual effect is realized through gene
expression.

Among the genes that showed an increase in methyla-
tion in hippocampus was Bdnf, which has been previously
implicated in schizophrenia [52]. This corroborates previ-
ous findings that showed its regulatory role in the expres-
sion of the dopamine D3 receptor gene (DRD3) [53]. The
relatively lower methylation and higher expression of
BDNF was also observed in schizophrenia patients com-
pared to healthy controls [54].

Our results suggested that the efficacy of olanzapine
might be achieved by changes in gene-specific methyla-
tion of relevant genes that take part in psychosis-related

pathways. A list of 123 such genes that increased in
methylation in both brain regions is given in Additional
file 9: Table S5. That methylation may serve an inter-
mediary role in modulating gene expression is apparent
in the cerebellum, which is dominated by a number of
signalling pathways including ephrin receptors and syn-
aptic long-term potentiation (Table 2). Ephrin ligands
and receptors guide axons during neural development
and regulate neuronal plasticity in adults [55,56]. Specif-
ically, ephrin plays an important role in the regulation of
neuronal migration, which is essential for the develop-
ment of the nervous system and the proper functioning
of the brain [57]. Neuronal cells have ahigher variation
in DNA methylation than non-neuronal cells, supporting
the idea that the epigenetic status of neuronal cells
changes in response to the environment in the brain
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Table 3 Genes positively associated with schizophrenia where methylation changed in response to olanzapine

Gene? Reference (PubMedID) Affected in Peak length (bp) Peak to transcription start site (bp) Promoter class
NosT 20645313 Hippocampus 334 -3,719 LCP
Map6 16624526 Hippocampus 169 —2,382 ICP
Drd5 11304828 Hippocampus 844 41 HCP

Cacnalc 23183239 Hippocampus 425 —3,692 LCP
Bdnf 16818862 Hippocampus 329 —492 ICP
Gsksb 18500637 Hippocampus 573 —1,042 HCP

Tf 18045615 Hippocampus 159 -3,020 LCP
Cnp 16389193 Hippocampus 464 1,198 HCP

Amacr 20875727 Hippocampus 558 164 HCP
Psen2 19232479 Hippocampus 249 620 LCP
Pax6 10376119 Hippocampus 341 326 ICP
Dix1 18384059 Hippocampus 431 —2,043 HCP
Dix1 18384059 Cerebellum 1,330 257 HCP

Cnp 16389193 Cerebellum 769 940 HCP

Psen2 19232479 Cerebellum 455 442 LCP
Pax6 10376119 Cerebellum 349 —3,481 ICP
Stxla 15219469 Cerebellum 149 72 HCP
Drd5 11304828 Cerebellum 264 -169 HCP
Mmp9 20037727 Cerebellum 138 —325 LCP

Tnf 11244489 Cerebellum 269 49 LCP
Grin1 12679240 Cerebellum 264 —1,595 HCP
Tf 18045615 Cerebellum 749 -1,704 LCP
Dlg4 21151988 Cerebellum 134 —1,459 LCP
Amacr 20875727 Cerebellum 138 —48 HCP
Dao 19685198 Cerebellum 287 —2,385 LCP
Dix1 18384059 Liver 171 —2,993 HCP
Cnp 16389193 Liver 644 —2,644 HCP
Sod?2 15193990 Liver 550 594 HCP
Drd5 11304828 Liver 369 -316 HCP
16 20393813 Liver 789 —-3,030 LCP
Comt 11381111 Liver 638 —3,542 HCP
Apoe 14674716 Liver 2,158 -1,223 LCP
Drd2 18829695 Liver 257 -91 HCP
Nos1 20645313 Liver 348 172 LCP
Drd1 20127886 Liver 540 739 LCP

2All genes except NosT, Mapé, 6 and Comt had increased methylation in olanzapine-treated rats.
HCP, high CpG contents; ICP, intermediate CpG contents; LCP, low CpG contents.

[58]. Interestingly, DNA methylation was found to be
highly heritable and significantly correlated with gene
expression in the human brain [59].

Furthermore, the synaptic long-term potentiation
(LTP) pathway was one of the top canonical pathways in
the cerebellum. Synaptic activity can persistently modify
the way a neuron reacts to subsequent inputs by affect-
ing either its intrinsic excitability or its synaptic efficacy,

which is enhanced during long-term potentiation [60].
Specifically, in a rat cerebellum, synaptic transmission
and granule cell intrinsic excitability are enhanced dur-
ing LTP [47]. LTP is a well-known model for synaptic
plasticity and it is typically induced by high-frequency
activation of NMDA receptors at glutamatergic synapses
[61]. Such results allow us to postulate that the efficacy
of olanzapine may be due to its effect on the regulation
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of dopamine-DARPP32 feedback in the cAMP signalling
pathway in the hippocampus, via DNA methylation.

Further, an atypical antipsychotic induced a restrictive
chromatin state in the present study and previous re-
ports [62]. On the other hand, clozapine was found to
induce MII1, a mediator of open chromatin [63]. A re-
strictive chromatin state through DNA methylation has
been implicated in psychiatric disorders [64]. Also, olan-
zapine, unlike clozapine and sulpiride, did not activate
brain DNA demethylation in mice [65]. Moreover, atyp-
ical antipsychotics might regulate the transcription and
function of genes that are related to histone post-
transcriptional modifications [62]. Therefore, the mecha-
nisms of actions of olanzapine on the chromatin
structure and on any epigenetic machinery need to be
studied further.

Adverse consequences of olanzapine treatment may
include aberrant methylation

Although the focus of this study was to assess the effect
of olanzapine treatment in the hippocampus and cere-
bellum, we also used the liver as a non-brain tissue
sample. In addition to the pathways implicated in
schizophrenia and psychosis, olanzapine treatment also
affected pathways for lipid metabolism, metabolic dis-
eases and cell deathin the hippocampus; cardiovascular
disease and cell signallingin the cerebellum and cardio-
vascular system function, cell death and survivalin the
liver. These effects may reflect specific adverse conse-
quences such as weight gain [29]. Interestingly, olanza-
pine has been shown to alterlipid metabolism [65].
Further, IL6, which is differentially methylated and is in-
volved in regulating the lipid metabolismpathway, was
reported to destabilize atherosclerotic plaques in mice
[66]. The Jak/Stat signalling pathway, which is affected
by olanzapine treatment, is also known to regulate how
muscle mass is lost or gained, which is an essential fac-
tor in defining obesity [67]. Furthermore, the pathway
for the cellular effects of sildenafil (Viagra), which was
identified for the hippocampus, may result in sexual dys-
function, which is a common side effect of many anti-
psychotics [68]. This reflects the possibility that the
epigenomic status of the genes involved in this pathway
causes this dysfunction.

It is important to point out that the selected pathways
discussed are the most significant pathways identified in
this study. The study provides a novel insight into the
potential mechanisms in the olanzapine-induced reduc-
tion of psychosis and the associated adverse effects. An-
tipsychotics were previously shown to have modulated
promoter methylation and thereby gene expression
[33,34]. We show for the first time that the pathways af-
fected are for the known effects of olanzapine. Also, the
effect of this drug on such pathways may involve
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alterations in gene-specific methylation. Further, the
pathways affected are diverse and tissue specific. Thus,
the findings in this report support the involvement of
epigenetic changes that are known to be reversible and
influenced by genetic as well as environmental factors,
in neural function. They offer an original insight into
any future epigenetic research in psychiatric disorders
and potential avenues for personalized medicine.

Conclusions

The known functions of affected genes suggest that the
observed epigenetic changes may underlie the amelior-
ation of symptoms and account for certain adverse effects
including the metabolic syndrome. The results give a
novel insight into the mechanism of action of olanzapine,
therapeutic effects and the side effects of antipsychotics.

Methods

Animals

Rats

Adult male Sprague—Dawley rats,12 weeks old weighing
250 to 300 g, were purchased from Charles River, QC,
Canada. Upon arrival, the rats were separated into indi-
vidual cages and housed under controlled humidity and
temperature on a 12-hour light/dark cycle (the lights
were switched on at 7.00 am). They were fed standard
rat chow (LabDiet) and tap water ad libitum. The Insti-
tutional Animal Care Committee of the University of
Western Ontario approved all animal-related procedures
used in this study following the Canadian and National
Institute of Health Guides on animal experimentation.

Olanzapine treatment

Before the commencement of olanzapine treatment, the
animals were weighed and divided into two treatment
groups with comparable mean weights. They were habit-
uated individually for 30 min to an automated open-field
activity-monitoring chamber (San Diego Instruments,
San Diego, CA, USA), and then subjected to 5 min of
tail pinch stress. Their stress-induced locomotor activity
was recorded for the next 30 min using the open-field
activity chamber. Starting from the following day, the
rats received injections of olanzapine (Zyprexa, Lilly, IN,
USA; 2.5 mg/kg, intramuscular; # =8) or vehicle (PBS;
n = 8) between 1.30 pm and 3.00 pm daily for 19 days. Al-
though antipsychotic drugs have been administered orally
and intramuscularly in rodent studies, we chose the intra-
muscular route to ensure the rats consistently received
the intended dose for the entire duration of therapy.

Phenotypic analysis and tissue collection

Then 48 hours after the last dose of olanzapine or the
vehicle (to avoid olanzapine-induced sedation interfering
with stress perception and activity), the rats were



Melka et al. Clinical Epigenetics 2014, 6:1
http://www.clinicalepigeneticsjournal.com/content/6/1/1

habituated to the same open-field activity monitoring
chamber for 30 min, subjected to a similar 5-min tail
pinch as done at the baseline, and monitored to verify
whether stress-induced locomotor activity was reduced in
olanzapine-treated rats compared to the vehicle-treated
group. This paradigm has been widely used to study the
therapeutic efficacy of antipsychotic drugs [27,69]. Subse-
quently, 24 hours after completion of the stress-induced
behavioural assessment (to minimize the potential effect
of stress on expected molecular changes), each rat was
sacrificed. The rats were decapitated without anaesthesia,
brain tissues were micro-dissected promptly in ice-cold
PBS and three random biopsy punches through the hippo-
campus, cerebellum and liver were obtained. These three
biopsy punches were considered to be a single sample. The
sample from each rat was kept separately and flash-frozen
in liquid nitrogen. Genomic DNA was isolated from
olanzapine-treated and vehicle-treated samples to analyse
the genome-wide methylation using rat methylation arrays.

Assessing genome-wide DNA methylation by MeDIP-chip
analysis

Array hybridization

Genomic DNA was isolated from each of the three tissues
from two random control samples and two random
olanzapine-treated samples. All methylated DNA immuno-
precipitation (MeDIP), sample labelling, hybridization, and
processing were performed by Arraystar Inc (Rockville,
MD, USA). Briefly, isolated genomic DNA was sonicated
to generate random fragments of 200 to 1,000 bp. For
DNA labelling, the NimbleGen Dual-Color DNA Labeling
Kit was used according to the manufacturer’s guideline de-
tailed in the NimbleGen MeDIP-chip protocol (Nimble-
Gen Systems, Inc, Madison, W1, USA). Microarrays were
hybridized at 42°C for 16 to 20 h with Cy3/5 labelled DNA
in NimbleGen hybridization buffer/hybridization compo-
nent A in a hybridization chamber (Hybridization System,
NimbleGen Systems, Inc, Madison, WI, USA). The meth-
ylated DNA was immunoprecipitated using Biomag™ mag-
netic beads coupled with mouse monoclonal antibodies
against 5-methylcytidine. The total input and matched
immunoprecipitated DNA were labelled with Cy3- and
Cyb-labelled random 9-mers, respectively, and hybridized
to NimbleGen RN34 Meth 3x720K CpG plus Promoter ar-
rays. Scanning was performed with the Axon GenePix
4000B microarray scanner.

Data normalization and analysis

Raw data was extracted as pair files using the Nimble-
Scan software (Roche NimbleGen Inc). Median-centring
quantile normalization and linear smoothing was per-
formed using the Bioconductor packages Ringo, limma,
and MEDME. From the normalized log, ratio data, a
sliding-window peak-finding algorithm provided by
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NimbleScan v2.5 (Roche NimbleGenlInc) was applied to
find the enriched peaks with specified parameters (slid-
ing window width: 750 bp; mini probes per peak: 2; P-
value minimum cut-off: 2; maximum spacing between
nearby probes within peak: 500 bp).

To compare differentially enriched regions between
drug-exposed (E) and matched control (C) rats, the log,
ratios were averaged and then used to calculate M' for
each probe:

M' = Average(log,MeDIPE /InputE)
—Average(log,MeDIPC /InputC)

The NimbleScan sliding-window peak-finding algo-
rithm was run on this data to find the differential en-
richment peaks (DEPs). The differential enrichment
peaks, identified by the NimbleScan algorithm, were fil-
tered according to the following criteria: (i) at least one of
the two groups had the median value of log, MeDIP/In-
put > 0.3 and a median value of M' > 0 within the peak; (ii)
at least half of the probes in a peak had amedian value of
the coefficient of variability (CV) < 0.8 for both groups.

Using an R script program, a hierarchical clustering
analysis was completed. The probe data matrix was ob-
tained using PeakScores from differentially methylated
regions selected by DEP analysis. This analysis used
PeakScore > 2 to define the DEPs, which is equivalent to
the average P < 0.01, for all probes within the peak.

Pathway and bioinformatic analysis of array results

A venn diagram of the genes was used to assess the dis-
tribution of genes affected across tissue types [70]. The
identified gene promoters with significant alterations to
DNA methylation were then subjected to Ingenuity
Pathway Analysis (Ingenuity System Inc, CA, USA) [71].
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