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Global differences in specific histone H3
methylation are associated with overweight and
type 2 diabetes
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Abstract

Background: Epidemiological evidence indicates yet unknown epigenetic mechanisms underlying a propensity for
overweight and type 2 diabetes. We analyzed the extent of methylation at lysine 4 and lysine 9 of histone H3 in
primary human adipocytes from 43 subjects using modification-specific antibodies.

Results: The level of lysine 9 dimethylation was stable, while adipocytes from type 2 diabetic and non-diabetic
overweight subjects exhibited about 40% lower levels of lysine 4 dimethylation compared with cells from normal-
weight subjects. In contrast, trimethylation at lysine 4 was 40% higher in adipocytes from overweight diabetic
subjects compared with normal-weight and overweight non-diabetic subjects. There was no association between
level of modification and age of subjects.

Conclusions: The findings define genome-wide molecular modifications of histones in adipocytes that are directly
associated with overweight and diabetes, and thus suggest a molecular basis for existing epidemiological evidence
of epigenetic inheritance.
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Background
The dynamics of chromatin regulate access to DNA and
are therefore under tight control by the host cell and by
external stimuli. Reversible covalent post-transcriptional
modifications to histones are considered to form one of
the major means by which gene transcription and DNA
replication are controlled [1]. Histone modifications have
been associated with transcriptional control since the dis-
covery of histone acetylation [2]; hyperacetylated histones
are linked to actively transcribed genes [2,3].
Methylation of histone H3 at lysine 4 is associated

with sites of active gene transcription [4,5]. High levels
of dimethylation and trimethylation (H3K4me2 and
H3K4me3) are generally found near promoter regions of
DNA. Trimethylation, particularly, is found at transcrip-
tion start sites, while dimethylation flanks these sites of
active genes [6,7]. Enhancers appear to host higher levels
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of monomethylated lysine 4. Dimethylation of lysine 9
(H3K9me2), on the other hand, is a modification found
in heterochromatin throughout silenced genes [7] but is
also found in actively transcribed genes [8]. Methylation
of histones is a reversible and dynamic process that is cat-
alyzed by specific and general histone methyltransferases
and demethylases, which are, in turn, dependent on meta-
bolic coenzymes and thus responsive to changes in energy
supply and metabolic status [9].
Obesity and type 2 diabetes (T2D) are characterized

by strong hereditary components in addition to such
lifestyle-related factors as overeating and physical in-
activity; however, no simple relation to gene variants has
been discovered. Conversely, genome-wide association
studies have uncovered a number of genes that are asso-
ciated with increased risks of developing the conditions,
but the identified genes are each associated with a very
low risk and are widely distributed in the population as
a whole [10-13].
It is clear that lifestyle and environmental exposure

can cause long-lasting susceptibility or resistance to dis-
ease, even in later generations, suggesting non-genetic
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Figure 1 Level of H3K4me2 in human adipocytes. The level of
H3K4me2 was determined in isolated adipocytes from normal-
weight (BMI < 25 kg/m2), overweight (BMI ≥ 25 kg/m2), and
overweight subjects with T2D. Bar graph shows the H3K4me2/total
histone H3, mean ± SEM (n = number of subjects) in adipocytes
from normal-weight subjects (n = 14), non-diabetic overweight
subjects (n = 19), and overweight subjects with T2D (n = 10). Cells
from all subjects were analyzed in three separate experiments and
the median value was used in the subsequent analysis. a.u., arbitrary
units; BMI, body mass index; SEM, standard error of the mean; T2D,
type 2 diabetes.
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memory and inheritance. Epidemiological data and clin-
ical and experimental studies indicate that nutritional
conditions during early life can strongly influence later
susceptibility to T2D. Epigenetic mechanisms have been
used to explain the discovery that the famine experi-
enced by pregnant mothers in the Netherlands in World
War II affected the birth weights of their children, and
their children’s later development of obesity and im-
paired glucose tolerance [14-16]. In addition, it was
found that different starvation or surfeit experiences by
parents and grandparents in Överkalix in northern
Sweden during the late nineteenth and early twentieth
centuries was associated with different susceptibilities to
death from cardiovascular disease or T2D in their off-
spring [17]. Recently, a study of the whole population of
Austria found a massively increased risk of diabetes in
people born during or immediately after one of three
different famines of the twentieth century [18]. In ex-
perimental animal studies, the importance of the intra-
uterine environment has been demonstrated [19-21], as
well as a paternal non-genetic transgenerational inherit-
ance of propensity for obesity and diabetes [22,23]. It
has been suggested that methylation of DNA, modifica-
tions of histones, and noncoding RNA mediate epigen-
etic inheritance. Methylation of DNA and histone
modifications have been shown to be affected by, for ex-
ample, body mass index (BMI) [24], age [25], intrauter-
ine environment [26-28], glucose exposure [29,30], and
exercise [31].
In this study, we investigated whether there is a rela-

tion between overweight or obesity, T2D and genome-
wide methylation of histone H3 at lysine 4 and at lysine
9 in isolated mature adipocytes.

Results
We analyzed the global extent of H3K4me2, H3K4me3,
and H3K9me2 in isolated primary mature adipocytes
from subjects who were of normal weight, overweight,
or overweight with type 2 diabetes. The extent of methy-
lation was determined by SDS-PAGE and immunoblot-
ting using site- and modification-specific antibodies. The
extent of specific methylation was normalized for the
total amount of histone H3 in each sample, and all
values are the median value of three separate experi-
ments. Hence, the extent of histone H3 methylation is
determined as the fractional methylation of histone H3.
The level of H3K4me2 was 37% lower in adipocytes

from overweight subjects, whether non-diabetic or with
T2D, compared with normal-weight non-diabetic sub-
jects (Figure 1). Moreover, when combining the whole
group of overweight (non-diabetic and T2D) subjects,
the level of H3K4me2 was significantly lower (P = 0.009)
than in the adipocytes from the normal-weight subjects
(not illustrated).
In contrast, the level of H3K4me3 was 40% higher in
adipocytes from overweight subjects with T2D than in
normal-weight non-diabetic or overweight non-diabetic
subjects (Figure 2).
As an association between epigenetic changes and age

can be expected and has indeed been observed [32], we
examined whether there was any association between
the extent of histone modification and the age of the
subjects. However, we found no significant association
between the global levels of H3K4 dimethylation or
trimethylation in the isolated adipocytes and the age of
the corresponding subjects (Figure 3).
In contrast with H3K4-methylation, the level of

H3K9me2 was similar in adipocytes from T2D and non-
diabetic subjects and was not dependent on donor over-
weight (Figure 4).

Discussion
Our findings reveal large genome-wide differences in the
level of specific histone methylation in adipocytes from
subjects with overweight or T2D compared with
normal-weight and non-diabetic subjects. These differ-
ences were not related to the age of the subjects donat-
ing the adipocytes. The effects were restricted to H3K4
methylation, which is associated with actively tran-
scribed genes, with no corresponding effects in the
heterochromatin-defining H3K9 methylation. It is particu-
larly interesting that overweight and T2D are associated
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Figure 2 Level of H3K4me3 in human adipocytes. The level of
H3K4me3 was determined in isolated adipocytes from normal-
weight (BMI < 25 kg/m2), overweight (BMI ≥ 25 kg/m2), and
overweight subjects with T2D. Bar graph shows the H3K4me3/total
histone H3, mean ± SEM (n = number of subjects) in adipocytes
from normal-weight subjects (n = 11), non-diabetic overweight
subjects (n = 16), and overweight subjects with T2D (n = 10). Cells
from all subjects were analyzed in three separate experiments and
the median value was used in the subsequent analysis. a.u., arbitrary
units; BMI, body mass index; SEM, standard error of the mean; T2D,
type 2 diabetes.
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Figure 3 Level of H3K4me2 and H3K4me3 in human adipocytes
in relation to age of subjects. The levels of H3K4me2 (A) and
H3K4me3 (B) were determined in isolated adipocytes from normal-
weight and overweight (BMI ≥ 25 kg/m2) subjects and overweight
subjects with T2D, and plotted against the age of donor subjects.
There was no significant correlation between level of modification
and age: P = 0.39 (A); P = 0.10 (B). Cells from all subjects were
analyzed in three separate experiments and the median value was
used in the subsequent analysis. a.u., arbitrary units.
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with changes involving nearly half of the dimethylation
and trimethylation levels at H3K4 in the adipocytes. This
indicates that a large number of genes might be affected
by the changed levels of modifications. The underlying
cause of these differences probably originates from differ-
ences in activities of one or more of the involved methyl-
ases or demethylases, or their control. Histone methylation
is a reversible process and we cannot exclude changes dur-
ing surgical procedures and isolation or incubation of the
cells, but our findings nevertheless demonstrate large
genome-wide changes in overweight and T2D that are dir-
ectly related to these specific histone modifications. Since
most genetic variants associated with T2D appear to be
linked to β-cell function and insulin release [10,11] our
findings indicate a potential importance of the adipose tis-
sue in hereditability of T2D. An epigenetic link to over-
weight and T2D is in line with the epidemiological studies
discussed previously [14,15,17,18,26].
H3K4me2 is demethylated by LSD1, a FAD-dependent

demethylase [33-35]. Interestingly, it has been shown
that LSD1 has an increased expression in adipocytes
from high-fat diet-fed mice and that adipose energy-
expenditure genes are direct targets of repression by
LSD1 [34]. Inhibition of LSD1 increases global H3K4
methylation in P19 embryonal carcinoma cells [36] and
lowers the body weight of mice fed a high-fat diet [34].
Histone methyltransferase MLL3 catalyzes methylation
of H3K4 [37]. Mice with mutations in the catalytic
SET-domain of MLL3 show altered gene expression of
a number of metabolic genes in adipose tissue, such as
Rbp4 [38], which is associated with insulin resistance in
human beings [39,40]. The mutant mice also exhibit an
altered phenotype, with less adipose tissue and im-
proved insulin sensitivity compared with control mice
[38]. Collectively, these reports demonstrate that modi-
fying the global levels of H3K4 methylation experimen-
tally affects adiposity and sensitivity to insulin. This is
further supported by experiments showing that the
levels of H3K4me3 in PPARγ promoters correlate with
expression levels of PPARγ during adipogenesis [41].
Interestingly, H3K9me2 was selectively enriched in the
entire PPARγ locus in 3T3-L1 preadipocytes [42], and the
level of H3K9me2 correlated inversely with induction of
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Figure 4 Level of H3K9me2 in human adipocytes. The level of
H3K9me2 was determined in isolated adipocytes from normal-weight
(BMI < 25 kg/m2, n = 7), non-diabetic overweight (BMI ≥ 25 kg/m2,
n = 10), and overweight subjects with T2D (n = 10). Bar graphs show
the H3K9me2/total histone H3, mean ± SEM (n = number of subjects).
Cells from all subjects were analyzed in three separate experiments
and the median value was used in the subsequent analysis. a.u.,
arbitrary units; BMI, body mass index; SEM, standard error of the mean;
T2D, type 2 diabetes.

Table 1 Characteristics of participating subjects

Normal weight Overweight

T2D(BMI < 25 kg/m2) (BMI > 25 kg/m2)

Female/male 14/0 19/0 8/2

Age (years) 64.4 ± 8.7 60.2 ± 11.4 55.2 ± 15.2

BMI (kg/m2) 22.4 ± 1.5 34.5 ± 8.3 41.4 ± 10.8

Fasting glucose
(mmol/l)

5.8 ± 1.0 6.2 ± 8.9 8.0 ± 0.5

Fasting insulin
(pmol/l)

73.0 ± 64.0 54.5 ± 34.4 112.0 ± 114.2

Mean ± SD.
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PPARγ in both murine and human adipogenesis [42].
However, globally we found no correspondence between
levels of H3K9 and H3K4 methylation in the mature adipo-
cytes of normal-weight, overweight, or diabetic individuals.
It may be that histone modifications do not determine

sites of active transcription, but rather reinforce the ef-
fects of nucleosome binding during transcription, for ex-
ample, in response to the targeting actions of noncoding
RNAs [1]. As such, our findings are indicators of large
genome-wide changes in transcriptional activities associ-
ated with overweight and diabetes, which may be in-
volved in an epigenetically affected propensity for these
common disorders. In the future, it will be interesting to
analyze to what extent particular sets of genes are af-
fected in different individuals, who may be of normal
weight, overweight, or diabetic.

Conclusions
Our findings define extensive genome-wide molecular
modifications of histones in adipocytes that are directly
associated with overweight and diabetes. Effects were re-
stricted to H3K4 methylation, which is associated with
actively transcribed genes, with no corresponding effects
in the heterochromatin-defining H3K9 methylation.
Changes involved 30% to 40% of the dimethylation and
trimethylation levels at H3K4 in the adipocytes, indicat-
ing that a large number of genes might be affected by
the changed levels of modifications. The findings suggest
a molecular basis for existing epidemiological evidence
of epigenetic inheritance.
Methods
Subjects
The study was approved by the Regional Ethics Board at
Linköping University and has been carried out in ac-
cordance with the declaration of Helsinki; all patients
obtained written information and gave their informed
approval before surgery. Subcutaneous abdominal fat tis-
sue was obtained during elective surgery on patients at
the University Hospital, Linköping and Norrköping.
Clinical data are summarized in Table 1.

Isolation and incubation of adipocytes
Adipocytes were isolated from adipose tissue samples by
collagenase digestion (type 1, Worthington, NJ, USA) in
modified Krebs-Ringer solution [43]. Following over-
night incubation [44], cells were washed with the modi-
fied Krebs-Ringer solution and incubated with 0.1 μM
N6-phenylisopropyl adenosine and 2.5 μg/ml adenosine
deaminase for 10 min, to control the intracellular con-
centration of cyclic AMP and establish a standardized
level of basal lipolysis [45]. Cells were separated from
the medium by centrifugation through dinonyl phthalate
and were then immediately dissolved in SDS and β-
mercaptoethanol with protease and phosphatase inhibi-
tors, frozen within 10 seconds and thawed in boiling
water for further analysis [43].

SDS-PAGE and immunoblotting
Proteins were separated by SDS-PAGE (14.5% acrylamide)
[46] and transferred to a polyvinylidene difluoride blotting
membrane (Immobilon-P, Millipore, MA, USA). The ex-
tent of H3K4 and H3K9 methylation was analyzed with
antibodies against H3K4me2, H3K4me3, or H3K9me2
(Active Motif, Carlsbad, CA, USA). These antibodies are
specific for dimethylation or trimethylation, such that the
H3K4me2-specific antibodies do not cross-react with
H3K4me3. Membranes were stripped of bound antibodies
(2% SDS, 62.5 mM Tris, 100 mM β-mercaptoethanol,
60°C, 30 min) and the amount of histone H3 was deter-
mined in each sample with antibodies against histone
H3 C-terminus (Active Motif), to calculate the ratio of



Jufvas et al. Clinical Epigenetics 2013, 5:15 Page 5 of 6
http://www.clinicalepigeneticsjournal.com/content/5/1/15
histone H3 methylation to the amount of histone H3.
To allow comparison between different gels, a standard
sample (a mixture of aliquots from 23 subjects) was run
in duplicate on every gel and all samples were normal-
ized against the mean of the standard sample. Antibodies
were detected using horseradish peroxidase conjugated
IgG secondary antibody (Santa Cruz Biotechnical, Santa
Cruz, CA, USA) and ECL-plus (Amersham Biosciences,
Little Chalfont, Bucks, UK) using chemiluminescence im-
aging (LAS 1000; Image Gauge v.3.0, Fuji, Tokyo, Japan).
Linearity of the antibodies’ responses was ascertained
(Additional file 1: Figure S1) and the amounts of each
sample subjected to SDS-PAGE were adjusted to fall
within this linear range. For the calculations, the median
of three separate immunoblottings was used for each of
the 43 subjects. Groups were compared with two-tailed
Student’s t test, using GraphPad Prism v.5.00 (GraphPad
software Inc., San Diego, CA, USA).

Additional file

Additional file 1: Figure S1. Linearity of immunoblotting with
antibodies against H3K4me2, H3K4me3, H3K9me2, and H3 C-terminus.
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