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Abstract

Background: Epigenetic mechanisms are thought to be critical in mediating the role of the intrauterine
environment on lifelong health and disease. Twin-twin transfusion syndrome (TTTS) is a rare condition wherein
fetuses share the placenta and develop vascular anastomoses, which allow blood to flow between the fetuses. The
unequal flow results in reciprocal hypo- and hypervolemia in the affected twins, striking growth differences and
physiologic adaptations in response to this significant stressor. The donor twin in the TTTS syndrome can be
profoundly growth restricted and there is likely a nutritional imbalance between the twins. The consequences of
TTTS on fetal programming are unknown. This condition can now be effectively treated through the use of fetal
laparoscopic procedures, but the potential for lifelong morbidity related to this condition during development is

apparent. As this condition and the resulting uteroplacental discordance can play a role in the epigenetic process,
we sought to investigate the DNA methylation profiles of childhood survivors of TTTS (n = 14). We focused on
differences in both global measures and genome-wide CpG specific DNA methylation between donor and recipient
children in this pilot study in order to generate hypotheses for further research.

Results: We identified significant hypomethylation of the LINE1 repetitive element in the peripheral blood of donor
children and subtle variation in the genome-wide profiles of CpG specific methylation most prominent at CpG sites
which are targets for polycomb group repressive complexes.

Conclusions: These preliminary results suggest that coordinated epigenetic alterations result from the intrauterine

environment experienced by infants with TTTS and may, at least in part, be responsible for downstream health
conditions experienced by individuals surviving this condition.
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Background

Epidemiologic studies have clearly linked infant growth
to antenatal environmental factors, including diet, xeno-
biotic exposures, stress and lifestyle factors, as a significant
risk factor for long-term chronic disease, particularly car-
diovascular disease and metabolic syndromes [1-3]. These
studies, and a growing literature on the role of develop-
ment on lifelong health, would suggest that a significant
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proportion of disease risk can be linked to the intrauterine
environment.

On a molecular level, epigenetic mechanisms have
been invoked to explain mechanistically how experiences
during a narrow but critical and susceptible period of
time can influence long-term processes leading to health
and disease. DNA methylation, a key epigenetic mechan-
ism, is a clear focus of studies on the developmental ori-
gins of health and disease. It represents a stable
modification of DNA that can be propagated during cell
division, yet is susceptible to environmental influence.
This is particularly true during development when the
cell-specific patterns of methylation that define cellular
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differentiation are set [4-6]. Studies of specific candidate
genes as well as genome-wide examinations of DNA
methylation have demonstrated clear relationships to in-
fant birthweight, supporting the role of DNA methyla-
tion in mediating these risks [7,8]. This is particularly
relevant to correlations in genes involved in metabolism,
growth and cardiovascular disease [9].

Studies of twins represent powerful approaches to un-
derstanding the importance of shared or disparate envir-
onment as well as the contribution of genetics on
phenotype [10]. These studies also represent a powerful
opportunity to examine the impact of the environment on
epigenetic phenomena and, in turn, the contribution of
epigenetics on various health outcomes [11,12]. Twin
studies are powerful in interrogating both the intrauterine
and the postnatal environment, as generally monozygotic,
and to a slightly lesser degree, dizygotic twins share the
same intrauterine environment. Nonetheless, to date, most
studies of twin epigenetics have focused on older and
adult cohorts, ignoring the opportunity to consider the
role of the intrauterine environment [13-17].

Twin-twin transfusion syndrome (TTTS) patients offer
a unique opportunity to investigate how an adverse
intrauterine environment compares to a rich environ-
ment, on DNA methylation and, potentially, on later
health outcomes while controlling for genetic contribu-
tion. Approximately 70% of monozygotic twins are
monochorionic and diamniotic (DiMo), following em-
bryo division before the post-implantation blastocyst
phase. These fetuses share a placenta, and virtually all
develop placental vascular anastomoses, which allow
blood to flow between the fetuses [18]. In cases of
TTTS, which represents approximately 15% of DiMo
cases, the blood supply sharing becomes unequal, due to
as yet incompletely understood mechanisms that may
include the number and/or type of anastomoses[19]. If
severe and progressive, TTTS leads to almost 90% peri-
natal mortality [20]. The ‘donor’ twin becomes chronic-
ally hypovolemic and anuric, which leads to severe
oligohydramnios. This twin is typically growth restricted
as well — a consequence of the progressive cardiac fail-
ure, but also of the smaller placental share often associ-
ated with the donor. The ‘recipient’ twin becomes
polyuric, resulting in severe polyhydramnios. This state
can lead to cardiac failure, hydrops and fetal death as
well, as chronic hypervolemia leads to (right) ventricular
dilation, tricuspid regurgitation and global cardiac dys-
kinesia [21]. Thus, this syndrome results in a number of
distinct pathophysiologic changes in each of the genetic-
ally identical twins. Although a number of treatment ap-
proaches have been proposed and utilized with varying
success to treat this condition, in recent years selective
fetoscopic laser photocoagulation of placental vessels
has become more widely available and is now considered
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the only effective treatment in severe, progressive forms
of the disease [22-24]. This treatment consists of obliter-
ating all intertwin vascular connections at the placental
level, effectively halting the twin-to-twin transfusion and
restoring the balance of the twins’ blood supplies. While
survival of at least one twin is seen in 80% of cases [25],
not all fetuses fully recover. In some, the renal, cardio-
vascular or neurological effects of the syndrome are
already irreversible [26,27]; in addition, unequal placen-
tal share seen in some twin pregnancies (a problem that
cannot be corrected by fetal surgery) causes persistent
placental insufficiency and growth restriction, usually of
the donor [28]. In part because of the inherent risks of
twin gestations, the chronic morbidity of TTTS and the
relative invasiveness of fetal intervention, TTTS preg-
nancies and infants may also suffer from miscarriage,
preterm birth, neonatal intensive care unit admissions,
respiratory distress syndrome and intraventricular
hemorrhage [29]. Long term morbidity in survivors of
TTTS can include renal, cardiovascular and neurodeve-
lopmental deficits [30,31], although a number of studies
have suggested that morbidity rates in TTTS cases
treated with fetoscopic laser photocoagulation are no
different than those observed in similarly preterm popu-
lations [32-34]. More subtle long term effects, such as
those on metabolic disease and neurobehavioral out-
comes, have been less comprehensively evaluated. These
effects could be of great interest as a model in defining
underlying mechanisms of the developmental origins of
these outcomes, including the epigenetic mechanisms
potentially responsible. Moreover, the immediately sta-
bilizing effect of fetoscopic laser photocoagulation on
the uteroplacental environment may allow us to pinpoint
critical time points during gestation when these epigen-
etic phenomena are critical. Finally, the co-occurrence of
small placental share in some donor twins may help us
differentiate between adverse uteroplacental factors that
are correctible (TTTS) and those that are not (placental
insufficiency).

In this study, we examined how DNA methylation pro-
files in cases of TTTS are impacted by donor-recipient
status, a model of extreme adverse and rich intrauterine
conditions. This condition occurred during a critical win-
dow of development during which DNA methylation pat-
terns are being set. Our aim is to define broadly where
variation in DNA methylation is occurring in this situ-
ation, as it may aid in defining not only key pathways po-
tentially affected by the intrauterine growth disturbances
that result from TTTS but also point to potential long-
term consequences worthy of further study.

Results
The characteristics of the population of children involved
in the study are provided in Table 1. Our population
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Table 1 Characteristics of the population
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ID Twin Donor-recipient ~ Sex Gestational age at laser Gestation time  Current Birth Samples
status correction of anastomoses (wks) to birth (wks) age (y) weight (g) provided
556 604 Donor M 18.14 2943 5 917 Blood/saliva
604 556 Recipient M 18.14 2943 5 1,315 Blood/saliva
576 663 Recipient M 20.86 30 3 1,380 Saliva
663 576 Donor M 20.86 30 3 1,240 Blood/saliva
606 671 Recipient M 23.86 25.86 6 775 Saliva
671 606 Donor M 23.86 25.86 6 490 Saliva
614 651 Donor M 15.86 3543 042 2,700 Blood/saliva
651 614 Recipient M 15.86 3543 042 3,010 Blood/saliva
573 - Recipient F 23.57 24 8 380 Saliva
579 - Donor F 22.14 3257 2 1,870 Blood/saliva
616 - Donor F 24.00 37.71 4 2,948 Blood/saliva
632 - Donor M 22.86 2871 5 1,370 Blood/saliva
685 - Donor F 22.71 35.14 0.75 2,170 Blood/saliva
692 - Recipient F 1943 39.71 2 3,600 Blood saliva

Total 14 subjects, 14 saliva, 11 blood.

consisted of four twin pairs who survived TTTS following
corrective surgery, as well as six sole survivors, for a total
of 14 subjects. Samples of saliva (n = 14) and peripheral
blood (n = 11) were obtained where possible. Current ages
of the children ranged from five months to eight years.
Birth weights of these children ranged from 380 to 3600 g,
with gestational times from 24 to nearly 40 weeks. Fetal
laser ablation surgery to repair the anastomoses was
performed from 15 to 24 weeks of gestation.

Assays to examine the global extent of DNA methyla-
tion based on the methylation extents in the LINE1 and
ALU-YbS8 repetitive regions were successfully performed
on 23 of the 25 available samples. Both LINE1 and
ALU-Yb8 mean methylation extents in peripheral blood
demonstrated smaller ranges from 70% to 85% and 83%
to 88%, respectively, but had wider ranges in saliva sam-
ples of 53% to 84% and 63% to 86%, respectively. We,
therefore, compared differences in the medians of LINE1
and ALU-Yb8 methylation extent between donors and
recipients stratified by sample type. Only LINE1 methy-
lation extent in peripheral blood was significantly greater
(Figure 1) among recipients than donor individuals, al-
though we note that the small number of samples within
the groups limits power to detect differences.

To more broadly characterize differences across the
epigenome in donor compared to recipient children, we
utilized the Illumina Infinium Methylation27 Beadarray
to assess genome-wide patterns of DNA methylation.
Figure 2 depicts the mean methylation of all donors
(X-axes) compared to all recipients (Y-axes) in blood and
saliva at all 26,486 autosomal loci examined using the ar-
rays. All genome-wide analyses performed were stratified
by sample type as it is well established that the pattern

of DNA methylation is highly cell and tissue specific
[35]. In peripheral blood there was strikingly little vari-
ation between methylation genome-wide between donors
and recipients. A greater extent of variation was observed
in the saliva samples, particularly in those samples with
beta values between 0.2 and 0.6, but less so among loci
exhibiting nearly complete hypo- (beta = 0) or hyper-
(beta = 1) methylation.

Variation in the methylation at these loci could poten-
tially be arising from other sources, and so we next exam-
ined the relationship between genome-wide methylation
among the available twin pairs in the study, stratified by
sample type. In this case, only ten samples, or five pairs,
satisfied our stringent quality control criteria. Figure 3 de-
picts these individual comparisons, and again, saliva sam-
ples showed greater variation between donor and
recipient individuals. Particularly, in saliva samples there
appeared to be deviations from the diagonal with recipi-
ents showing greater methylation of loci whose methyla-
tion beta in donors is between 0.2 to 0.3 and lesser
methylation of loci whose methylation beta in donors is
between 0.7 to 0.9. In general, the blood samples showed
less variability between donors and recipients, although in
the comparison of the five month old twins’ blood sam-
ples, there appeared to be a number of variable loci at the
lowest levels of methylation. In addition to the age of the
child when the samples were obtained, the gestational age
at which the fetal laser surgery was performed could also
affect the variability in methylation between donors and
recipients, considering that infants with earlier surgery
may have a longer period to equalize their methylation
patterns. We attempted to address this as well as the issue
of age at sampling by examining the number of loci whose



Marsit et al. Clinical Epigenetics 2013, 5:18
http://www.clinicalepigeneticsjournal.com/content/5/1/18

Page 4 of 11

A BLOOD

85+ =

LINE1 Mean Methylation

donor recip
Donor-Recipient Status

87+ -
i
c
2
< 86 . -
£
5
=
c -
(1]
[<}]
=
< 85 -
x
]
= .
<
84+ . -

donor recip
Donor-Recipient Status

Figure 1 Extents of repetitive region DNA methylation between donors and recipients stratified by sample type. Mean LINET methylation
extent in peripheral blood (A) and in saliva (B). Mean ALU-Yb8 methylation extent in peripheral blood (C) and saliva (D). The median of the LINE1
methylation extent in peripheral blood between donors and recipients was statistically significantly different (Mann-Whitney U test, P <0.03).
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methylation beta differed between donor and recipient
pair by greater than 0.2 or less than -0.2, which corre-
sponds to greater than three standard deviations of the
mean difference in saliva. The number of loci with these
extreme changes is tabulated in Table 2. We then com-
pared the subjects’ age when sampled, as well as their ges-
tational age at fetal surgery. There was a trend for a
greater number of highly differential loci among subjects
with a later age at surgery and with increasing age at the

time of sampling, with both correlations >0.85, although
the sample sizes here limited formal examinations of infer-
ence, particularly for blood samples.

To formally examine the types of loci demonstrating
variability between donors and recipients, we employed
a linear mixed effects model, including random effects
for pair membership and donor-recipient status within a
pair. This model allowed us to include all of our data in
a single model, thereby improving power. We used these
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Figure 2 Scatterplots of autosomal CpG loci DNA methylation relationships between all donors and recipient pairs. Donors methylation
values are depicted on the X-axes, recipient on the Y-axes in (A) peripheral blood and (B) saliva.

models to calculate the interclass correlation coefficient
(ICC) for each loci. This provides an estimate of the
variability in methylation related to donor-recipient sta-
tus compared to the overall variability of methylation.
Loci with an ICC closer to 1 would be those loci whose
variability could be most explained by donor-recipient
status. Figure 4 depicts the distribution of donor-
recipient ICC values. It would appear that the majority
of variability in methylation is not explained by donor-
recipient status, although there were a small number of
loci with ICC >0.8. Examples of some of these loci are
provided in Additional file 1: Figure S1. Using a gene-set
enrichment analysis approach, we found that loci with
high donor-recipient ICC were significantly more likely
(P = 0.0002) to be polycomb group target genes (PcQG)
[36,37] but were not significantly enriched for genes
within CpG islands (P = 0.14). To assess if the variability
of methylation observed in both blood and saliva sam-
ples may be attributable to differential distributions of
blood cell types within the samples examined, we ranked
all of the loci by their association with leukocyte subsets
defined previously [38,39] and examined the values of
the donor-recipient ICC by this ranking [see Additional
file 1: Figure S2]. Among loci most considered differen-
tially methylated across blood cell types, we found low
to moderate ICC values, while those loci exhibiting ICC
values >0.8 were not highly ranked as differentially
methylated across blood cell types.

Discussion

Using a unique population of TTTS survivors, we have
identified subtle but potentially important variability
in DNA methylation influenced by the physiologic

environment during development. Epigenetic mecha-
nisms, such as DNA methylation, are clearly important
in mediating the developmental origins of lifelong health
and disease. By taking advantage of this unique and valu-
able cohort, we have been able to demonstrate that re-
gardless of tissue type, developmentally critical genes
controlled by polycomb group transcription factors and
modifiers are being targeted for altered DNA methylation.
These findings provide additional evidence that through
epigenetic alterations the intrauterine environment can
affect cellular function beyond the developmental period.
Additionally, our results may provide important insights
into the mechanisms leading to the potential morbidities
in survivors of TTTS, which are growing in number due
to advances in successful surgical interventions of this pre-
viously mortal condition [25].

We identified subtle differences in global markers of
DNA methylation, specifically the finding of increased
methylation of the LINE1 element among recipients.
These results are in line with recent findings that nutri-
tional factors can influence global markers of DNA
methylation. For example, fortification of the diet with
folate has been correlated with increased peripheral
blood LINE1 methylation in adults [40] although in a
folate-replete population, little difference in LINE1
methylation was observed in infant cord blood based
upon maternal intake of methyl donors [41]. LINE1
hypomethylation in cord blood has been associated with
extremes in birth weight (both high and low) and with
prematurity [42]. In adults, alterations in LINE1 methy-
lation have been associated with various health out-
comes including cancers and cardiovascular disease [43]
but the mechanism through which non-target tissue
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Figure 3 Scatterplots of autosomal CpG loci DNA methylation relationships between individual donor and recipient twin pairs. Panels
A-C each depict a twin pair in saliva with donor twins on the X-axes and recipient twins on the Y-axes, while Panels D-E depict twin pair
comparisons of methylation in peripheral blood samples. The ages of the children at the time of sample collection are provided on each panel.
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alterations of methylation of these global markers leads
to disease is not understood [43]. To date, there have
been little data regarding any relationships with this
marker in childhood or adolescent populations, making
this study unique.

Overall, our examination revealed low levels of vari-
ability of DNA methylation between donors and recipi-
ents at the locus-specific, genome-wide level. However,
when individual twin pairs were examined, these differ-
ences were clearer. The saliva samples showed greater

variability between donors and recipients. Variability did
not appear to occur consistently across all CpG sites and
was lowest at the loci with beta values at the extremes
(0 and 1) and at the midpoint (0.5). This would represent
those loci with complete or nearly complete hypo- and
hypermethylation. Loci with intermediate methylation po-
tentially represent imprinted regions. Interestingly, in
blood, comparing donor and recipient methylation in a
five-month-old infant, there are a number of variable loci
at the lowest levels of methylation. Importantly, since
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Table 2 Number of loci with large differences in methylation between donors and recipients, and their relationship to

surgery age and current age

Sample type Donor ID Recipient ID Total number of loci with methylation Gestational age at laser Current age when
difference >0.2 or <-0.2 surgery (weeks) sampled (years)
Saliva 614 651 296 15.86 042
Saliva 663 576 551 20.86 3
Saliva 556 604 540 18.14 5
Blood 614 651 24 15.86 042
Blood 556 604 6 18.14 5

Pearson correlation between age of fetal surgery and number of loci with a large difference in saliva is 0.86 (P <0.3). Pearson correlation between the age when
the sample was obtained and the number of loci with large difference in saliva is 0.88 (P <0.3).

blood as well as saliva [44] represents a mixture of cell
types, this may represent changes in the proportion of spe-
cific blood cell types characterized by methylation (or lack
of methylation) at specific loci, such as the FOXP3 locus,
which characterizes T-regulatory cells [45]. In fact, recent
studies have shown that much of the variability identified
in peripheral blood DNA methylation profiles represents
variation in the underlying proportion of blood cell types
[38,39]. We examined if the loci with the greatest interclass
correlation by donor-recipient status would be considered
differentially methylated across blood cell subtypes, and
saw little evidence. Yet, the data on blood cell differentially
methylated regions were based on adult signatures and
may not be completely comparable to the data examined
here on infants and young children, thus making more spe-
cific examinations worthy of further explorations.

Our observation that there are a greater number of se-
verely altered loci among twin pairs with later fetoscopic
surgery is intriguing, although preliminary. From these
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Figure 4 Histograms of the distribution of the interclass
correlations. Values depict the fraction of variation explained by donor-

recipient status resulting from linear mixed effects models examining the
sources of variability of methylation across all 26,486 autosomal loci.

findings, we could speculate that differences in methyla-
tion are more common, the longer the uneven placental
environment exists, as infants undergoing surgery at the
latest time points (18 to 20 weeks) had nearly twice as
many loci with highly divergent methylation in their sal-
iva samples as those with surgery at 15 weeks. Even with
surgery at 15 weeks, there are a substantial number of
divergent loci, suggesting that some of these effects may
be occurring early in development, even before laser
treatment or TTTS diagnosis, is possible. Coincidentally,
the infants with early surgery were also the youngest
pair, while those with later surgery were the oldest. It is,
therefore, possible that these effects are derived postna-
tally. Yet, considering that these twins are being raised
in similar environments postnatally, there remains
strong reason to believe that early correction of the dis-
cordant uteroplacental environment may limit epigenetic
divergence.

We observed the greatest divergence amongst loci
considered polycomb group targets. Polycomb group
(PcG) genes are a family of developmentally important
genes, which play a role in chromatin post-translational
modification and remodeling and which are responsible
for silencing key developmentally regulated genes
[46,47]. The polycomb group family members are re-
sponsible for targeting developmentally regulated genes
such as the HOX family and those involved in cellular
differentiation, and evidence is accumulating that DNA
hypermethylation is observed in many cancers at the
sites of polycomb-mediated gene repression in embry-
onic cells [48]. Our finding that the genes exhibiting the
greatest variation related to the donor recipient status of
the child are over-represented by PcG targets highlights
the potential importance of this variability. The role that
such variability may play in downstream disease risk and
morbidity deserves further study.

The strengths of this study include the unique study
population and the opportunity to examine twin pairs in
the context of TTTS. We employed state-of-the-art
genome-wide methodologies for the assessment of DNA
methylation. Further, we utilized appropriate and powerful
statistical methodologies to quality control and analyze
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the resulting data. We recognize the limitation of sample
size in our analyses, and have carefully constructed our
analyses and our interpretations with this limitation in
mind. Particularly, this is why we have not sought to iden-
tify genome-wide significant loci or genes with methylation
associated with donor-recipient status or other features of
the children involved. Instead, we devised strategies to
broadly describe key features of those genes targeted for
disruption by this condition. We also recognize that there
is some potential confounding by genome in those samples
from individuals whose twin did not survive to be included
in this analysis. In addition, due to the small sample size,
we could not fully address the modification of these effects
by age or gender. Future studies are needed to identify
more precisely those genes targeted for alteration, to
understand better how various factors impact these alter-
ations, and to link those alterations with downstream out-
comes in the survivors of TTTS.

Conclusions

Opverall, this study provides an intriguing, albeit prelimin-
ary, description of the epigenomic landscape of childhood
survivors of TTTS. Studies of this condition and its conse-
quences present a unique opportunity to consider more
carefully mechanisms involved in the developmental ori-
gins of health and disease. Future evaluation of these co-
horts holds great promise to identify the molecular basis
of downstream health consequences faced by children fol-
lowing successful intervention for TTTS.

Methods

Study population

Informed consent was obtained for all individuals involved
in this study under the review of the Institutional Review
Board of Rhode Island Hospital. Subjects were identified
by review of medical records of all patients undergoing
endoscopic laser ablation of placental vessels for severe
TTTS at the Fetal Treatment Program of Rhode Island
Hospital since 2000. Families with at least one twin who
survived beyond the neonatal period were contacted, and
were asked to obtain, for each surviving twin, saliva sam-
ples as well as peripheral venous blood at the child’s next
well patient visit with their pediatrician. Saliva was
obtained with the Oragene Discover system for assisted
collection (DNA Genotek, Kanata, Ontario, Canada), and
peripheral blood (approximately 2 ml) was collected in an
ethylenediaminetetraacetic acid (EDTA) tube. A total of
14 children, including 8 pairs, participated, with 11 blood
samples and 14 saliva samples available for analysis. All
dual survivors in this study as well as four of the six single
survivors were stage III or IV, while the remaining two sin-
gle survivors were stage II. Growth restriction was ob-
served in two of the donor infants, who experienced
catch-up growth following successful laser surgery.

Page 8 of 11

DNA extraction and modification

DNA was extracted from the whole blood samples using
the QIAmp DNA Mini Kit (Qiagen, Inc., Valencia, CA,
USA) following the manufacturer’s protocols, and was
extracted from the saliva samples using reagents and
protocols provided with the Oragene Discover system.
Purified DNA was quantified using a ND-1000 spectro-
photometer (Nanodrop, Wilmington, DE, USA). All
DNA samples (1 pg) were bisulfite-modified using the
EZ DNA Methylation Kit (Zymo Research, Irvine, CA,
USA ) and stored at -20°C.

Bisulfite pyrosequencing for Alu-Yb8 and LINE1
methylation

The extent of methylation of the Alu-Yb8 and LINEL1 re-
petitive elements was used as a marker of global methy-
lation and was assessed in all samples available using
bisulfite pyrosequencing as previously described [49] on
the Pyromark MD Pyrosequencer. Methylation extent
was calculated as the mean methylation across four posi-
tions in the LINE1 region and five positions in the Alu-
Yb8 region. Pyrosequencing reactions were performed in
triplicate for each sample and the mean of the triplicates
was used in all analyses. All pyrosequencing reactions
also included bisulfite modification assessments. If any
sample demonstrated less that 97% modification effi-
ciency, that sample was re-modified and all reactions
were repeated.

Array-based DNA methylation assessments

To examine gene-related CpG methylation, methylation
was measured at 27,578 CpG loci using the Infinium
HumanMethylation27 Bead Array (Illumina, San Diego,
CA, USA). The microarrays were processed at the Uni-
versity of Californa at San Francisco Institute for Human
Genetics Genomic Core Facility, following standard pro-
tocols. The methylation status for each individual CpG
locus was calculated as the ratio of fluorescent signals
(P = Max(M,0)/[Max(M,0)+Max(U,0) + 100]), ranging
from O to 1, using the average probe intensity for the
methylated (M) and unmethylated (U) alleles. Beta (p) = 1
indicates complete methylation; p = 0 represents no
methylation. The data were assembled using BeadStudio
methylation software (Illumina), without normalization
according to the manufacturer’s instructions. We used
array control probes to assess the quality of our samples
and to evaluate potential problems, such as poor bisulfite
conversion or color-specific issues for each array, and
found these quality control probes to have similar distri-
butions across all samples. Any samples with >25% of
CpG loci having a detection P-value >0.05, or any loci
demonstrating a detection P-value >0.05 in more than
20% of samples was removed [50]. All CpG loci on X and Y
chromosomes were excluded from the analysis, to avoid
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gender-specific methylation bias, leaving a final 26,486
autosomal CpG loci representing 13,890 unique genes in a
total of 23 samples. We also performed a principle compo-
nents analysis of the array data, and examined the associ-
ation between the top four principle components and
beadchip, to assess if the predominant variation across sam-
ples was based on technical characteristics and found no
associations.

We, and others, have previously demonstrated that
methylation of CpG loci detected through BeadArray
platforms can be reliably replicated using alternative
detection techniques including pyrosequencing, mass
array analysis and quantitative methylation-specific PCR
[50-56].

Statistical analysis
The extents of methylation of LINE1 and ALU-Yb8 were
compared between donors and recipients, stratified by
sample type, using the nonparametric Mann—Whitney U
test in order to limit the influence of outlier points.

For the array based DNA methylation data, we used
the following random effects model to account for the
data structure:

Yia = a + u; + vje + &

where Y, represents the methylation M-value (that is,
log2 ratio of the intensities of methylated probe versus
unmethylated probe) [57], for individual i = 1, 2, ..., 14,
pair j = 1, 2, ..., 8, k an index for donor/recipient status,
[ an index for sample type (that is, blood or saliva); « is
the overall intercept, u; and v are random effects asso-
ciated with pair and donor/recipient status within pair,
and gy is the error term. Using standard linear mixed
effects model formulation, we assume the random ef-
fects and residual errors are independent and normally
distributed: uj~N (0,0%); v~N (0,03); and &;~N(0,03),
yielding three variance components in the model (that
is, 03, 05 and 03). The random effect variance o3 reflects
the variation in methylation between donors and recipi-
ents. We used the intra-class correlation coefficient to
understand the stability of DNA methylation between
donors and recipients. We defined the ICC here to be:

2
03

cc=——2
o+ 03+ 03

0<ICC<1

with values approaching 1 signifying that the predomin-
ant source of variability in methylation was between do-
nors and recipients. Model (1) was fit independently to
all autosomal CpG loci that passed quality assurance
and quality control procedures. To avoid potential biases
in assessing the stability of methylation markers between
donors and recipients, models were adjusted for patient
age at the time of sample collection.
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To evaluate the biological relevance of the obtained
ICCs, we examined the association between ICC values
and characteristics of the methylation markers. In par-
ticular, Wilcoxon rank-sum tests were used to investi-
gate the association between ICC values and polycomb
group target gene (PcG) [36,37] associated loci as well as
CpG Island associated loci.

To examine if the differences in methylation between
donor and recipients represent differences in the under-
lying proportion of blood cell types within the sample,
we ranked the loci on the arrays based on their prior
association with blood leukocyte methylation [38,39]
which has defined blood cell specific differentially meth-
ylated regions. We then examined the current ICC value
by leukocyte DMR rank.

All analyses were carried out using the R statistical
package, version 2.13 (www.r-project.org/).

Additional file

Additional file 1: Figure S1. Examples of three loci demonstrating high
donor-recipient interclass correlation values, each suggesting that >80% of
their variability is explained by donor-recipient status. Red lines denote the
mean methylation within each group. Figure S2. Value of the donor-
recipient interclass correlation (ICC2) values for all loci ranked by their DMR
status, based on prior studies of leukocyte subset DNA methylation.
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