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Abstract

Epigenetics is a mechanism that regulates gene expression independently of the underlying DNA sequence, relying
instead on the chemical modification of DNA and histone proteins. Although environmental and genetic factors
were thought to be independently associated with disorders, several recent lines of evidence suggest that
epigenetics bridges these two factors. Epigenetic gene regulation is essential for normal development, thus defects
in epigenetics cause various rare congenital diseases. Because epigenetics is a reversible system that can be
affected by various environmental factors, such as drugs, nutrition, and mental stress, the epigenetic disorders also
include common diseases induced by environmental factors. In this review, we discuss the nature of epigenetic
disorders, particularly psychiatric disorders, on the basis of recent findings: 1) susceptibility of the conditions to
environmental factors, 2) treatment by taking advantage of their reversible nature, and 3) transgenerational
inheritance of epigenetic changes, that is, acquired adaptive epigenetic changes that are passed on to offspring.
These recently discovered aspects of epigenetics provide a new concept of clinical genetics.

Background

Until recently, in clinical genetics, epigenetics was a
minor field, of which two unusual genetic phenomena
(genomic imprinting and X-chromosome inactivation
(XCI)) were the main aspects under investigation. Based
on the findings related to these phenomena, epigenetic
disorders were considered to be very rare. However, as
epigenetics has become more popular, it has developed
into a huge research field that extends beyond genetics,
encompassing not only biology and medicine, but also
nutrition, education, health and social sciences. It now
appears that epigenetics bridges the two major disease-
causing factors (environmental and genetic) in medicine.
Therefore, it is time to review epigenetics in the light of
recent findings.

In this review, we explain the epigenetic mechanisms
that cause congenital disorders, show examples of envir-
onmental factors that can alter the epigenetic status,
and discuss recent topics in epigenetics, such as the
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possibility of its inheritance and the use of epigenetic
strategies for the treatment of diseases.

Epigenetics: a field that bridges genetic and
environmental factors

It has long been thought that environmental and genetic
factors are involved in the pathogenesis of common dis-
eases such as cancer, diabetes, and psychiatric disorders
[1-5]. For instance, environmental factors, such as drugs,
viral infection, toxins and vaccines were proposed to be
associated with the recent increase in the frequency of
autism [6-9].

In the meantime, a number of genes related to autism
have been identified, which are mutated in a subset of
autistic children. Most of these genes encode synaptic
proteins, including synaptic scaffolding proteins, recep-
tors, transporters, and cell-adhesion molecules [10,11].
A recent comprehensive study confirmed that there
were differences between autistic and control brains in
the expression levels of genes encoding synaptic proteins
and proteins related to inflammation [12]. Based on
these findings, autism is now considered as a ‘synapto-
genesis disorder’ [13,14],, and designated ‘synaptic aut-
ism’ [15] (Figure 1, left).
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Figure 1 Genetic and epigenetic understanding of autism. Either de novo mutations in synaptic genes, congenital abnormalities of
epigenetic control (for example, Rett syndrome), or acquired alterations of epigenetic control induced by various environmental factors can lead
to synaptic dysfunction and resultin autism. Besides this category of ‘synaptic autism’, the categories of ‘inflammatory autism’ and ‘splicing
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It was recently reported that short-term mental stress
caused by maternal separation during the neonatal per-
iod alters the epigenetic status of the glucocorticoid
receptor (Gr) promoter in the rat hippocampus, which
leads to changes in gene expression. This altered epige-
netic status and abnormal gene expression persisted
throughout life, and resulted in abnormal behavior [16].
This finding led us to posit a new paradigm in which
epigenetics links genetics to environmental science [16].
Since then, similar observations have been reported
[17,18], and epigenetics is now considered to be an
intrinsic mechanism that bridges the gap between envir-
onmental and genetic factors (Figure 1, right).

The first epigenetic phenomena to be associated with
disorders

Genomic imprinting and XCI were the first two epigenetic
phenomena discovered in mammals. Genomic imprinting
is a unique genetic phenomenon in which only one of two

parental alleles is expressed, while the other allele is sup-
pressed. These genes are called ‘imprinted genes’; the term
‘imprinting’ refers to a parent-of-origin specific epigenetic
mark for suppression. Imprinting is considered to be a
reversible mechanism, because the suppressed allele
should be reactivated during gametogenesis when it is
transmitted to next generation. For instance, the gene for
small nuclear ribonucleoprotein polypeptide N (SNRPN) is
only expressed by the paternal allele [19,20], but the
maternally suppressed allele should be active during sper-
matogenesis when the allele is transmitted to the next gen-
eration via the male gamete. This phenomenon could not
be interpreted by the usual genetic mechanisms, such as a
change in the DNA sequence (that is, mutation), but can
be explained by reversible epigenetic mechanisms based
on chemical modifications, such as DNA methylation. In
fact, differential DNA methylation was discovered in the
promoter region of SNRPN between the paternal and
maternal alleles [19].
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XCI is another epigenetic phenomenon, which occurs
only in females, because it compensates for the differ-
ence in the number of X chromosomes between females
(XX) and males (XY), by silencing one of the X chromo-
somes in females [21].

Since the discovery of these two phenomena, abnorm-
alities in these processes have been identified in a num-
ber of disorders, including Beckwith-Wiedemann
syndrome (characterized by gigantism at birth [22]) Pra-
der-Willi syndrome (characterized by obesity and fea-
tures of obsessive-compulsive disorder), Angelman
syndrome, (characterized by intractable epilepsy [19,20]),
and XCI disorders such as ring Turner syndrome
(which occurs when both the X and small ring X chro-
mosomes are active, and is characterized by severe
developmental delay that starts at birth [21]). Complete
failure of XCI results in embryonic abortion [23,24].
These findings imply that proper epigenetic gene regula-
tion is essential for normal development (Figure 1,

middle).

MeCP2: a molecule that bridges epigenetics and
neuroscience
Two of the first disorders identified in an epigenetic
molecule were ICF (immunodeficiency-centromeric
instability-facial anomalies) syndrome [25] and Rett syn-
drome (RS). The latter is characterized by epilepsy,
ataxia and autistic features [26,27]. Because it is an X-
linked dominant disease (it is embryonic lethal in males,
thus patients are all female), the X chromosome was
analyzed to identify the causative gene. At first, it was
thought that the gene encoded a synaptic protein. How-
ever, the identified gene, the methyl-CpG binding pro-
tein 2 (MECP2) gene, encodes a transcriptional
repressor [26] that is rarely seen, thus this unexpected
result introduced a new paradigm, ‘epigenetics,” and
highlighted the importance of epigenetics in the brain.

Once the gene was identified, the next step in RS
research was to understand the pathogenesis of this dis-
order in relation to the function of MeCP2. Because
MeCP2 is a transcriptional repressor, it was expected
that the brains of patients with RS would have abnormal
upregulation of neuronal genes[28], and in fact, several
dysregulated neuronal genes have been identified
[29-31]. Because RS has an autistic feature that is caused
by epigenetic failure, it was speculated that autism can
be caused not only by mutations of synaptic molecules
(as described in the introduction) but also by the aber-
rant expression of these molecules; this has been con-
firmed, as a synaptic function has been proven for
protocadherins, which depends on their targeting by
MeCP2 [32].

The MeCP2 protein also stabilizes genomic DNA by
suppressing L1 retrotransposition (a genetic
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phenomenon in which an L1 sequence is inserted into
various genomic regions when the L1 sequence is hypo-
methylated) [33]. The DNA sequence is different in
each neuron because L1 retrotransposition occurs soma-
tically in neurons [34], and MeCP2 deficiency acceler-
ates this retrotransposition, suggesting that there is
greater variation in DNA sequences and in expression
pattern in the brains of patients with RS than in the
brains of controls [33], as retrotransposition-driven L1
insertions can affect expression of adjacent genes [35].
Therefore, although no differences have been found in
the genome sequences of monozygotic twins with dis-
ease discordance for multiple sclerosis [36], some differ-
ences may be detected in the sequences of monozygotic
twins with RS.

RS is a congenital disease, in which the neurological
features do not start at birth, but are first detected in
late infancy or childhood (1-3 years of age). This is
because the patients are heterozygous females, thus on
average, 50% of their cells are normal cells, in which the
X chromosome carrying the normal allele expresses
MECP2 under random XCI. In addition, MeCP2 does
not encode a protein related to neurogenesis, but to
neuronal maturation [37]. Therefore, it is possible that
RS might be treatable if the level of MeCP2 could be
supplemented to take it to the normal level during the
maturation stage after birth. Indeed, this hypothesis was
recently proven in the mouse model described below
[38].

Mecp2 knockout mice mimic the neurological symp-
toms seen in patients with RS, including seizures, ataxic
gait, and hind-limb clasping [39]. A new Mecp2 knock-
in” mouse model was created based on a first-generation
Mecp2-knockout mouse, created by insertion of an ‘exo-
genous’ Mecp2 gene [38]. To produce this phenotype,
the exogenous Mecp?2 is initially silenced by an inserted
stop codon, but it can be reactivated by treatment with
tamoxifen (an estrogen analog), which causes the Cre-
estrogen receptor fusion protein to translocate from the
cytoplasm, where it is inactive, to the nucleus, where the
Cre recombinase acts to recombine the two loxP sites
that flank the inserted stop codon. Therefore, these
mice exhibit neurological symptoms shortly after birth;
however, after treatment with tamoxifen, the symptoms
became much milder and the mice survived longer than
the first-generation Mecp2 knockout mice. These results
indicate that the developmental absence of MeCP2 does
not irreversibly damage neurons and that the subse-
quent neurological defects are not irrevocable. Further-
more, the results indicate that neurodevelopmental
disorders caused by mutations in epigenetic molecules
or epigenetic gene dysregulation are potentially treatable
after birth. However, this strategy cannot immediately
be applied to humans, because it is not possible to
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generate a MECP2 knock-in human before birth. Thus,
we need to identify chemicals that activate the expres-
sion of MECP2 in patients with RS (Figure 2).

In addition to experiments using chemicals as
described above, recent experiments have shown that
appropriate environmental conditions (for example, pro-
viding toys that stimulate the brain) could ameliorate
the neurological features of Mecp2 knockout mice by
altering gene expression and synaptogenesis in the brain
[40-43]. These results suggest that it is important to
provide a stimulating educational environment for
patients with RS, as this can potentially alter the epige-
netic status. Thus, epigenetics may provide useful scien-
tific information for the assessment of specific
educational conditions.

Epigenetics: key to the genetic understanding of
environmental factors

Epigenetic alterations are seen in various cancers, and
are currently used clinically as diagnostic markers [44].
These alterations occur in response to internal or exter-
nal environmental cues [45], and occur over a long time
period during carcinogenesis. However, mental stress
(for example, decreased pup licking and grooming, and
arched-back nursing) induced in rat mothers had effects
on their offspring, with alterations in the DNA methyla-
tion and histone acetylation status of the glucocorticoid
receptor (Gr) promoter seen in the hippocampus of the
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pups during the first week of life [16]. This was the first
indication that epigenetic changes can be induced by
environmental stimuli over a short period. Since then,
other environmental factors, including consumption of
folic acid [46] and royal jelly (confirmed in honeybees,
but not yet in mammals) [47], malnutrition during the
fetal period [48], use of drugs for mental disorders
[49-53], and neuronal stimulation [54], have been
reported to alter the epigenetic status.

These factors do not affect the whole genome, but tar-
get specific genomic regions in certain tissues. Dietary
protein restriction during pregnancy in rats results in
DNA hypomethylation at the promoters of the Gr and
peroxisomal proliferator-activated receptor alpha
(Pparar) genes in the offspring’s liver; folic acid supple-
mentation prevented this hypomethylation even during
the post-weaning period [46]. In a mouse model of
depression induced by chronic social defeat stress [49],
chronic administration of imipramine, a commonly used
antidepressant, induced long-lasting histone H3 acetyla-
tion at the P3 and P4 promoters and H3-K4 dimethyla-
tion at the P3 promoter of the brain-derived
neurotrophic factor (Bdnf) gene, with increased expres-
sion in the hippocampus. An antiepileptic drug, valproic
acid (VPA), which is an inhibitor of histone deacetylases
(HDAC:s), blocked seizure-induced aberrant neurogen-
esis by normalizing the expression of the HDAC-depen-
dent glutamate receptor 2 gene (GI/uR2) in the rat
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hippocampus, which protected the animals from seizure-
induced cognitive impairment [50]. In a study on mice
in which the Reln promoter was hypermethylated by
pretreatment with L-methionine, clozapine and sulpiride
(atypical antipsychotics for schizophrenia and bipolar
disorder) decreased DNA methylation at the reelin
(Reln) promoter and the N-terminus of the 67 kDa glu-
tamic acid decarboxylase (Gad67) promoter in the fron-
tal cortex and striatum [51]. This demethylation effect
of clozapine and sulpiride was enhanced in combination
with VPA, and the effect was specific to the brain, as it
was not observed in the liver [51]. This demethylation
effect of VPA at the Reln and Gad67 promoters in the
frontal cortex of mice was further confirmed by a differ-
ent research group [52]; however, the precise mechan-
ism underlying this demethylation process in the brain
still remains to be elucidated. Lithium, another drug
used to treat bipolar disorder, was found to have an epi-
genetic effect in a study on induced pluripotent stem
cells (iPSCs). In this study, iPSC generation was
enhanced with lithium treatment, which resulted in the
downregulation of lysine-specific histone demethylase
(LSD)1, an H3K4-specific histone demethylase, and a
consequent increase in the endogenous expression of
Nanog, an essential factor for induction of iPSCs [53].

These findings suggest that neurodevelopmental disor-
ders such as autism can be caused not only by congeni-
tal genetic and epigenetic defects, but also by epigenetic
dysregulation in the brain induced by various environ-
mental factors (Figure 1, right). All of these findings
were obtained through animal experiments, but there
are also greater differences in epigenomic patterns
between older monozygotic twins than between younger
twins [55], suggesting that the epigenome is also
affected by environmental factors in humans.

Epigenetics: a concept for the transgenerational
inheritance of acquired characteristics

It has long been believed that acquired characteristics
are not inherited by the next generation, a belief based
on Darwinian theory. However, Lamarck suggested that
genetic changes can be influenced and directed by envir-
onmental factors, and DNA methylation is now thought
to underlie this theory.

Epigenetic markers allow the transmission of gene
activity states from one cell to its daughter cells; how-
ever, until recently, epigenetic marks were thought to be
completely erased and then re-established in each gen-
eration. However, there have been several reports indi-
cating that this erasure is incomplete at some loci in the
genome of several model organisms, and that an epige-
netic marker acquired in one generation can be inher-
ited by the next generation. This phenomenon is now
called ‘transgenerational epigenetic inheritance’ [56,57],
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and is an explanation of lamarckism, the idea of the her-
itability of acquired characteristics.

The transgenerational epigenetic inheritance of meta-
stable epialleles was first demonstrated in a mouse
strain, in which the methylation status of the Axin (Fu)
allele, which is linked to the shape of the tail in the
mature sperm, reflects the methylation status in the
somatic tissue. In this strain, this allele did not undergo
epigenetic reprogramming during gametogenesis [58].
This observation was recently confirmed in a different
species, namely yeast, in which an aberrant epigenetic
marker that was acquired in one generation after heat-
shock treatment was inherited by the next generation
[59]. Furthermore, it was recently reported that mental
stress (separation from the mother) not only changes
the DNA methylation status in the brain of separated
pups, but also changes it in the sperm of the males, and
the changed status is transmitted to the next generation.
In the next generation, the changed status is visible in
the brain of offspring, and also produces alterations in
the corticotropin releasing factor receptor 2 (Crfr2) gene
expression and in the animal’s behavior [60,61].
Although further evidence is needed, these findings
imply that a susceptibility to mental disorders that is
inherited by succeeding generations depends not only
upon specific genomic changes (mutations in genes) but
also upon specific epigenomic changes that are initially
induced by environmental factors. Future studies are
necessary to identify therapeutic strategies that take
advantage of the reversibility of stress-induced epige-
netic modifications. These studies could also help us to
identify appropriate environments for maintaining a
healthy physical and mental condition [62,63].

Future perspectives
The clinical application of epigenomic information has
improved in recent years. Its first application was a sin-
gle gene-based DNA methylation assay to diagnose two
imprinted disorders (Prader-Willi and Angelman syn-
dromes) by taking advantage of the differential methyla-
tion present in a CpG region within an imprinted gene
[20]. Recently, a microarray-based epigenomic assay has
been developed as a second-generation test, which cov-
ers Cp@ sites in an entire region of a single chromo-
some [64]. More recently, a high-density BeadChip-
based epigenomic assay has been developed as a third-
generation test, and now covers 450,000 CpG sites dis-
tributed throughout the human genome. Using this
method, a methylated site that was specific to heavy
smokers was discovered within a gene that is possibly
associated with cardiovascular complications [65].
Another important application of epigenetics relates to
folic acid, which is a nutrient that provides methyl resi-
dues and is essential for the maintenance of DNA
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methylation. Folic acid is used to prevent neural tube
defects such as spina bifida, and it is known that folic
acid supplements can alter DNA methylation status
[66,67]. Folic acid supplements can have a positive effect
on several features of autism in children, although the
underlying mechanism is not completely understood
[68-70]. Folic acid is expected to exert a global effect on
the genome; however, if we can identify genes in which
the epigenome is changed in particular disorders (for
example, the SNRPN gene in Prader-Willi syndrome
during gametogenesis [19,20] and the coagulation factor
II (thrombin) receptor-like 3 (F2RL3) gene in heavy
smokers [65]), it might be possible to selectively restore
the specific epigenomic status of the causative gene
region. One method is to use pyrrole-imidazole (PI)
polyamides, which are small chemicals that recognize
and attach to the minor groove of DNA, and can be
designed to target any DNA sequences. PI polyamide
can be attached to inhibitors of DNA methylation or
histone deacetylases [71], and it was recently reported
that such a construct was delivered to a target gene and
altered its expression [72].

As discussed above, acquired characteristics can be
inherited by the next generation as an epigenetic mar-
ker, as suggested by Lamarck. Recent research on ani-
mals has shown that behavioral characteristics can be
inherited [60]. Thus, if gene-specific epigenomic therapy
using PI polyamides could be delivered to the affected
genes (for example,, Crfr2 [61]), it might correct the
altered epigenomic status, gene expression and behavior
of the subject, and thus might prevent inheritance of the
abnormal epigenetic status by future generations.

Recent sequencing technology has led to a precise
understanding of the sequence structure of the human
genome, and revealed the presence of copy-number var-
iations (CNVs), which are associated with susceptibility
to common diseases [73,74]. The presence of CNVs is
currently a more favored genetic concept than epige-
netics in some psychiatric disorders, such as autism
[75]. However, the advantage of studying epigenetics
over CNVs is that if we can understand the epigenetic
basis of the inheritance of acquired characteristics, it
might be possible to develop a new therapeutic strategy
using the intrinsic reversibility of epigenetics and also to
develop a new method of prevention can be developed
for the following generation. Therefore, further under-
standing of interactions between genes and environment
with respect to epigenetics is important, and will pro-
vide a new concept of clinical genetics.

Conclusions

The failure of epigenetic gene regulation is known to
cause various rare congenital disorders. However, this
dysregulation also causes common diseases that are
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induced by environmental factors, as the epigenetic sta-
tus is affected and changed by various environmental
factors. Furthermore, the changed epigenetic status in
the genome can be transmitted to the succeeding gen-
erations. Therefore, a precise understanding of the inter-
actions between genes and environment in the light of
epigenetics is necessary, and will form a new concept of
clinical genetics.
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