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Abstract

invasive buccal swabs and pyrosequencing technology.

The biological mechanisms responsible for the onset and exacerbation of asthma symptoms in children may
involve the epigenetic regulation of inflammatory genes after environmental exposures. Using buccal cells, we
hypothesized that DNA methylation in promoter regions of two asthma genes, inducible nitric oxide synthase
(iNOS) and interferon y (IFNy), can vary over several days. Repeat buccal samples were collected 4 to 7 days apart
from 34 children participating in the Columbia Center for Children’s Environmental Health (CCCEH) birth cohort
study. Several field duplicates (sequential collection of two samples in the field) and replicates (one sample
pyrosequenced twice) also were collected to ensure consistency with collection and laboratory procedures. DNA
methylation was assessed by pyrosequencing a PCR of bisulfite-treated DNA. We found that replicate and field
duplicate samples were correlated strongly (r = 0.86 to 0.99, P < 0.05), while repeat samples demonstrated low
within-subject correlations (r = 0.19 to 0.56, P = 0.06 to 0.30). Our data reveal DNA methylation as a dynamic
epigenetic mechanism that can be accessed safely and reproducibly in an inner city pediatric cohort using non-
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Introduction

The biological mechanisms responsible for the develop-
ment of asthma symptoms in children following acute
exposure to air pollution and other triggers are complex.
These include the induction of oxidative stress pathways
and formation of excessive reactive oxygen species in
the airways [1-5]. Also, exposure to diesel and other
combustion products may upregulate proallergic T
helper (Th) 2 immune mechanisms [1,6-9]. Epigenetic
regulation of gene expression associated with airway
inflammation and allergic immune responses following
exposure to air pollutants has been proposed as a key
molecular step linking environmental exposures with
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altered asthma gene expression and asthma symptoms
[10-14].

To date, clinical research on epigenetic changes in
asthma and other complex diseases has been limited,
especially in children [11,12]. One cross-sectional study
by White and colleagues observed promoter demethyla-
tion of the allergy counter-regulatory and Thl cytokine
interferon y (IFNy) gene in association with in vitro dif-
ferentiation of CD4+ neonatal T cells [15]. Another
study by Kwon and colleagues found phytohemaggluti-
nin (PHA) and dust mite allergen stimulation of CD4+
T lymphocytes induced small increases in the degree of
demethylation in several CpG loci of the Th2 interleukin
(IL)-4 promoter (CpG*, CpG*®) in adult asthmatic sub-
jects, when compared to the control group [16]. The
changes in DNA methylation at the IFNy promoter were
less consistent. Recently, Breton and colleagues sampled
children living in Southern California in one of the first
large cohort studies analyzing DNA methylation of
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asthma genes in buccal cells [17]. They hypothesized
that buccal cell DNA methylation levels in two genes
important to the production of proinflammatory nitric
oxide, namely arginase (ARG) and inducible nitric oxide
synthases (iNOS), would be associated inversely with
fractional exhaled nitric oxide (FeNO) levels measured
concurrently at one timepoint. They found that methy-
lation levels in the promoter regions of ARG1 and
ARG2, but not iNOS, were associated inversely with
FeNO levels among asthmatic children.

Despite these few advances, several fundamental ques-
tions still need to be elucidated in environmental epige-
netic asthma research. Some relate to basic questions
about quality assurance and controls, such as the repro-
ducibility of biospecimen collected under ‘real world’
field conditions and their quantification of DNA methy-
lation levels in the laboratory. Another is whether biolo-
gically relevant epigenetic marks change readily over
time, even over the short term. Our objective was to
answer such fundamental questions in a pediatric urban
cohort using non-invasive duplicate and repeat sam-
pling. Our approach was to collect duplicate and
repeated buccal cells, collected as self-performed cheek
swabs by children in the field (that is, the child’s home),
as an accessible population of aerodigestive tract cells
that may undergo changes in gene expression following
exposure to environmental toxicants (for example, envir-
onmental tobacco smoke (ETS)) in a manner that corre-
late with those derived from the airway [18-20]. Also, as
described above, buccal cells demonstrate gene-specific
DNA demethylation that has been associated with air-
way inflammation [17].

We also chose to measure DNA methylation of two
representative asthma genes, namely IFNy and iNOS.
IFNy is a well established negative regulator of airway
allergic immune responses [21]. The induction of IFNy
primarily is regulated by demethylation of CpG sites
within the IFNy gene [5,15,22]. While Breton and collea-
gues did not find associations with iNOS demethylation
in buccal DNA and FeNO production, Tarantini and
colleagues found that fine particulate matter exposure
over days was associated with iNOS demethylation in
peripheral blood mononuclear cells (PBMCs) [23]. Our
aims were (1) to determine the reproducibility of levels
of DNA methylation at multiple CpG sites for both
genes when collected as duplicate samples in the field,
and (2) to determine whether changes in DNA methyla-
tion levels occur over days.

Methods

Collection of buccal cell DNA samples

Buccal samples were collected using the Cytosoft Cytol-
ogy Brush in Qiagen’s Puregene Buccal Cell Core Kit
(Qiagen Sciences, Germantown, MD, USA) from 34
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children aged 9 to 10 years old living in Northern Man-
hattan and the Bronx, NY, USA, participating in the
Columbia Center for Children’s Environmental Health
birth cohort study [1,24,25]. Informed consent and
assent were obtained from all participants prior to their
participation in the study. Field technicians traveled to
the subject’s home and instructed children not to eat or
drink for 1 h prior to cheek swab. Each child rinsed his/
her mouth with water and then brushed the inside of
his/her cheek for 1 minute. Upon completion, the field
technician placed the swab immediately into 600 pl of
cell lysis solution (Qiagen). For field duplicate samples,
the children were given two swabs to brush inside their
cheeks in immediate succession for 1 minute each.

Extraction, quantification, and bisulfite conversion

Buccal cell DNA extractions were performed using
Puregene Buccal Cell Core Kits (Qiagen) according to
the manufacturer’s instructions, except all centrifuga-
tions were conducted at 4°C instead of room tempera-
ture. Buccal DNA was quantified using PicoGreen
(Invitrogen Corporation, Carlsbad, CA, USA) ultrasensi-
tive fluorescent nucleic acid stain for double-stranded
DNA. Bisulfite conversion was performed on 200 ng of
genomic buccal cell DNA using Zymo Research’s EZ
DNA Methylation Kit (Irvine, CA, USA) and the manu-
facturer’s instructions, with one modification. Samples
were incubated under the Alternative Incubation Condi-
tions for Illumina Infinium Methylation Assay with an
increased number of cycles (20 cycles of 95°C for 30 s
and 50°C for 15 min) according to the manufacturer’s
instructions.

PCR amplification and pyrosequencing

The primers for performing PCR and the PCR product
sequencing (Table 1) were designed using PyroMark
Assay Design 2.0 software (Qiagen, Valencia, CA) for
the regions of interest for IFNy and iNOS (Figure 1).

Table 1 Primer sequences

Gene Primer Sequence
IFNy  Forward 5-AGAATGGTATAGGTGGGTATAATGG-3'
Reverse 5'-Biotin-

CAAAACAATATACTACACCTCCTCTA-3

Sequencing (CpG™  5-ATTA ATTTTAAAAAATTTGTG-3'
54ya
)

Sse6queﬁdng (CpG  5-GGTGGGTATAATGGGTTTG-3'
186ya
)

iNOS 5-TTAGGGTTAGGTAAAGGTA GTTT-3'
5"-Biotin-
CAATTCTATAAAACCACCTAATAATCTTAA-3'
5-TAAAGGTA G AA-3'

Forward
Reverse

Sequemcmgb

“Site based on previous studies of interferon (IFNy) [15].

PSite based on previous studies of inducible nitric oxide synthase (iNOS)
[17,23].
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proximal promoter of inducible nitric oxide synthase (iNOS).

Figure 1 CpG sites under investigation relative to the translation start site (TSS) for (a) proximal promoter of interferon (IFNY); (b)

These targeted areas were chosen based on previous evi-
dence of epigenetic regulation following inhaled envir-
onmental exposures [13,23]. PCR reactions were
performed with Qiagen HotStarTaq DNA polymerase
reagents for IFNy and iNOS with the following concen-
trations for each ingredient in the PCR mixtures: 1 x
PCR buffer, 1.5 uM of MgCl,, 0.2 uM dNTP, 0.4 uM
forward primer, 0.4 uM reverse primer. The PCR pro-
grams for the IFNy thermocycler were: 15 min hot start
at 95°C, followed by 50 cycles of 95°C for 30 s, 55°C for
1 min, and 72°C for 1 min, with a 10 min elongation at
72°C. The PCR programs for the iNOS thermocycler
were: 15 min hot start at 95°C, followed by 50 cycles of
95°C for 30 s, 56°C for 1 min, and 72°C for 1 min 30 s,
with a 10 min elongation at 72°C. The PCR product was
sequenced using PyroMark Q24 Pyrosequencer after
verifying the positive PCR products by visualizing the
appropriately sized band on a 1.2% agarose gel. All
DNA extractions and bisulfite conversions were per-
formed by the same lab researcher (DZT) who also per-
formed all the IFNy pyrosequencing. All iNOS

pyrosequencing was performed by a second researcher

(JSK).

Statistical analysis

Concordance correlations were calculated for all repli-
cate (amplified and sequenced more than one time) and
field duplicate (sequential collection of two samples in
the field) samples. Within subject correlations were cal-
culated for samples repeated 4 to 7 days later in the
same children. For repeat samples, within subject corre-
lations were assessed using SPSS (SPSS, Chicago, I,
USA). Each CpG site was analyzed separately.

Results

In order to determine whether experimental procedures
for PCR and pyrosequencing produced repeatable and
consistent data, replicate samples were run. We found
that replicate samples were highly correlated for IFNy
and iNOS at all CpG sites tested (Figure 2). For exam-
ple, the concordance correlations (rho) between the first
and second pyrosequencing run for the replicate IFNy
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Figure 2 Concordance correlations between replicate samples for (a) CpG'186 (left, n = 9) and CpG’54 (right, n = 8) on interferon (IFNy)
proximal promoter; (b) CpG>*? (left, n = 16) and CpG>°? (right, n = 14) located in the inducible nitric oxide synthase (iNOS) proximal
promoter. Samples represent repeat pyrosequencing runs of same sample of bisulfite converted DNA.

samples were 0.86 (P < 0.05) and 0.92 (P < 0.05) for
CpG'® and CpG™*, respectively; and for iNOS 0.98 (P
< 0.05) and 0.99 (P < 0.05) for CpG>>® and CpG~>°?,
respectively. To determine the reproducibility of buccal
cell samples collected from children in ‘real world’ con-
ditions, field duplicate samples were collected. We also
found a high correlation between duplicate samples for
IFNy and iNOS at all CpG sites tested (Figure 3). Speci-
fically, the concordance correlations (rho) for IFNy
duplicate samples were 0.88 (P < 0.05) and 0.91 (P <
0.05) for CpG'*® and CpG™>*, respectively; and 0.83 (P
< 0.05) and 0.88 (P < 0.05) for iNOS duplicate samples
CpG>°? and CpG>°?, respectively. In addition, the

methylation levels of the two iNOS CpG sites correlated
highly with each other (Spearman r = 0.77, P < 0.05, n
= 28), whereas the two IFNy CpG sites correlated only
moderately with each other (r = 0.45, P < 0.05, n = 20).
Neither iNOS CpG site correlated with either IFNy site.
To address a basic question about the time course of
DNA methylation, we asked whether buccal cell methy-
lation levels would vary when remeasured days later.
We found that repeat samples for iNOS and IFNy col-
lected 4 to 7 days later demonstrated low within-subject
correlations (Figure 4). For example, the within-subject
correlations for IFNy repeat samples were: r = 0.56 (P =
0.06) and 0.23 (P = 0.26) for CpG*%¢ and CpG’M,
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Figure 3 Concordance correlations between duplicate samples for (a) CpG"E‘6 (left, n = 11) and CpG'54 (right, n = 13) on interferon
(IFNY) proximal promoter; (b) CpG>*° (left, n = 11) and CpG 32 (right, n = 10) located in the inducible nitric oxide synthase (iNOS)
proximal promoter proximal promoter. Samples were collected from sequential buccal swabs minutes apart.
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respectively; and the within-subject correlations for
iNOS repeat samples were: r = 0.20 (P = 0.29) and 0.19
(P = 0.30) for CpG 2> and CpG™°?, respectively. These
results suggest that DNA methylation levels vary over a
4 to 7 day period within individual subjects.

Discussion

Our first objective was to assess the reproducibility of
buccal DNA collection and quantification of DNA
methylation of asthma genes among a cohort of young
children. We found that replicate and field duplicate
samples correlated strongly. These results suggest our
field and laboratory procedures (including bisulfite

conversion, pyrosequencing) are robust, and that collec-
tion and measure of buccal cell DNA methylation in
cohort studies can have great utility. Also they allow us
to start answering fundamental questions about the sta-
bility of DNA methylation in buccal cells over time,
questions that have significant implications for the
understanding of environmental epigenetic regulation in
children.

Upon confirming the feasibility and reproducibility of
these measures, our next step was to assess acute differ-
ences in levels of buccal cell DNA methylation of select
sites on two asthma genes tested days apart. We found
low within-subject correlations for both IENy (r = 0.56



Torrone et al. Clinical Epigenetics 2012, 4:3
http://www.clinicalepigeneticsjournal.com/content/4/1/3

Page 6 of 8

100 -
2
)
£ 90 -
w2
&
| .
4 80 .t
£ +
<
E\ *»
5 70 -
= +
=
z 60
o il r=0.56
- p=0.06
50 T T T T )
50 60 70 80 90 100
Percent Methylated — 15t Sample
b 100 -
2
£ 80 -
<
9]
&
I 60 - o
3
B 0/.r“"'
=, °
B 40
=
=
S
S 201 =0.20
p=0.29
0 T T T T )
0 20 40 60 80 100

Percent Methylated — 15t Sample

nitric oxide synthase (iNOS) proximal promoter.

Figure 4 Within-subject correlations between samples repeated from same subjects 4 to 7 days apart, for (a) CpG'186 (left, n = 8) and
CpG™* (right, n = 9) on the interferon (IFNy) proximal promoter; (b) CpG>*° (left, n = 9) and CpG>>? (right, n = 9) on the inducible
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and 0.23 for CpG ¢, CpG™*, respectively) and iNOS (r
= 0.20 and 0.19 for CpG2°°, CpG>*?, respectively) upon
repeat testing over a 4 to 7 day period. Combined with
the high level of reproducibility previously demon-
strated, these data suggest that methylation levels can
change acutely in both genes. These findings are novel
in that research measuring short-term changes in
methylation has been limited, with only a few examples
to date [23,26]. For example, Baccarelli and colleagues
tested blood DNA methylation levels in long inter-
spersed nucleotide elements (LINE 1) and Alu element
(Alu) as surrogates of global methylation levels after
acute exposure to black carbon/soot. They found an

association between ambient black carbon levels and
LINE 1, but not Alu, demethylation suggesting that glo-
bal epigenetic regulation may occur in association with
measures of recent air pollution exposure. As a second
example, Tarantini and colleagues, in addition to asses-
sing acute changes in global methylation (LINE 1, Alu),
assessed PBMC DNA methylation levels in the proin-
flammatory iNOS gene over a 3-day period. Interest-
ingly, they found an association between concentrations
of PM,, particles and iNOS demethylation, implicating
this regulator of airway inflammation as a gene whose
expression may depend in part on alteration of DNA
methylation levels.
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We reasoned that genes expressed in buccal cells, like
those in peripheral blood mononuclear cells, also could
undergo acute changes in DNA methylation, presumably
following recent changes in environmental triggers.
Inducible NOS was a main focus of this investigation
because of Tarantini’s and colleagues’ reports, and
because of its reported expression in the buccal mucosa
[27]. Interestingly, methylation levels and interquartile
ranges observed in this study of inner city asthmatic
children were strikingly similar to the report by Breton
and colleagues in a Southern California cohort, suggest-
ing that some of our new results may be generalizable
to other cohorts.

The second main focus, namely susceptibility of buc-
cal cells to undergo DNA methylation in the promoter
region of IFNy, was in response to considerable previous
work that suggests methylation of IFNy is critical to its
gene expression [15,28]. This body of work also includes
our previous findings in mice that CD4+ T cells
undergo increases in IFNy DNA methylation in multiple
CpG sites following exposures to diesel exhaust parti-
cles. In these experiments, methylation levels were mea-
sured once after 3 weeks of diesel exposure. The
hypermethylation that occurred over this period was
suspected to induce silencing of the IFNy gene and
downregulation of the production of proallergic IgE
antibodies, as indicated by the observed inverse correla-
tion between IFNy methylation levels and IgE [13].
Indeed the CpG sites studied here (CpG™# and CpG™>*)
are conserved in mice [28]. One of the few studies of
human cells to date, conducted by Gonsky and collea-
gues, looked at the same loci in the promoter of IFNy
(CpG "¢ and CpG™*) in lamina propria T cells and per-
ipheral blood T cells [29]. Their group found that a 5%
reduction in methylation of CpG™>* in the promoter
region of IFNy was associated with a threefold increase
in IFNy gene expression. While our study did not link
the changes in IFNy promoter methylation in buccal
cells over time with downstream biological events as the
Liu et al. and Gonsky et al. studies did, it does for the
first time show that the time course for changes in
DNA methylation can be as short as several days in a
pediatric cohort.

We acknowledge several limitations to the study. First,
a limited number of asthma genes, and CpG sites per
gene, were studied. Examination of additional CpG sites
and asthma genes may help elucidate the time course of
epigenetic change of other genes important to airway
inflammation. To date it still needs to be ascertained
how methylation levels across multiple CpG sites may
impact gene transcription differentially, though early evi-
dence suggests that particular sites, such as in proximal
gene promoters such as IFNy CpG™*, may be critical
[28]. Alternately, other evidence suggests that CpG
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methylation in the intron could affect elongation and
thereby gene transcription [30,31]. Also, the sample size
was small, though sufficient to evaluate the quality of
the reproduced data. The data display ranges of methy-
lation that may be shown to be biologically meaningful
in future studies. The buccal cell collection does not
test for cell specific effects nor necessarily represent
what occurs in respiratory epithelium. The magnitude of
changes may vary across tissues. Moreover, in the
absence of corresponding gene expression data, it may
be difficult to know whether their epigenetic changes
led to downstream molecular events. Repeat findings in
other cohorts would be helpful to validate these results.

Conclusions

In summary, these findings suggest that buccal sampling
is a feasible, non-invasive technique that yields reprodu-
cible results. The low correlations found during repeat
sampling, especially when contrasted with highly corre-
lated replicate and duplicate samples, suggest that
changes in the level of DNA methylation can occur
acutely, over a 4 to 7 day period. Given the dynamism
of these epigenetic marks, one could speculate that
these epigenetic marks are responsive to the rapidly
changing environmental exposures. Asthma is a complex
environmentally related disease with a rising US child-
hood prevalence of 9.4% [32], reaching as high as 28.5%
in some areas of New York City [33]. By 2025, asthma
is estimated to affect over 100 million people worldwide
[34]. Understanding the triggers for asthma exacerba-
tions and their associated molecular immune responses
requires longitudinal studies that carefully pair environ-
mental measures with relevant epigenetic biomarkers
and clinical outcomes. These results suggest that such
work can be conducted safely and accurately in an inner
city pediatric cohort through buccal cell sampling and
pyrosequencing of asthma genes.
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