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Epigenetic regulation of mucin genes in human cancers

Norishige Yamada & Sho Kitamoto & Seiya Yokoyama & Tomofumi Hamada &

Masamichi Goto & Hideaki Tsutsumida & Michiyo Higashi & Suguru Yonezawa

Received: 25 January 2011 /Accepted: 18 April 2011 /Published online: 1 May 2011
# Springer-Verlag 2011

Abstract Mucins are high molecular weight glycoproteins
that play important roles in diagnostic and prognostic
prediction and in carcinogenesis and tumor invasion. Regu-
lation of expression of mucin genes has been studied
extensively, and signaling pathways, transcriptional regula-
tors, and epigenetic modification in promoter regions have
been described. Detection of the epigenetic status of cancer-
related mucin genes is important for early diagnosis of cancer
and for monitoring of tumor behavior and response to targeted
therapy. Effects of micro-RNAs on mucin gene expression
have also started to emerge. In this review, we discuss the
current views on epigenetic mechanisms of regulation of
mucin genes (MUC1, MUC2, MUC3A, MUC4, MUC5AC,
MUC5B, MUC6, MUC16, and MUC17) and the possible
clinical applications of this epigenetic information.
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Introduction

Mucins are high molecular weight glycoproteins with
oligosaccharides attached to serine or threonine residues
of the mucin core protein backbone by O-glycosidic
linkages (Hollingsworth and Swanson 2004). These pro-
teins are produced by various types of epithelial cells. In the
past two decades, core proteins for human mucins (MUC1–
MUC8, MUC12–13, MUC15–17, MUC19–21) have been
identified and categorized as membrane-associated mucins
(MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC13,
MUC15, MUC16, MUC17, MUC20, and MUC21) and
secreted mucins (MUC2, MUC5AC, MUC5B, MUC6,
MUC7, MUC8, and MUC19) (Chen et al. 2004; Higuchi
et al. 2004; Hollingsworth and Swanson 2004; Itoh et al.
2008; Lehmann et al. 1989; Moniaux et al. 2001). Mucins
are responsible for the physical properties of mucus gels
and are involved in epithelial cell protection and mainte-
nance of the local molecular microenvironment (Bhaskar et
al. 1992; Ho et al. 2006; Linden et al. 2004, 2008).
However, transmembrane mucins, in particular, are overex-
pressed and aberrantly glycosylated in most cases of
adenocarcinoma and are also associated with invasive
proliferation of tumors and a poor outcome (Hollingsworth
and Swanson 2004; Kufe 2009). Immunohistochemical
studies of mucin expression in human tumors have
demonstrated that expression of MUC1 and MUC4 is a
poor prognostic factor, whereas MUC2 expression is
associated with a favorable outcome in neoplasms including
pancreatic ductal adenocarcinomas. MUC5AC is a common
neoplastic marker in pancreatobiliary neoplasms (Nagata et al.
2007; Yonezawa et al. 2008, 2010).

Epigenetic regulation, including DNA methylation, has
been a focus of studies of mucin gene expression. CpG
methylation in genomic DNA plays an important role in
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gene regulation and especially in gene silencing, and
generally, the promoter region of a transcribed gene is
hypomethylated (Bird 1992). There are three primary DNA
methyltransferases (DNA methyltransferase 1 (DNMT1),
DNMT3A, and DNMT3B). DNMT1 methylates hemi-
methylated DNA and is essential for maintaining methyl-
ation patterns. DNMT3A and DNMT3B target previously
unmethylated CpGs (Oka et al. 2005; Rodriguez-Paredes
and Esteller 2011). Aberrant DNA methylation is strongly
associated with human cancer and may serve as a good risk
marker for future tumor development and as a target for
chemotherapy (Hiraki et al. 2010; Lenhard et al. 2005;
Matsubayashi et al. 2006).

Nucleosomes are the basic unit of DNA packaging in
eukaryotes, and each nucleosome consists of approximately
147 bp DNA and a histone octamer (core histones) (White
et al. 2001). The core histones have an N-terminal amino
acid tail of about 20–35 residues in length that is rich in
basic amino acids (Munshi et al. 2009). Posttranslational
modification of histone tails plays a critical role in
epigenetic silencing (Kondo et al. 2003; Wolffe and Matzke
1999). Histone tails are subject to many different chemical
modifications, including methylation, acetylation, and
phosphorylation (Marmorstein 2001). Such modifications
affect the access of regulatory factors and alter histone
complexes with chromatin, thereby influencing gene ex-
pression. Acetylation of lysines 9, 14, and 27 of histone H3
is associated with euchromatin formation (less condensed),
and acetylation of promoter-proximal histones is associated
with gene expression (Shi et al. 2003). In contrast,
methylation of lysine 9 of histone H3 (H3-MeK9) facili-
tates formation of heterochromatin (highly condensed), and
elevated levels of H3-MeK9 at promoter sequences are
associated with suppression of gene expression (Mutskov
and Felsenfeld 2004; Nguyen et al. 2002). Methylation of
lysine 27 of histone H3 is also a marker for constitutive and
facultative heterochromatin (Alvarez-Venegas and Avramova
2005). Another histone modification, methylation of K4 of
histone H3, localizes to sites of active transcription, and this
modification may stimulate transcription. Combinations of
histone modifications at different residues may act synergis-
tically or antagonistically to affect gene expression (Liang
et al. 2004).

Gene expression may also be regulated by micro-RNAs
(miRNAs), which are a class of small non-coding RNAs of
approximately 22 nucleotides (He and Hannon 2004). In
mammals, miRNAs are incorporated into RNA-induced
silencing complexes and bind imperfectly to the 3′
untranslated region (3′-UTR) of target messenger RNAs
(mRNAs) and repress translation (Nakahara and Carthew
2004). Epigenetic regulation of small non-coding RNAs
plays a critical role in the modulation of mammalian gene
expression (Lujambio and Esteller 2007; Zhang et al.

2008). In addition, miRNAs have been reported to regulate
both tumor suppressor genes and oncogenes (Medina and
Slack 2008; Saito and Jones 2006).

Pathological events such as carcinogenesis can be caused
by alteration in established methylation patterns or dysre-
gulation of chromatin remodeling, both of which can result
in significant and consequential changes in gene expression
(Das and Singal 2004; DeAngelis et al. 2008). Thus,
investigation of DNA methylation, chromatin modification,
and miRNA expression is important for diagnosis of
carcinogenic risk and prediction of outcomes in patients
with cancer.

In this review, we discuss current views on epigenetic
mechanisms of human mucin family genes, and we
examine the possible clinical applications of this epigenetic
information (Table 1).

Analysis of DNA methylation and histone modification

There are two main methods for genome-wide analysis of
DNA methylation patterns, which are referred to as bisulfite
sequencing and MassARRAY analysis. In DNA methylation
analysis, sodium bisulfite is used to distinguish between
methylated and unmethylated cytosine. Bisulfite treatment of
DNA converts cytosine to uracil, but does not alter methylated
cytosine. In bisulfite sequencing, polymerase chain reaction
(PCR) amplification of converted DNA is used to replace the
uracil with thymine, and the PCR product is analyzed by
Sanger dideoxy terminator sequencing (Zilberman and
Henikoff 2007). This method is a standard tool in genome-
wide CpG methylation analysis, but is relatively time-
consuming and costly. MassARRAY® quantitative methyla-
tion analysis (Sequenom Inc.) is based on the bisulfite
conversion biochemistry followed by PCR and base-specific
cleavage. The cleavage products are analyzed by matrix-
assisted laser desorption ionization time-of-flight mass spec-
trometry (Ehrich et al. 2005). This combination of methods
gives a highly accurate, sensitive, and high-throughput
approach for quantitative analysis of DNA methylation.

Meanwhile, methylation-specific PCR (MSP), real-time
quantitative MSP with SYBR green or probe (QMSP), and
pyrosequencing can be used for the detection of methyla-
tion status of specific regions involved in the regulation of
gene transcription. MSP and QMSP are bisulfite
conversion-based PCR techniques, in which two PCR
reactions are carried out using unmethylated DNA primers
(U primer) and methylated DNA primers (M primer). MSP
and QMSP are rapid and inexpensive methods for detection
of the CpG methylation status, but only a limited number of
CpGs in a primer sequence can be detected using these
methods. Pyrosequencing is a DNA sequencing technique
that is based on the detection of released pyrophosphate
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(PPi) during DNA synthesis (Ronaghi 2001). Pyrosequenc-
ing is an accurate and fast method for quantification of CpG
methylation.

Chromatin immunoprecipitation (ChIP) analysis is a
useful technique for investigating histone modifications
and/or protein–DNA interactions. In this procedure,
formaldehyde-treated chromatin nucleoprotein complexes
are sonicated to reduce the sizes of the DNA fragments to
300 to 500 bp. This is followed by immunoprecipitation
using specific antibodies against target histone modifica-
tions or transcriptional factors, with subsequent amplifica-
tion of the immunoprecipitated DNA by PCR (Fullwood
and Ruan 2009).

Functional role and epigenetic regulation mechanisms
of mucin genes

MUC1

The MUC1 transmembrane glycoprotein (gene cluster on
chromosome 1q21) is expressed at a basal level by normal
ductal epithelial cells of secretory organs, including
pancreas, breast, lung, and gastrointestinal tract (Lan et al.
1990), and overexpressed and aberrantly glycosylated in
most cases of adenocarcinoma (Patton et al. 1995). An
elevated level of MUC1 protein plays a role in tumor
progression, especially in the process of metastasis
(Hollingsworth and Swanson 2004; Kufe 2009). Our
clinicopathological studies have demonstrated that
MUC1 expression is a poor prognostic factor in various
human neoplasms (Higashi et al. 1999; Kitamura et al.
1996; Sagara et al. 1999; Takao et al. 1999; Tamada et al.
2002; Utsunomiya et al. 1998).

The epigenetic mechanisms of MUC1 were not exam-
ined for more than a decade after initial methylation
analysis of the MUC1 coding region (Zrihan-Licht et al.
1995). However, our recent comprehensive DNA methyl-
ation analysis revealed that MUC1 gene expression is
regulated by DNA methylation and histone H3 lysine 9
(H3-K9) modification at the MUC1 promoter for the first
time (Yamada et al. 2008). In the approximately 3,000 bp of
the MUC1 promoter region, there are 184 CpG sites.
Analysis of all these sites using the MassARRAY compact
system for base-specific cleavage of nucleic acids was
performed in MUC1-positive and MUC1-negative breast,
pancreas, and colon cancer cell lines. The methylation
status of nine CpG sites near the transcriptional start site
and histone H3-K9 modification in the vicinity of the start
site were both related to MUC1 gene expression. Collec-
tively, a series of epigenetic analyses revealed that DNA
demethylation, histone H3-K9 demethylation, and histone
H3-K9 acetylation in the 5′-flanking region of MUC1 might
all be necessary for MUC1 gene expression (Fig. 1). Most
recently, downregulation of MUC1 expression by micro-
RNA has been reported by several groups (Jin et al. 2010;
Rajabi et al. 2010; Sachdeva and Mo 2010). Sachdeva and
Mo showed that miR-145 directly targets MUC1 by
interaction with the 3′-UTR and found that miR-145 acts
as a tumor suppressor in part by affecting invasion and
metastasis by targeting MUC1 (Sachdeva and Mo 2010).
Moreover, Suh et al. found that miR-145 is silenced by
DNA hypermethylation at the miR-145 promoter region in
prostate cancer cells and that 5-azadC treatment induced
miR-145 expression in prostate cancer cell lines with miR-
145 hypermethylation (Suh et al. 2011). In breast cancer
cells, Rajabi et al. indicated that miR-125b suppresses
translation of the MUC1 and that miR-125b thereby

Table 1 CpGs, histone modifications, and other factors or miRNAs that affect the expression of epigenetically regulated mucin genes

Mucins Promoter methylation sites Histone modification Factors or miRNA

MUC1 −70 to +20 H3-me2K9, aceK9 miR-125b, miRNA-145, miR-1226

MUC2 −3,269, −3,199, −2,331,
−1,912, −338 to +158

H3-me2K4, me3K4, meK9, me2K9,
aceK9, me2K27, aceK27, H3-ace,
H4-ace

DNMT1, HDAC2

MUC3A −345 to −75 N.D. N.D.

MUC4 −121 to −81a H3-ace, me2K9, aceK9, me3K27 Sp1, DNMT3A, DNMT3B, HDAC1,
HDAC3−170 to −102b

MUC5AC −3,718 to −3,670 H3-me2K9, aceK9 N.D.

MUC5B −2,677/−2,163 H3-me2K4, me3K4, meK9 DNMT1, HDAC2
−434/−421 me2K9, aceK9, me2K27, aceK27

MUC17 −179 to +52 H3-me2K9, aceK9 N.D.

ND not determined
a Region reported by Vincent et al.
b Region reported by Yamada et al.
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functions as a tumor suppressor (Rajabi et al. 2010). Jin et
al. showed that MUC1 expression is suppressed by miR-
1226 and that miR-1226-induced downregulation of MUC1
is correlated with cell death of MUC1-positive breast
cancer cells (Jin et al. 2010). These findings suggest the
possible functional importance of MUC1 under both
physiological and pathological conditions.

MUC2

MUC2 is a gel-forming secretory mucin that is expressed in
many organs, including the colon, small intestine, and
respiratory tract. The corresponding gene has been mapped
to human chromosome 11p15 (Chang et al. 1994; Desseyn
et al. 1998). Alteration in the protection and lubrication of
the intestinal mucosal surface due to a lack of MUC2 might
induce an increase of bacterial flora with pro-carcinogenic
effects, result in the release of intestinal mucosa-derived
factors that are normally depressed by MUC2-stimulating
pro-carcinogenic factors, or lead to the destruction of the
physical barrier to dietary carcinogens. Loss of MUC2
might also compromise signaling that contributes to
epithelial differentiation and proliferation through contacts
with membrane-bound mucins or alter the differentiation
program of the intestinal mucosa, resulting in an increased
probability of tumor formation. Muc2 knockout mice
frequently develop adenomas in the small intestine that
progress to invasive adenocarcinoma (Velcich et al. 2002).
However, high levels of MUC2 expression seen in indolent
human pancreatobiliary neoplasms (Higashi et al. 1999;
Horinouchi et al. 2003; Nakamura et al. 2002; Yamashita et
al. 1993; Yonezawa et al. 1997) are associated with a
favorable prognosis (Kitamura et al. 1996; Osako et al.
1993; Tamada et al. 2002; Utsunomiya et al. 1998;
Yonezawa et al. 1997, 2008; Yonezawa and Sato 1997).

Epigenetic analysis of the MUC2 gene promoter region
has been widely studied (Gratchev et al. 2001; Hanski et al.
1997; Mesquita et al. 2003; Siedow et al. 2002). We have
determined the detailed methylation status of a wide area of
the MUC2 promoter in breast, lung, pancreas, and colon
cancer cell lines using bisulfite genomic sequencing and
MassARRAY analysis (Hamada et al. 2005; Yamada et al.
2010). Our results indicated that CpG methylation near the
MUC2 transcriptional start site (−338 to +158) plays a
critical role in MUC2 gene expression. ChIP assays were
also performed using anti-dimethyl-H3-K4/K9/K27, anti-
trimethyl-H3-K4/K9, and anti-acetyl-H3-K9/K14/K27 anti-
bodies and revealed that histone H3-K4 methylation,
histone H3-K9 dimethylation, and histone H3-K9/K27
acetylation in the 5′-flanking region of the MUC2 may be
necessary for gene expression (Yamada et al. 2006).
Moreover, treatment with the DNA methylation inhibitor
5-aza-2′-deoxycytidine (5-azadC) and/or a histone deacety-

lase inhibitor, trichostatin A (TSA) decreased the DNA
methylation level in MUC2-negative cells, whereas histone
H3-K4/K9 methylation and H3-K9/K27 acetylation were
changed to the levels in MUC2-positive cells (Yamada et al.
2006). In the distal region of the MUC2 promoter, the CpG
sites at −3,269, −3,199, −2,331, and −1,912 was associated
with expression of MUC2 (Vincent et al. 2007). Vincent et
al. also showed that MUC2 expression is controlled by
HDAC2-enhanced DNMT1 and that methylation of the
MUC2 promoter markedly impaired its activation by the
methylation-insensitive transcription factor SP1 (Vincent et
al. 2007). These studies suggest that epigenetic mechanisms
are tightly correlated with MUC2 expression in epithelial
cells in various organs. Attempts to apply these findings to
clinical samples have begun, and it has been shown that
hypomethylation of MUC2 plays an important role in the
high level of MUC2 expression in mucinous colorectal
cancer (Okudaira et al. 2010).

MUC3A

MUC3A was identified and mapped to a mucin cluster on
chromosome 7q22 and categorized as a membrane-associated
mucin (Crawley et al. 1999; Gum et al. 1990, 1997; Leroy et
al. 2003). An association between MUC3A expression and
poor prognosis has been shown in pancreatic, breast, gastric,
and renal cancers (Leroy et al. 2003; Park et al. 2003; Rakha
et al. 2005; Wang and Fang 2003). However, little is known
about the functional role of MUC3A in cancer pathology,
and understanding the expression mechanisms of MUC3A
may be a key step in developing new strategies for cancer
diagnosis and treatment.

In the MUC3A proximal promoter (−620 to +209), the
methylation status of 30 CpG sites in breast, lung, pancreas,
and colon cancer cells were examined by MassARRAY
analysis (Kitamoto et al. 2010). The methylation status
showed a good correlation with the level of MUC3A
expression. MUC3A-negative/low cell lines were hyper-
methylated in the vicinity of the transcriptional start site
(−345 to −75), whereas MUC3A-positive cell lines showed
hypomethylation at the same sites. In contrast, restoration
of MUC3A mRNA was observed after TSA treatment,
although there was no correlation of MUC3A expression
with histone modification at H3K4-Me2/Me3 or H3K9-
Me2/Ac. These results suggest that histone H3-K4 and H3-
K9 do not play critical roles in MUC3A regulation.
Although the roles of MUC3A in cancer development are
still unclear, some evidence suggests that MUC3A expres-
sion is associated with a poor prognosis in many tumor
types. Thus, the methylation status of the MUC3A promoter
may be a novel epigenetic marker for the diagnosis of
carcinogenic risk and prediction of outcomes for patients
with cancer.
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MUC4

MUC4 is a large transmembrane mucin with a very long
glycosylated extracellular domain that is expressed in
various normal tissues. The corresponding gene has been
mapped to a gene cluster at chromosome 3q29 (Audie et al.
1993, 1995; Buisine et al. 1999; Gipson et al. 1999).
MUC4 is often overexpressed in epithelial cancers, as for
MUC1, and is associated with invasive proliferation of
tumors and a poor outcome (Saitou et al. 2005; Shibahara et
al. 2004b; Tamada et al. 2006; Tsutsumida et al. 2007).
MUC4 serves as a intramembrane ligand for the receptor
tyrosine kinase ErbB2, which is a transmembrane glyco-
protein encoded by the c-ErbB-2 proto-oncogene and has a
tyrosine kinase domain that is highly homologous with the
epidermal growth factor receptor (Yamamoto et al. 1986).

Jonckheere et al. (2004) found that treatment with TSA
restored MUC4 mRNA expression in MUC4-negative
pancreatic cancer cells. Singh et al. also showed that the
expression level of MUC4 was restored by treatment with
5-azadC and sodium butyrate, an inhibitor of histone
deacetylase, in MUC4-negative prostate cancer cells, and
suggested thatMUC4 is regulated epigenetically (Singh et al.
2006). An investigation of the detailed epigenetic mecha-
nisms of MUC4 expression showed that regulation of MUC4
expression involves both DNA methylation (particularly
cytosines at −81, −93, −102, −113, and −121) and histone
H3 modification (including H3-K9 and H3-K27 in the
MUC4 5′-UTR) mediated by DNA methyltransferases
(DNMT3A and DNMT3B) and histone deacetylases

(HDAC1 and HDAC3) in pancreatic and gastric epithelial
cancer cell lines (Vincent et al. 2008). SP1 binding to the
MUC4 promoter (−276/−271 and −166/−156) was also
found to participate in the regulation of MUC4 gene
expression (Vincent et al. 2008).

We used quantitativeMassARRAYmethylation analysis to
examine the methylation status of 92 CpG sites in the MUC4
promoter (−3,629 to +29) in breast, lung, pancreas, and
colon cancer cell lines (Yamada et al. 2009). In 10 cancer
cell lines, methylation of 5 CpG sites in the 5′-flanking
region of MUC4 (−170 to −102) was associated with the
expression of MUC4. Five CpG sites (−121 to −81) had
previously been correlated with the expression of MUC4
in these cells (Vincent et al. 2008), but 2 of these CpG
sites (−93 and −81) were unrelated to expression of MUC4
in our study. This issue may be resolved by the use of
different analytical methods in future studies. Most
recently, an examination of the relationships among
MUC4 promoter methylation, pancreatic cancer progres-
sion, and MUC4 mRNA expression in clinical tissue
samples led to the suggestion that aberrant MUC4
promoter hypomethylation may be involved in pancreatic
carcinogenesis and malignant development of pancreatic
ductal adenocarcinoma (Zhu et al. 2010).

MUC5AC and MUC5B

MUC5AC is a gastric-type secreted gel-forming mucin that
is located in the chromosome 11p15 region in a cluster of
complex mucin genes (Kim et al. 2002). Although
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MUC5AC expression in the surface mucous cells in normal
gastric mucosa served as a positive control for expression,
MUC5AC are never expressed in normal pancreatic tissue.
In contrast, MUC5AC has high de novo expression in many
types of precancerous lesions of pancreatic ductal adeno-
carcinoma (PDAC), including pancreatic intraepithelial
neoplasia (PanIN) (Nagata et al. 2007), intraductal papillary
mucinous neoplasm of the pancreas (Yonezawa et al. 1999),
and mucinous cystic neoplasm of the pancreas (Gratchev et
al. 2001; Handra-Luca et al. 2005). MUC5AC is also
expressed in the lesions of bile duct adenocarcinoma,
including biliary intraepithelial neoplasia, mucin-
producing bile duct tumor, intraductal papillary neoplasm
of the bile duct, and bile duct cystic neoplasm (Shibahara et
al. 2004a; Zen et al. 2006). Thus, MUC5AC expression
may be a useful marker for early detection of pancreato-
biliary neoplasms.

Similar to MUC5AC, MUC5B is also a gel-forming
mucin and the corresponding gene has been mapped to
chromosome 11p15 (Desseyn et al. 1997). MUC5B is
widely expressed in normal tissues in the respiratory and
digestive tract (Andrianifahanana et al. 2001). Little is
known about MUC5B, but aberrant MUC5B expression
has been observed in inflamed or cancerous tissues
(Andrianifahanana et al. 2001; Kamio et al. 2005; Pinto-
de-Sousa et al. 2004).

Previous studies on the epigenetics of human MUC5AC
gene expression have focused on a 1.3-kb promoter region
and found little influence of epigenetic regulation, despite
restoration of MUC5AC mRNA expression in cancer cells
by 5-azadC treatment (Ho et al. 2003; Vincent et al. 2007).
In contrast, a recent study has shown that methylation in the
“CpG island shore” distal to CpG islands is correlated with
silencing of numerous genes (Irizarry et al. 2009). In the
MUC5AC promoter region, there is no CpG site from −1.3
to −3.1 kb, but it is of interest that CpG sites reappear from
about −3.1 kb onwards. This led us to widen the scope of
our study to examine epigenetic mechanisms over about
4.0 kb of the MUC5AC promoter (Yamada et al. 2010). The
DNA methylation status of the MUC5AC promoter (−3,855
to +321) in 10 cancer cell lines (breast, lung, pancreas, and
colon) was mapped using MassARRAY analysis. The
results showed that the CpG methylation status of the
MUC5AC promoter from −3,718 to −3,670 is correlated
with MUC5AC expression. These results were also consis-
tent with data from pyrosequencing analysis. The modifi-
cation status of histone H3-K9 in the distal promoter region
(−3,718 to −3,670) was also tightly correlated with
expression of MUC5AC.

Epigenetic regulation of MUC5B has been shown in
several studies (Perrais et al. 2001; Van Seuningen et al.
2001). Detailed epigenetic analysis of the MUC5B promot-
er region (2.3 kb), including bisulfite sequencing and ChIP

assays, in esophageal, gastric, pancreatic, and colon cancer
cell lines showed that MUC5B is highly sensitive to DNA
methylation and histone modifications in the MUC5B distal
promoter (CpG sites at −2,677/−2,163), as well as at
cytosines at −434 and −421 (Vincent et al. 2007). This
study also indicated that MUC5B expression is regulated by
HDAC2-enhanced DNMT1 and that methylation of the
MUC5B promoter markedly impaired its activation by SP1
(Vincent et al. 2007). Methylation profiling of the MUC5B
distal promoter using bisulfite sequencing and pyrose-
quencing has also been performed in normal lung and in
MUC5B-negative lung cancer tissues (Van Seuningen and
Vincent 2009).

MUC6

MUC6 was originally isolated from a gastric cDNA library
and mapped to a mucin cluster on chromosome 11p15
(Toribara et al. 1993). High expression of MUC6 is
observed in gastric mucosa, duodenal Brunner’s glands,
gall bladder, seminal vesicles, pancreatic centroacinar cells
and ducts, and periductal glands of the common bile duct.
Focal expression is seen in basal endometrial and endocer-
vical glands. MUC6 is also highly expressed in pancreatic
cancers and cholangiocarcinomas and focally expressed in
endocervical adenocarcinomas (Bartman et al. 1998). In
breast tissues, Matsukita et al. have shown a correlation
between MUC6 expression and mucinous carcinoma of the
breast, suggesting that high expression of MUC6, as well as
MUC2, in mucinous carcinoma may act as a barrier to
cancerous growth and result in less aggressive biological
behavior (Matsukita et al. 2003).

Epigenetic regulation of MUC6 seems to be unlikely,
since treatment with 5-aza or TSA did not lead to
restoration of MUC6 mRNA in MUC6-negative cell lines,
despite the identification of three key methylated cytosines
at −282, −271, and −72 by bisulfite sequencing (Vincent et
al. 2007). Vincent et al. suggested that repression of
MUC6 in cancer cells is rather due to the absence of
necessary transcription factors or by an unknown repres-
sive mechanism than to the methylation of its promoter
(Vincent et al. 2007).

MUC16 (CA125)

MUC16 (CA125) was identified and mapped to a mucin
cluster on chromosome 19p13 and categorized as a
transmembrane mucin (O’Brien et al. 2001). Because
highly O-glycosylated repeats are the landmark of the
mucin family of glycoproteins, CA125 was also named
MUC16. MUC16 is overexpressed in many carcinomas
(e.g., ovarian cancer, uterine cancer, pancreatic cancer,
and biliary cancer) and is known as a tumor marker that
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is associated with poor prognosis (O’Brien et al. 2001,
2002; Yin and Lloyd 2001).

The structure and function of MUC16 have been well
studied, but the mechanisms of regulation of MUC16
expression have yet to be clarified. We have examined the
epigenetic status of the MUC16 5′-flanking region in breast,
lung, pancreas, and colon cancer cells using MassARRAY
analysis and ChIP assays (unpublished data). Treatment
with 5-azadC and TSA showed restoration of MUC16
mRNA expression, but MassARRAY and ChIP results
showed no correlation between histone H3 modification
and MUC16 gene expression. Our findings suggest that
epigenetic mechanisms are involved in the regulation of
MUC16 expression in cancer cells, but DNA methylation
and histone H3-K9 modification in the MUC16 5′-flanking
region are unlikely to regulate MUC16 transcription directly.
It will be necessary to perform promoter analysis to clarify
the details of the expression mechanism of MUC16, which is
a poor prognostic factor in patients with cancer.

MUC17

MUC17 glycoprotein was identified and mapped to a mucin
cluster at chromosome 7q22 and categorized as a membrane-
associated mucin (Gum et al. 2002; Williams et al. 1999).
MUC17 is mainly expressed in the digestive tract, including
the duodenum, ileum, and transverse colon (Gum et al.
2002; Moehle et al. 2006), but its physiological function is
unclear. Aberrant MUC17 expression is observed in PDAC,
compared to no expression in the normal pancreas or in
pancreatitis (Moniaux et al. 2006), and MUC17 is an
independent prognostic factor associated with lymph node
metastasis in PDAC (Hirono et al. 2010).

We performed MassARRAY quantitative methylation
analysis in human cancer cell lines (breast, lung, pancreas,
and colon) to determine the methylation status of CpG
islands in the MUC17 5′-flanking region (−620 to +209)
(Kitamoto et al. 2011). Five CpG sites (−179 to +52)
involved in MUC17 expression were identified and these
results were consistent with MSP data. To examine the
relationship between DNA methylation and histone H3
modification, ChIP assays were performed. Dimethyl-H3-
K9 was found in MUC17-negative/low cells, whereas
histone H3-K9 was more highly acetylated in MUC17-
positive cells. The level of MUC17 mRNA expression was
restored by treatment with 5-azadC or TSA. Using MSP
analysis, we also investigated the methylation status of
normal and cancerous pancreatic tissues from patients with
PDAC and found that the methylation status in the five
CpG sites of the MUC17 promoter (−179 to +52) was
consistent with the expression of MUC17 at both the
mRNA and protein levels. Although further studies are
needed to clarify these relationships, our findings indicate

that the methylation status of the MUC17 promoter could
be a novel epigenetic marker for diagnosis of PDAC.
Moreover, miRNA microarray analysis in 11 cancer cell
lines revealed 5 candidates with a significant relationship
with the regulation of MUC17 expression: miR-17, miR-
20a, miR-20b, miR-30c, miR-30e, using target prediction
based on the miRBase. Of these candidates, it is unclear
which are authentic miRNAs in vivo. Additional studies are
required, but our data suggest that the MUC17 gene might
be regulated posttranscriptionally by miRNAs.

Conclusions and clinical perspectives

The epigenetic mechanisms of human mucin family
genes are gradually emerging (Table 1). However,
establishment of clinical tests for cancer screening,
diagnosis of carcinogenic risk, and tumor staging requires
improved understanding of the roles of modifier enzymes
(CpG methylation and chromatin) and epigenetic modifi-
cations accompanying tumor differentiation. An aberrant
increase in both MUC4 mRNA expression and hypome-
thylation frequency in the PanIN–PDAC progression
modality has been shown (Zhu et al. 2010), and increased
DNMT1 expression may be involved in multistage
pancreatic carcinogenesis from the precancerous stage to
malignant progression of ductal carcinomas and may be a
predictor of poor prognosis (Peng et al. 2005). Further
studies are needed to elucidate the relationships among
expression levels of mucins, binding of transcriptional
regulatory factors, and recruitment of DNMTs, HDACs,
methylated DNA binding domain proteins, and polycomb
group proteins.

Mucin expression is tissue- and cell-type specific
(Yonezawa et al. 2008), and these specificities may cause
different forms of epigenetic regulation at different levels.
For MUC1 and MUC4, we were unable to show a
relationship between DNA methylation status and expres-
sion of MUC1 in the LS174T colon cancer cell line
(Yamada et al. 2008, 2009). However, expression of
MUC1 in Caco2 cells, which are derived from cancer cells
of the same organ, was related to the DNA methylation
status. Similarly, BxPC-3 pancreatic cancer cells with low
MUC5AC expression had a high level of CpG methylation,
whereas PANC1 cells (which have low or no MUC5AC
expression) showed hypomethylation. Our results indicate
that regulation of expression by DNA methylation is not
organ specific, but varies in individual cell lines. Moreover,
coordinated changes in DNA methylation and histone
modification may be important for epigenetic regulation
of mucin genes in cancer cell lines derived from various
organs (Kitamoto et al. 2010, 2011; Yamada et al. 2006,
2008, 2009). However, further studies are needed to clarify
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how these different epigenetic changes are involved in
tissue-specific mucin expression in cancer.

Many studies of epigenetic gene regulation have
addressed tumor suppressor genes (Garinis et al. 2002).
Meanwhile, evidence for promoter hypomethylation of
oncogenes has gradually emerged in tumors of several
organs (Sato et al. 2003; Sun et al. 2010; Wolff et al. 2010).
Currently, epigenetic regulation of oncogenes is a phenom-
enon of interest. Transmembrane mucin genes associated
with a poor prognosis (e.g., MUC1 and MUC4) may also
be regulated by epigenetic mechanisms. In cancers like
pancreatobiliary and lung carcinomas with a high potential
for malignancy showing MUC1 and MUC4 high expres-
sion but no MUC2 expression (Yonezawa et al. 2008),
promoter CpG sites in transmembrane mucin genes like
MUC1 and MUC4 associated with a poor outcome may be
hypomethylated, while promoter CpG sites of MUC2
associated with a favorable outcome may be hypermethy-
lated, according to the data based on our studies using
human cancer cells (Yamada et al. 2006, 2008, 2009).
Improved understanding of the regulatory mechanisms
controlling these polar opposite events may enhance the
understanding of epigenetic mechanisms associated with
other oncogenes and tumor suppressor genes.

Posttranscriptional regulation of gene expression by
miRNAs is attracting increased attention (Hartmann et al.
2004; Krol et al. 2010; Rajabi et al. 2010). Among mucin
genes, MUC1 expression has been shown to be directly
downregulated by miR-145, with the further finding that
miR-145 acts as a tumor suppressor in cell invasion and
metastasis by targeting MUC1 (Sachdeva and Mo 2010).
miR-125b and miR-1226 have also been reported to target
MUC1 expression (Jin et al. 2010), and it is likely that
these miRNAs could be attractive targets for therapeutic
intervention in advanced cancers.

Epigenetic analysis of cancer-related genes in clinical
specimens is relatively common, especially using DNA
methylation analysis (Kamalakaran et al. 2011; Okudaira
et al. 2010). There are several techniques for the
evaluation of CpG methylation, but MSP, including
quantitative MSP, is a leading strategy for the analysis of
clinical samples (Lee et al. 2009; Zhu et al. 2010).
However, MSP identifies only regions recognized by the
primer sequence, and MassARRAY and pyrosequencing
analysis are increasingly being used to overcome this
problem (Shinojima et al. 2010; Van Seuningen and
Vincent 2009). MassARRAY analysis permits high-
throughput identification of methylation sites and semi-
quantitative measurement at single or multiple CpG sites.
Pyrosequencing is also a reliable technique for quantifi-
cation of methylation at a single CpG site (Brakensiek et
al. 2007). Moreover, methylation analysis by these
technologies gives highly reproducible quantification

(Shinojima et al. 2010; Van Seuningen and Vincent
2009). In these techniques, however, as clinical samples
include various components other than tumor cells,
evaluation of the average percentage of methylation of
the individual CpG sites is not easy. To permit analysis of
discharged fluids, such as pancreatic juice, bile, or sputum,
there is a need to develop the technique that allows the
detection of individual CpG methylation patterns to be
detected.

Acknowledgments We thank Ms. Izumi Houjou for secretarial
assistance. This work was supported by Grants-in-Aid for Scientific
Research on Priority Areas 219447 to N. Yamada (JSPS Fellowship), and
Scientific Research (C) 20590345 and Scientific Research (B) 23390085
to S. Yonezawa, and Scientific Research (C) 21590399 from the Ministry
of Education, Science, Sports, Culture and Technology, Japan and the
Kodama Memorial Foundation to M. Higashi.

Competing interest statement The authors declare that they have
no conflicts of interest.

References

Alvarez-Venegas R, Avramova Z (2005) Methylation patterns of
histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active
and inactive Arabidopsis genes and in atx1 mutants. Nucleic
Acids Res 33:5199–5207

Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H,
Hollingsworth MA et al (2001) Mucin (MUC) gene expression in
human pancreatic adenocarcinoma and chronic pancreatitis: a
potential role of MUC4 as a tumor marker of diagnostic
significance. Clin Cancer Res 7:4033–4040

Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP
(1993) Expression of human mucin genes in respiratory,
digestive, and reproductive tracts ascertained by in situ hybrid-
ization. J Histochem Cytochem 41:1479–1485

Audie JP, Tetaert D, Pigny P, Buisine MP, Janin A, Aubert JP et al
(1995) Mucin gene expression in the human endocervix. Hum
Reprod 10:98–102

Bartman AE, Buisine MP, Aubert JP, Niehans GA, Toribara NW, Kim
YS et al (1998) The MUC6 secretory mucin gene is expressed in
a wide variety of epithelial tissues. J Pathol 186:398–405

Bhaskar KR, Garik P, Turner BS, Bradley JD, Bansil R, Stanley HE et
al (1992) Viscous fingering of HCl through gastric mucin. Nature
360:458–461

Bird A (1992) The essentials of DNA methylation. Cell 70:5–8
Brakensiek K, Wingen LU, Langer F, Kreipe H, Lehmann U (2007)

Quantitative high-resolution CpG island mapping with pyrose-
quencing reveals disease-specific methylation patterns of the
CDKN2B gene in myelodysplastic syndrome and myeloid
leukemia. Clin Chem 53:17–23

Buisine MP, Devisme L, Copin MC, Durand-Reville M, Gosselin
B, Aubert JP et al (1999) Developmental mucin gene
expression in the human respiratory tract. Am J Respir Cell
Mol Biol 20:209–218

Chang SK, Dohrman AF, Basbaum CB, Ho SB, Tsuda T, Toribara
NW et al (1994) Localization of mucin (MUC2 and MUC3)
messenger RNA and peptide expression in human normal
intestine and colon cancer. Gastroenterology 107:28–36

Chen Y, Zhao YH, Kalaslavadi TB, Hamati E, Nehrke K, Le AD et al
(2004) Genome-wide search and identification of a novel gel-forming

92 Clin Epigenet (2011) 2:85–96



mucin MUC19/Muc19 in glandular tissues. Am J Respir Cell Mol
Biol 30:155–165

Crawley SC, Gum JR Jr, Hicks JW, PrattWS, Aubert JP, SwallowDMet al
(1999) Genomic organization and structure of the 3′ region of human
MUC3: alternative splicing predicts membrane-bound and soluble
forms of the mucin. Biochem Biophys Res Commun 263:728–736

Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol
22:4632–4642

DeAngelis JT, Farrington WJ, Tollefsbol TO (2008) An overview of
epigenetic assays. Mol Biotechnol 38:179–183

Desseyn JL, Guyonnet-Duperat V, Porchet N, Aubert JP, Laine A
(1997) Human mucin gene MUC5B, the 10.7-kb large central
exon encodes various alternate subdomains resulting in a super-
repeat. Structural evidence for a 11p15.5 gene family. J Biol
Chem 272:3168–3178

Desseyn JL, Buisine MP, Porchet N, Aubert JP, Degand P, Laine A
(1998) Evolutionary history of the 11p15 human mucin gene
family. J Mol Evol 46:102–106

Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos
G et al (2005) Quantitative high-throughput analysis of DNA
methylation patterns by base-specific cleavage and mass spec-
trometry. Proc Natl Acad Sci USA 102:15785–15790

Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identifica-
tion of long-range chromatin interactions. J Cell Biochem
107:30–39

Garinis GA, Patrinos GP, Spanakis NE, Menounos PG (2002) DNA
hypermethylation: when tumour suppressor genes go silent. Hum
Genet 111:115–127

Gipson IK, Spurr-Michaud S, Moccia R, Zhan Q, Toribara N, Ho SB
et al (1999) MUC4 and MUC5B transcripts are the prevalent
mucin messenger ribonucleic acids of the human endocervix.
Biol Reprod 60:58–64

Gratchev A, Siedow A, Bumke-Vogt C, Hummel M, Foss HD, Hanski
ML et al (2001) Regulation of the intestinal mucin MUC2 gene
expression in vivo: evidence for the role of promoter methyla-
tion. Cancer Lett 168:71–80

Gum JR, Hicks JW, Swallow DM, Lagace RL, Byrd JC, Lamport DT
et al (1990) Molecular cloning of cDNAs derived from a novel
human intestinal mucin gene. Biochem Biophys Res Commun
171:407–415

Gum JR Jr, Ho JJ, Pratt WS, Hicks JW, Hill AS, Vinall LE et al (1997)
MUC3 human intestinal mucin. Analysis of gene structure, the
carboxyl terminus, and a novel upstream repetitive region. J Biol
Chem 272:26678–26686

Gum JR Jr, Crawley SC, Hicks JW, Szymkowski DE, Kim YS (2002)
MUC17, a novel membrane-tethered mucin. Biochem Biophys
Res Commun 291:466–475

Hamada T, Goto M, Tsutsumida H, Nomoto M, Higashi M, Sugai T et
al (2005) Mapping of the methylation pattern of the MUC2
promoter in pancreatic cancer cell lines, using bisulfite genomic
sequencing. Cancer Lett 227:175–184

Handra-Luca A, Lamas G, Bertrand JC, Fouret P (2005) MUC1,
MUC2, MUC4, and MUC5AC expression in salivary gland
mucoepidermoid carcinoma: diagnostic and prognostic implica-
tions. Am J Surg Pathol 29:881–889

Hanski C, Riede E, Gratchev A, Foss HD, Bohm C, Klussmann E et al
(1997) MUC2 gene suppression in human colorectal carcinomas
and their metastases: in vitro evidence of the modulatory role of
DNA methylation. Lab Invest 77:685–695

Hartmann C, Corre-Menguy F, Boualem A, Jovanovic M, Lelandais-
Briere C (2004) MicroRNAs: a new class of gene expression
regulators. Med Sci (Paris) 20:894–898

He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in
gene regulation. Nat Rev Genet 5:522–531

Higashi M, Yonezawa S, Ho JJ, Tanaka S, Irimura T, Kim YS et al
(1999) Expression of MUC1 and MUC2 mucin antigens in

intrahepatic bile duct tumors: its relationship with a new
morphological classification of cholangiocarcinoma. Hepatology
30:1347–1355

Higuchi T, Orita T, Katsuya K, Yamasaki Y, Akiyama K, Li H et al
(2004) MUC20 suppresses the hepatocyte growth factor-induced
Grb2–Ras pathway by binding to a multifunctional docking site
of met. Mol Cell Biol 24:7456–7468

Hiraki M, Kitajima Y, Sato S, Nakamura J, Hashiguchi K, Noshiro H
et al (2010) Aberrant gene methylation in the peritoneal fluid is a
risk factor predicting peritoneal recurrence in gastric cancer.
World J Gastroenterol 16:330–338

Hirono S, Yamaue H, Hoshikawa Y, Ina S, Tani M, Kawai M et al
(2010) Molecular markers associated with lymph node metastasis
in pancreatic ductal adenocarcinoma by genome-wide expression
profiling. Cancer Sci 101:259–266

Ho JJ, Han SW, Pan PL, Deng G, Kuan SF, Kim YS (2003) Methylation
status of promoters and expression ofMUC2 andMUC5ACmucins
in pancreatic cancer cells. Int J Oncol 22:273–279

Ho SB, Dvorak LA, Moor RE, Jacobson AC, Frey MR, Corredor J et
al (2006) Cysteine-rich domains of muc3 intestinal mucin
promote cell migration, inhibit apoptosis, and accelerate wound
healing. Gastroenterology 131:1501–1517

Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection
and control of the cell surface. Nat Rev Cancer 4:45–60

Horinouchi M, Nagata K, Nakamura A, Goto M, Takao S, Sakamoto
M et al (2003) Expression of different glycoforms of membrane
mucin (MUC1) and secretory mucin (MUC2, MUC5AC and
MUC6) in pancreatic neoplasms. Acta Histochem Cytochem
36:443–453

Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et
al (2009) The human colon cancer methylome shows similar
hypo- and hypermethylation at conserved tissue-specific CpG
island shores. Nat Genet 41:178–186

Itoh Y, Kamata-Sakurai M, Denda-Nagai K, Nagai S, Tsuiji M, Ishii-
Schrade K et al (2008) Identification and expression of human
epiglycanin/MUC21: a novel transmembrane mucin. Glycobiol-
ogy 18:74–83

Jin C, Rajabi H, Kufe D (2010) miR-1226 targets expression of the
mucin 1 oncoprotein and induces cell death. Int J Oncol 37:61–
69

Jonckheere N, Perrais M, Mariette C, Batra SK, Aubert JP, Pigny P et
al (2004) A role for human MUC4 mucin gene, the ErbB2
ligand, as a target of TGF-beta in pancreatic carcinogenesis.
Oncogene 23:5729–5738

Kamalakaran S, Varadan V, Giercksky Russnes HE, Levy D, Kendall
J, Janevski A et al (2011) DNA methylation patterns in luminal
breast cancers differ from non-luminal subtypes and can identify
relapse risk independent of other clinical variables. Mol Oncol 5
(1):77–92

Kamio K, Matsushita I, Hijikata M, Kobashi Y, Tanaka G, Nakata K et
al (2005) Promoter analysis and aberrant expression of the
MUC5B gene in diffuse panbronchiolitis. Am J Respir Crit Care
Med 171:949–957

Kim GE, Bae HI, Park HU, Kuan SF, Crawley SC, Ho JJ et al (2002)
Aberrant expression of MUC5AC and MUC6 gastric mucins and
sialyl Tn antigen in intraepithelial neoplasms of the pancreas.
Gastroenterology 123:1052–1060

Kitamoto S, Yamada N, Yokoyama S, Houjou I, Higashi M,
Yonezawa S (2010) Promoter hypomethylation contributes to
the expression of MUC3A in cancer cells. Biochem Biophys Res
Commun 397:333–339

Kitamoto S, Yamada N, Yokoyama S, Houjou I, Higashi M, Goto M
et al (2011) DNA methylation and histone H3-K9 modifications
contribute to MUC17 expression. Glycobiology 21:247–256

Kitamura H, Yonezawa S, Tanaka S, Kim YS, Sato E (1996)
Expression of mucin carbohydrates and core proteins in

Clin Epigenet (2011) 2:85–96 93



carcinomas of the ampulla of Vater: their relationship to
prognosis. Jpn J Cancer Res 87:631–640

Kondo Y, Shen L, Issa JP (2003) Critical role of histone methylation
in tumor suppressor gene silencing in colorectal cancer. Mol Cell
Biol 23:206–215

Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of
microRNA biogenesis, function and decay. Nat Rev Genet
11:597–610

Kufe DW (2009) Mucins in cancer: function, prognosis and therapy.
Nat Rev Cancer 9:874–885

Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA (1990)
Cloning and sequencing of a human pancreatic tumor mucin
cDNA. J Biol Chem 265:15294–15299

Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY et al
(2009) Aberrant methylation of APC, MGMT, RASSF2A, and
Wif-1 genes in plasma as a biomarker for early detection of
colorectal cancer. Clin Cancer Res 15:6185–6191

Lehmann JM, Riethmuller G, Johnson JP (1989) MUC18, a marker
of tumor progression in human melanoma, shows sequence
similarity to the neural cell adhesion molecules of the
immunoglobulin superfamily. Proc Natl Acad Sci USA
86:9891–9895

Lenhard K, Bommer GT, Asutay S, Schauer R, Brabletz T, Goke B et
al (2005) Analysis of promoter methylation in stool: a novel
method for the detection of colorectal cancer. Clin Gastroenterol
Hepatol 3:142–149

Leroy X, Gouyer V, Ballereau C, Zerimech F, Huet G, Copin MC et al
(2003) Quantitative RT-PCR assay for MUC3 and VEGF mRNA
in renal clear cell carcinoma: relationship with nuclear grade and
prognosis. Urology 62:771–775

Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT et al (2004)
Distinct localization of histone H3 acetylation and H3-K4
methylation to the transcription start sites in the human genome.
Proc Natl Acad Sci USA 101:7357–7362

Linden S, Mahdavi J, Hedenbro J, Boren T, Carlstedt I (2004) Effects
of pH on Helicobacter pylori binding to human gastric mucins:
identification of binding to non-MUC5AC mucins. Biochem J
384:263–270

Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008)
Mucins in the mucosal barrier to infection. Mucosal Immunol
1:183–197

Lujambio A, Esteller M (2007) CpG island hypermethylation of tumor
suppressor microRNAs in human cancer. Cell Cycle 6:1455–1459

Marmorstein R (2001) Protein modules that manipulate histone tails
for chromatin regulation. Nat Rev Mol Cell Biol 2:422–432

Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K et al
(2006) DNA methylation alterations in the pancreatic juice of
patients with suspected pancreatic disease. Cancer Res 66:1208–
1217

Matsukita S, Nomoto M, Kitajima S, Tanaka S, Goto M, Irimura T et
al (2003) Expression of mucins (MUC1, MUC2, MUC5AC and
MUC6) in mucinous carcinoma of the breast: comparison with
invasive ductal carcinoma. Histopathology 42:26–36

Medina PP, Slack FJ (2008) MicroRNAs and cancer: an overview.
Cell Cycle 7:2485–2492

Mesquita P, Peixoto AJ, Seruca R, Hanski C, Almeida R, Silva F et al
(2003) Role of site-specific promoter hypomethylation in
aberrant MUC2 mucin expression in mucinous gastric carcino-
mas. Cancer Lett 189:129–136

Moehle C, Ackermann N, Langmann T, Aslanidis C, Kel A, Kel-
Margoulis O et al (2006) Aberrant intestinal expression and
allelic variants of mucin genes associated with inflammatory
bowel disease. J Mol Med 84:1055–1066

Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK (2001)
Structural organization and classification of the human mucin
genes. Front Biosci 6:D1192–D1206

Moniaux N, Junker WM, Singh AP, Jones AM, Batra SK (2006)
Characterization of human mucin MUC17. Complete coding
sequence and organization. J Biol Chem 281:23676–23685

Munshi A, Shafi G, Aliya N, Jyothy A (2009) Histone modifications
dictate specific biological readouts. J Genet Genomics 36:75–88

Mutskov V, Felsenfeld G (2004) Silencing of transgene transcription
precedes methylation of promoter DNA and histone H3 lysine 9.
EMBO J 23:138–149

Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M
et al (2007) Mucin expression profile in pancreatic cancer and the
precursor lesions. J Hepatobiliary Pancreat Surg 14:243–254

Nakahara K, Carthew RW (2004) Expanding roles for miRNAs and
siRNAs in cell regulation. Curr Opin Cell Biol 16:127–133

Nakamura A, Horinouchi M, Goto M, Nagata K, Sakoda K, Takao S
et al (2002) New classification of pancreatic intraductal papillary-
mucinous tumour by mucin expression: its relationship with
potential for malignancy. J Pathol 197:201–210

Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC,
Liang G et al (2002) Histone H3-lysine 9 methylation is
associated with aberrant gene silencing in cancer cells and is
rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62:6456–
6461

O’Brien TJ, Beard JB, Underwood LJ, Dennis RA, Santin AD, York L
(2001) The CA 125 gene: an extracellular superstructure
dominated by repeat sequences. Tumour Biol 22:348–366

O’Brien TJ, Beard JB, Underwood LJ, Shigemasa K (2002) The CA
125 gene: a newly discovered extension of the glycosylated N-
terminal domain doubles the size of this extracellular superstruc-
ture. Tumour Biol 23:154–169

Oka M, Meacham AM, Hamazaki T, Rodic N, Chang LJ, Terada N
(2005) De novo DNA methyltransferases Dnmt3a and Dnmt3b
primarily mediate the cytotoxic effect of 5-aza-2′-deoxycytidine.
Oncogene 24:3091–3099

Okudaira K, Kakar S, Cun L, Choi E, Wu Decamillis R, Miura S et al
(2010) MUC2 gene promoter methylation in mucinous and non-
mucinous colorectal cancer tissues. Int J Oncol 36:765–775

Osako M, Yonezawa S, Siddiki B, Huang J, Ho JJ, Kim YS et al
(1993) Immunohistochemical study of mucin carbohydrates
and core proteins in human pancreatic tumors. Cancer
71:2191–2199

Park HU, Kim JW, Kim GE, Bae HI, Crawley SC, Yang SC et al
(2003) Aberrant expression of MUC3 and MUC4 membrane-
associated mucins and sialyl Le(x) antigen in pancreatic intra-
epithelial neoplasia. Pancreas 26:e48–e54

Patton S, Gendler SJ, Spicer AP (1995) The epithelial mucin, MUC1,
of milk, mammary gland and other tissues. Biochim Biophys
Acta 1241:407–423

Peng DF, Kanai Y, Sawada M, Ushijima S, Hiraoka N, Kosuge T et al
(2005) Increased DNA methyltransferase 1 (DNMT1) protein
expression in precancerous conditions and ductal carcinomas of
the pancreas. Cancer Sci 96:403–408

Perrais M, Pigny P, Buisine MP, Porchet N, Aubert JP, Van
Seuningen-Lempire I (2001) Aberrant expression of human
mucin gene MUC5B in gastric carcinoma and cancer cells.
Identification and regulation of a distal promoter. J Biol Chem
276:15386–15396

Pinto-de-Sousa J, Reis CA, David L, Pimenta A, Cardoso-de-Oliveira
M (2004) MUC5B expression in gastric carcinoma: relationship
with clinico-pathological parameters and with expression of
mucins MUC1, MUC2, MUC5AC and MUC6. Virchows Arch
444:224–230

Rajabi H, Jin C, Ahmad R, McClary C, Joshi MD, Kufe D (2010)
Mucin 1 oncoprotein expression is suppressed by the miR-125b
Oncomir. Genes Cancer 1:62–68

Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish
EC et al (2005) Expression of mucins (MUC1, MUC2, MUC3,

94 Clin Epigenet (2011) 2:85–96



MUC4, MUC5AC and MUC6) and their prognostic significance
in human breast cancer. Mod Pathol 18:1295–1304

Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches
mainstream oncology. Nat Med 17:330–339

Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing.
Genome Res 11:3–11

Sachdeva M, Mo YY (2010) MicroRNA-145 suppresses cell invasion and
metastasis by directly targeting mucin 1. Cancer Res 70:378–387

Sagara M, Yonezawa S, Nagata K, Tezuka Y, Natsugoe S, Xing PX et
al (1999) Expression of mucin 1 (MUC1) in esophageal
squamous-cell carcinoma: its relationship with prognosis. Int J
Cancer 84:251–257

Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor
microRNAs in human cancer cells. Cell Cycle 5:2220–2222

Saitou M, Goto M, Horinouchi M, Tamada S, Nagata K, Hamada T et
al (2005) MUC4 expression is a novel prognostic factor in
patients with invasive ductal carcinoma of the pancreas. J Clin
Pathol 58:845–852

Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H,
Iacobuzio-Donahue CA et al (2003) Frequent hypomethylation of
multiple genes overexpressed in pancreatic ductal adenocarcino-
ma. Cancer Res 63:4158–4166

Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS et al (2003)
Triple analysis of the cancer epigenome: an integrated microarray
system for assessing gene expression, DNA methylation, and
histone acetylation. Cancer Res 63:2164–2171

Shibahara H, Tamada S, Goto M, Oda K, Nagino M, Nagasaka T et al
(2004a) Pathologic features of mucin-producing bile duct tumors:
two histopathologic categories as counterparts of pancreatic
intraductal papillary-mucinous neoplasms. Am J Surg Pathol
28:327–338

Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth
MA et al (2004b) MUC4 is a novel prognostic factor of
intrahepatic cholangiocarcinoma-mass forming type. Hepatology
39:220–229

Shinojima Y, Terui T, Hara H, Kimura M, Igarashi J, Wang X et al
(2010) Identification and analysis of an early diagnostic marker
for malignant melanoma: ZAR1 intra-genic differential methyl-
ation. J Dermatol Sci 59:98–106

Siedow A, Szyf M, Gratchev A, Kobalz U, Hanski ML, Bumke-Vogt
C et al (2002) De novo expression of the Muc2 gene in pancreas
carcinoma cells is triggered by promoter demethylation. Tumour
Biol 23:54–60

Singh AP, Chauhan SC, Bafna S, Johansson SL, Smith LM, Moniaux N
et al (2006) Aberrant expression of transmembrane mucins, MUC1
and MUC4, in human prostate carcinomas. Prostate 66:421–429

Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V et
al. (2011) MicroRNA-145 is regulated by DNA methylation and
p53 gene mutation in prostate cancer. Carcinogenesis, published
online 23 Feb

Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S et al (2010)
TKTL1 is activated by promoter hypomethylation and contrib-
utes to head and neck squamous cell carcinoma carcinogenesis
through increased aerobic glycolysis and HIF1alpha stabilization.
Clin Cancer Res 16:857–866

Takao S, Uchikura K, Yonezawa S, Shinchi H, Aikou T (1999) Mucin
core protein expression in extrahepatic bile duct carcinoma is
associated with metastases to the liver and poor prognosis.
Cancer 86:1966–1975

Tamada S, Goto M, Nomoto M, Nagata K, Shimizu T, Tanaka S et al
(2002) Expression of MUC1 and MUC2 mucins in extrahepatic
bile duct carcinomas: its relationship with tumor progression and
prognosis. Pathol Int 52:713–723

Tamada S, Shibahara H, Higashi M, Goto M, Batra SK, Imai K et al
(2006) MUC4 is a novel prognostic factor of extrahepatic bile
duct carcinoma. Clin Cancer Res 12:4257–4264

Toribara NW, Roberton AM, Ho SB, Kuo WL, Gum E, Hicks JW et al
(1993) Human gastric mucin. Identification of a unique species
by expression cloning. J Biol Chem 268:5879–5885

Tsutsumida H, Goto M, Kitajima S, Kubota I, Hirotsu Y, Wakimoto
J et al (2007) MUC4 expression correlates with poor
prognosis in small-sized lung adenocarcinoma. Lung Cancer
55:195–203

Utsunomiya T, Yonezawa S, Sakamoto H, Kitamura H, Hokita S,
Aiko T et al (1998) Expression of MUC1 and MUC2 mucins in
gastric carcinomas: its relationship with the prognosis of the
patients. Clin Cancer Res 4:2605–2614

Van Seuningen I, Vincent A (2009) Mucins: a new family of epigenetic
biomarkers in epithelial cancers. Expert Opinion 3:411–427

Van Seuningen I, Pigny P, Perrais M, Porchet N, Aubert JP (2001)
Transcriptional regulation of the 11p15 mucin genes. Towards
new biological tools in human therapy, in inflammatory diseases
and cancer? Front Biosci 6:D1216–D1234

Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al
(2002) Colorectal cancer in mice genetically deficient in the
mucin Muc2. Science 295:1726–1729

Vincent A, Perrais M, Desseyn JL, Aubert JP, Pigny P, Van Seuningen I
(2007) Epigenetic regulation (DNA methylation, histone modifica-
tions) of the 11p15 mucin genes (MUC2, MUC5AC, MUC5B,
MUC6) in epithelial cancer cells. Oncogene 26:6566–6576

Vincent A, Ducourouble MP, Van Seuningen I (2008) Epigenetic
regulation of the human mucin gene MUC4 in epithelial cancer
cell lines involves both DNA methylation and histone modifica-
tions mediated by DNA methyltransferases and histone deacety-
lases. FASEB J 22:3035–3045

Wang RQ, Fang DC (2003) Alterations of MUC1 and MUC3
expression in gastric carcinoma: relevance to patient clinicopath-
ological features. J Clin Pathol 56:378–384

White CL, Suto RK, Luger K (2001) Structure of the yeast
nucleosome core particle reveals fundamental changes in inter-
nucleosome interactions. EMBO J 20:5207–5218

Williams SJ, McGuckin MA, Gotley DC, Eyre HJ, Sutherland GR,
Antalis TM (1999) Two novel mucin genes down-regulated in
colorectal cancer identified by differential display. Cancer Res
59:4083–4089

Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD
et al (2010) Hypomethylation of a LINE-1 promoter activates an
alternate transcript of the MET oncogene in bladders with cancer.
PLoS Genet 6:e1000917

Wolffe AP, Matzke MA (1999) Epigenetics: regulation through
repression. Science 286:481–486

Yamada N, Hamada T, Goto M, Tsutsumida H, Higashi M, Nomoto M
et al (2006) MUC2 expression is regulated by histone H3
modification and DNA methylation in pancreatic cancer. Int J
Cancer 119:1850–1857

Yamada N, Nishida Y, Tsutsumida H, Hamada T, Goto M, Higashi M
et al (2008) MUC1 expression is regulated by DNA methylation
and histone H3 lysine 9 modification in cancer cells. Cancer Res
68:2708–2716

Yamada N, Nishida Y, Tsutsumida H, Goto M, Higashi M, Nomoto
M et al (2009) Promoter CpG methylation in cancer cells
contributes to the regulation of MUC4. Br J Cancer 100:344–
351

Yamada N, Nishida Y, Yokoyama S, Tsutsumida H, Houjou I,
Kitamoto S et al (2010) Expression of MUC5AC, an early
marker of pancreatobiliary cancer, is regulated by DNA methyl-
ation in the distal promoter region in cancer cells. J Hepatobiliary
Pancreat Sci 17:844–854

Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N,
Miyajima N et al (1986) Similarity of protein encoded by
the human c-erb-B-2 gene to epidermal growth factor receptor.
Nature 319:230–234

Clin Epigenet (2011) 2:85–96 95



Yamashita K, Yonezawa S, Tanaka S, Shirahama H, Sakoda K, Imai K
et al (1993) Immunohistochemical study of mucin carbohydrates
and core proteins in hepatolithiasis and cholangiocarcinoma. Int J
Cancer 55:82–91

Yin BW, Lloyd KO (2001) Molecular cloning of the CA125 ovarian
cancer antigen: identification as a new mucin, MUC16. J Biol
Chem 276:27371–27375

Yonezawa S, Sato E (1997) Expression of mucin antigens in human
cancers and its relationship with malignancy potential. Pathol Int
47:813–830

Yonezawa S, Sueyoshi K, Nomoto M, Kitamura H, Nagata K,
Arimura Y et al (1997) MUC2 gene expression is found in
noninvasive tumors but not in invasive tumors of the pancreas
and liver: its close relationship with prognosis of the patients.
Hum Pathol 28:344–352

Yonezawa S, Horinouchi M, Osako M, Kubo M, Takao S, Arimura Y
et al (1999) Gene expression of gastric type mucin (MUC5AC) in
pancreatic tumors: its relationship with the biological behavior of
the tumor. Pathol Int 49:45–54

Yonezawa S, Goto M, Yamada N, Higashi M, Nomoto M (2008)
Expression profiles of MUC1, MUC2, and MUC4 mucins in
human neoplasms and their relationship with biological behavior.
Proteomics 8:3329–3341

Yonezawa S, Higashi M, Yamada N, Yokoyama S, Goto M (2010)
Significance of mucin expression in pancreatobiliary neoplasms.
J Hepatobiliary Pancreat Sci 17:108–124

Zen Y, Sasaki M, Fujii T, Chen TC, Chen MF, Yeh TS et al
(2006) Different expression patterns of mucin core proteins
and cytokeratins during intrahepatic cholangiocarcinogene-
sis from biliary intraepithelial neoplasia and intraductal
papillary neoplasm of the bile duct—an immunohistochem-
ical study of 110 cases of hepatolithiasis. J Hepatol 44:350–
358

Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N et al
(2008) Genomic and epigenetic alterations deregulate microRNA
expression in human epithelial ovarian cancer. Proc Natl Acad
Sci USA 105:7004–7009

Zhu Y, Zhang JJ, Zhu R, Liang WB, Gao WT, Yu JB et al. (2010) The
increase in the expression and hypomethylation of MUC4 gene
with the progression of pancreatic ductal adenocarcinoma. Med
Oncol, published online 5 Oct

Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA
methylation patterns. Development 134:3959–3965

Zrihan-Licht S, Weiss M, Keydar I, Wreschner DH (1995) DNA
methylation status of the MUC1 gene coding for a breast-cancer-
associated protein. Int J Cancer 62:245–251

96 Clin Epigenet (2011) 2:85–96


	Abstract
	Introduction
	Analysis of DNA methylation and histone modification
	Functional role and epigenetic regulation mechanisms of mucin genes
	MUC1
	MUC2
	MUC3A
	MUC4
	MUC5AC and MUC5B
	MUC6
	MUC16 (CA125)
	MUC17

	Conclusions and clinical perspectives
	References

