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Background: Asthma is characterized by airflow limitation and airway reactivity (AR). Interleukin-13 (IL-13) is
involved in the pathogenesis of asthma. Two functional SNPs, rs20541 and rs1800925, of the IL-13 gene (IL13) have
been frequently associated with asthma-related lung functions. However, genetic variation alone does not fully
explain asthma risk. DNA-methylation (DNA-M) is an epigenetic mechanism that regulates gene expression and can
be influenced by both environment and genetic variants. To explore the interplay of prenatal maternal smoking,
genetic variants and DNA-M, we used a two-stage model: (1) identifying cytosine phosphate guanine (CpG) sites
where DNA-M is influenced by the interaction between genetic variants and maternal smoking during pregnancy
(conditional methQTL (methylation quantitative trait loci)); and (2) determining the effect of the interaction between
DNA-M of CpG (from stage 1) and SNPs (modifying genetic variants; modGV) on airflow limitation and AR in 245
female participants of the Isle of Wight birth cohort. DNA-M was assessed using the lllumina Infinium

Findings: Six CpG sites were analyzed in stage 1. DNA-M at cg13566430 was influenced by interaction of maternal
smoking during pregnancy and rs20541. In stage 2, genotype at rs1800925 interacted with DNA-M at cg13566430
significantly affecting airflow limitation (P=0.042) and AR (P=0.01).

Conclusion: Both genetic variants and environment affect DNA-M. This study supports the proposed two-stage
model (methQTL and modGV) to study genetic variants, environment and DNA-M interactions in asthma-related
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Findings

Asthma is a chronic airway disease characterized by airflow
limitation and airway reactivity (AR) and exhibits wide het-
erogeneity in disease susceptibly and phenotypes. Multiple
genes, gene-gene and gene-environment interactions have
been shown to play a role in determining susceptibility to
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asthma and associated phenotypes of lung function and
AR. Maternal smoking during pregnancy is a significant
risk factor for developing asthma in offspring [1] and can
affect offspring lung function [2]. Interleukin-13 (IL-13) is
a recognized effector in airway inflammation, reactivity and
remodeling. IL13 is located on chromosome 5q31, and
has been consistently associated with asthma [3,4].
Several functional genetic variants occur in /L13 including
rs1800925 (-1112C/T) and rs20541 (R130Q), +2044A/G).
Recent meta-analyses have shown that both SNPs are as-
sociated with asthma risk [5,6] and with forced expiratory
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volume in 1 second (FEV;) and FEV,/forced vital capacity
(FVC) in asthmatics [7,8]. In severe asthma, monoclonal
antibody to IL-13 use is associated with improvement in
lung function in humans [9] and airway hyper-responsive-
ness in a murine model [10].

DNA-methylation (DNA-M) represents a site of mo-
lecular interaction between the environment and gen-
ome. There is growing evidence that DNA-M plays a
role in complex diseases like asthma [11] and can be
modified by environmental exposures such as tobacco
smoke [12] as well as by disease-associated genotypes
[13]. We have previously shown that /L13 polymorphism
modifies the impact of in utero tobacco smoke exposure
on childhood asthma, suggesting a role for gene-environ-
ment interaction [14]. Recently we have also shown that
genetic variants in the IL-4 receptor interact with DNA-M
to determine risk of asthma [15]. DNA-M is a potential
integrator of different signals affecting disease susceptibil-
ity, with both environment and genotype influencing
methylation levels. Karmaus and colleagues [16] proposed
a two-stage model to incorporate the role of genetic
variants, environment and DNA-M interactions in
asthma. In stage 1, an environmental exposure and genetic
variant interact to influence DNA-M at a specific site in
an adjacent locus. This stage identifies the conditional
methQTL (methylation quantitative trait loci) and the
change in DNA-M once established can differentially
regulate gene activity. In stage 2, the phenotypic effects of
sequence variants of the gene (modifiable genetic variants
(modGVs)) can be modified by the pre-established
methylation by the conditional methQTL. This two
stage model for asthma-related lung function is depicted
in Figure 1. Given our previous observation of the inter-
action between maternal smoke exposure and genotype in
determining asthma, we hypothesize that this interaction

Two stage model

Linear regression model
(Screening for conditional
methQTLs)

X CpG sites
x

other
SNPs
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Figure 1 Two-stage model to investigate environment, SNP
and DNA methylation interactions influencing asthma-related
lung functions (Modified from Karmaus et al. [16]. CpG, cytosine
phosphate guanine; methQTL, methylation, quantitative trait loci
(genetic variants that change the susceptibility for DNA methylation);
modGV, modifiable genetic variants (genetic variants that are modified
by DNA methylation).

Linear regression model
(Testing of modGVs)

Qutcome
(lung function)

Stage 1
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would occur through a mechanism involving methQTL
and/or modGVs.

Study population and assessments

The Isle of Wight birth cohort (n=1,456) was estab-
lished in 1989 and has been followed up through child-
hood. At 18 years of age, spirometry and bronchial
challenge tests were done according to American
Thoracic Society guidelines [17,18]. We analyzed lung
function measurements and DNA-M data of 245 females
aged 18 years who were randomly selected from the
cohort population for epigenetic studies. Comparison of
the analyzed sample with whole cohort females in terms
of risk factors have been described elsewhere [15]. A
continuous measure of AR (dose response slope (DRS))
was used. DRS is the gradient of FEV; drop from base-
line with each successive incremental dose of methacho-
line administered. A transformation of Log;o (DRS + 10)
was required to satisfy the distributional assumption of
normal data. A higher positive value of this transform-
ation signifies greater AR. A description of the 18-year
follow-up of the cohort is previously reported [19].

Genotyping and SNP selection

DNA was isolated from peripheral blood leucocytes
collected at age 18. IL13 polymorphisms were genotyped
as described by Sadeghnejad and colleagues [14]. Two
known functional SNPs, rs1800925 (n =234) and rs20541
(n=235), frequently associated with asthma and related
lung functions were used in this analysis. These SNPs were
not in linkage disequilibrium in this cohort as described
elsewhere [14].

DNA-methylation

One microgram of DNA was bisulfite-treated using the EZ
96-DNA-methylation kit (Zymo Research, Irvine, CA,
USA), following the manufacturer’s protocol. Genome-
wide DNA- M was assessed using the Illumina Infinium-
HumanMethylation450 BeadChip (Illumina, Inc., Hayward,
CA, USA) as described previously [15].

Statistical methods

The pre-processed DNA-M beta () values, presented as
the proportion of intensity of methylated (M) over the sum
of methylated (M) and unmethylated (U) sites (=M/
[c+ M + U] with c being a constant to prevent dividing by
zero), were used to estimate the effect of DNA-M [20]. The
R-package IMA in Bioconductor (IMA is implemented in
the R language and is freely available from http://www.
rforge.net/IMA) was used for the pre-processing [21]. SNP
genotype-dependent methylation was analyzed using the
Kruskal-Wallis test. Interaction was tested using multiple
linear regressions. Statistical analyses were performed using
IBM SPSS Statistics, Version-19.0 (IBM SPSS Statistics for
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Table 1 Location, position and description of rs1800925,
rs20541 and CpG sites on the promoter region of IL13
gene

SNP Chromosomal Position Genotypes n (%)
location

rs1800925 5:131992809 5" Promoter T 8 (34%)
upstream cr 63 (28.8%)
CcC 158 (67.8%)

rs20541 5:131995964 Exon 4 AA 10 (4.3%)
AG 66 (28.1%)
GG 159 (67.7%)
CpG Median Percentiles
(5%, 95%)
cg13566430 5:131992455 TSS1500 0.18 014 023
cg04303330 5: 131992430 TSS1500 0.30 023 036
cg06584121  5:131993818  TSS200 0.80 0730 084
cg06967316  5: 131993853 TSS200 0.74 066 080
cg14523284 5: 131993614 TSS1500 0.86 083 089
cg15329179 5:131993728  TSS200 0.87 081 090

CpG, cytosine phosphate guanine; TSS200, 200 base pairs from transcription
start site; TSS1500, 1500 base pairs from transcription start site.

Windows, Version 19.0. Armonk, NY, USA: IBM Corp,).
The statistical significance was set at 0.05.

Results

Six cytosine phosphate guanine (CpQ) sites were identi-
fied in the promoter region of IL13. The location and
description of the CpG sites and of SNPs are shown in
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Table 1. All the six CpG sites spanning the promoter
region of IL13 were analyzed in Stage 1. The effect of
maternal smoking during pregnancy interacting with
both SNPs was explored independently for DNA-M at
each CpG site. DNA-M at cgl13566430 was influenced
by the interaction of rs20541 and maternal smoking dur-
ing pregnancy (P = 0.043); this remained significant after
correcting for personal smoking at 18 years (P = 0.041).
DNA-M at cgl13566430 also showed a genotype depen-
dent methylation for rs1800925 (Kruskall Wallis test
P <0.001; Figure 2).

In the next step, the interaction between DNA-M
at ¢g13566430 and rs1800925 genotype on lung func-
tion (FEV{/FVC and DRS) was explored. DNA-M at
cgl13566430 significantly interacted with rs1800925
genotype to determine FEV;/FVC and DRS (Table 2).
In subjects with the TT genotype, FEV,/FVC increases
with increasing methylation of cgl13566430 (coefficient
3.274, P=0.042), for the CT genotype group the increase
was smaller (coefficient 0.799, P =0.086) and CC was the
reference genotype. The graph in Figure 3 provides a
visual description of the effect of DNA-M at cg13566430
and rs1800925 on FEV,/FVC. DRS decreases quickly with
increasing methylation of ¢gl3566430 in TT genotype
(coefficient —27.497, P =0.010), while the drop in DRS in
CT is insignificant (coefficient —0.809, P = 0.742).

Discussion
This study tested a two-stage model for integrating the
interactions of maternal smoking during pregnancy,
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Figure 2 Whisker plot showing IL13 rs1800925 genotype-dependant DNA methylation of cg13566430.
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Table 2 Interaction of methylation at cg13566430 and rs1800925 genotypes on FEV,/FVC and DRS

FEV,/FVC DRS
Estimate 95% ClI P Estimate 95% ClI P

Main effects

cg13566430 0.175 —0.166 to 0.517 0313 -0.568 —2.361to 1.226 0.533

rs20541 AA 0.020 —0.024 to 0.064 0.369 -0.075 —0.278 t0 0.129 0.469
AG 0.006 —0.014 to 0.026 0.548 0.036 —-0.076 to 0.149 0523
GG Reference Reference

rs1800925 T 0.030 —0.019 to 0.079 0231 0299 0.045 to 0.554 0.021
cT —-0.001 —0.021 to 0.019 —-0.001 -0.026 —0.134 to 0.083 0.644
cc Reference Reference

Interaction

rs1800925 T -0412 —0.855 to 0.030 0.068 3.989 1.194 to 6.785 0.005
cT -0.134 —0.296 to 0.028 0.106 0.124 —0.733 to 0.982 0.775
cc Reference Reference

913566430 0.174 —0.301 to 0.648 0472 0624 —-1.926 to 3.174 0.629

rs1800925x cg13566430 T 3.274 0.114 to 6434 0.042 —27497 —48.283 to —6.710 0.010
cT 0.799 -0.114 to 1.712 0.086 —-0.809 —5.661 to 4.043 0.742
cc Reference Reference

DRS, dose response slope; FEV;, forced expiratory volume in 1 second; FVC, forced vital capacity.

genetic variants and DNA-M for an asthma candidate
gene IL13. We show that interaction of a functional /L13
SNP, rs20541, and maternal smoking during pregnancy
influenced DNA-M at ¢g13566430. We also show that
DNA-M at cgl3566430 interacts with genotype of
another functional SNP, rs1800925, to affect airflow
limitation and AR. Michel and colleagues [22] examined
the effect of farm exposure on DNA-M of ten asthma
candidate genes and found that DNA-M at one IL13 site
(spanning rs1800925; similar to the site in our study)
was more methylated in the exposed group compared to
the non-exposed group. They did not see significant
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Figure 3 Graph showing interaction of rs1800925 and
methylation at cg13566430 influencing FEV,/FVC. FEV, forced
expiratory volume in 1 second; FVC, forced vital capacity.

differential methylation of IL13 between asthmatic and
non-asthmatic children but asthma-related traits were
not tested and also the interaction with genetic variants
was not examined. Our approach identifies the effect of
environmental exposure and genetic variants on DNA-
M and then also combines the interaction of other
modifiable genetic variants with DNA-M on the out-
comes. We show genotype-dependent DNA-M in the
IL13 promoter region; methylation at ¢gl13566430
revealed variation in levels dependent on the genotype
of rs1800925, as seen in other genes [23]. This varying
distribution of DNA-M across genotypes supports the
plausible role for DNA-M in the pathway between geno-
type and phenotype.

There are some limitations to this study. While DNA-M
measurement using Illumina Infinium-HumanMethyla-
tion450 arrays has been shown to have reproducibility and
high validity [24], technical replication of the DNA-M
measurements has not been undertaken. We have not
measured DNA-M in airway tissue; however, the major
source of IL-13 production in the airways is inflammatory
cells, and methylation measurements in peripheral blood
are likely to better reflect asthma-related immune me-
chanisms. Cell composition in the peripheral blood can
influence  DNA-M; however, cell composition alone
cannot explain the differential methylation observed [22].
Focusing only on female participants is a limitation; how-
ever, the results should be encouraging for further studies
to replicate the model. The interaction effects seen may
not imply a direct relationship between genotype and
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altered methylation. Genotype may also alter other epi-
genetic processes such as chromatin remodeling and this
may then lead to altered DNA-M.

The effect of environment, genotype and DNA-M was
seen for two different, but equally important and object-
ive, characteristics of asthma: airflow limitation and AR.
Similar to Michel and colleagues [22] we did not see an
effect on asthma as an outcome (results not shown);
however, the observed effect on asthma-related objective
measures avoids plausible bias of reported asthma.
Methylation of the promoter region can regulate gene
transcription [25] and we have shown that promoter
region methylation is dependent on genotype, and the
interplay of the environment, genotype and DNA-M
influence the phenotype.

While requiring replication in an independent cohort,
the results show the interplay of prenatal maternal
smoking, genetic variants and DNA-M of IL13 influen-
cing asthma-related lung function. This highlights the
need to consider environment, genotype and DNA-M
together when seeking to understand the pathogenesis
of complex disease, as DNA-M plays a role of integrator
of multiple disease pathway signals.
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